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Introduction

* Between 6 and 8 million people
in the United States have some
form of language impairment [1].

e Every situation can be stressing
for a person with disabilities in a
confined and busy place.

* The Americans with Disabilities
Act (ADA) is a civil rights law that

prohibits any kind of
discrimination based on disability.
* The objective of this project is to
build a digital assistance system \‘
to help deaf community in
shopping center. A S |



Introduction Continued...

The digital assistance system provides equivalent shopping
experience to deaf community as the one with the ability to
speak English

* Enable live communication between shop keeper and
deaf customers

* Develop a base for building contactless and ASL signs
based kiosk at shopping centers

* Leverage Convolution Neural Networks and Unity Game
Engine

Image Courtey : https://www.kioskmarketplace.com/news/lamasatech-introduces-gesture-
recognition-platform-for-sign-in-temp-screening-kiosks/



Background

* American Sign Language (ASL) is one of the leading sign
language used in the U.S. [2].

* Existing accessibility technologies :
* HoloHear : user speak ASL aloud to a 3D holographic
model
* TapSOS : connect with emergency services in a nonverbal
way
* Amplifier (FM systems) : to fully understand the advice of
the sales assistant




Background : Shopping Center ASL

- - AMERICAN SIGN LANGUAGE
_ , ALLE TR AN BT
* ASL has hand gestures involves static as well ( ‘.»

as motion gestures.

* 3-Dimensional analysis is done with the
perspective of building an Al model

2 D Motion ASL Gesture Red, Yellow, Hand Wave, Okay,

3 D Motion ASL Gesture Blue, Pay, Hello, Eat, Thank You, Offer

Y+

Figure 2: Pay Sign in ASL Figure 3. ASL Alphabets

Z+

Image Courtesy: https://akorbi.com/5-facts-you-didnt-know-about-american-sign-language/



Implementation: LeNet—5 CNN Model

e Our project aims at finding visual
patterns in temporal

] . v o LeNet - 5
representation of ASL action s g i
sequences. e
. i FC K FC
* Yann LeCun showed that 7 — 2, . . —1—>>0 §
— _ 5X5 f=2 5x5 =2 '
minimizing t-he number of free s = E s o
parameters in neural networks can R
enhance the generalization ablllty 32x32Xx1 28x28x6 14X14 %6 10X10X16 5x5x16 120 84

of neural networks

* Itis widely used for various image
recognition problem.



Implementation : LeNet—5 CNN Architecture

model = Sequential()

model.add(Conv2D(filters=32, kernel_size=(3,3), padding='same', activation='relu', input_shape=(64, 64,3)))
model.add(MaxPool2D(strides=2))

model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu'))
model.add(MaxPoo12D(strides=2))

model.add(Flatten())

model.add(Dense (256, activation='sigmoid"')))|

model.add(Dense(84, activation='relu'))

model.add(Dense(9, activation='softmax'))




Implementation: LeNet—5 CNN Model Summary

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 64, 64, 32) 896
max_pooling2d (MaxPooling2D) (None, 32, 32, 32) 0
conv2d_1 (Conv2D) (None, 30, 30, 64) 18496
max_pooling2d_1 (MaxPooling2 (None, 15, 15, 64) 0
flatten (Flatten) (None, 14400) 0

dense (Dense) (None, 256) 3686656
dense_1 (Dense) (None, 84) 21588
dense_2 (Dense) (None, 9) 765

Total params: 3,728,401
Trainable params: 3,728,401
Non-trainable params: @




Implementation : Support Vector Machine
Machine Learning Model

* SVM is supervised machine

Iearnlng algorlthm SVM Hyperparameter

* It is widely used for classification
and regression analysis.

penalty parameter to control error rate

the kernel coefficient

e SVM can produce results on

complex datasets that are smaller S inear, sigmoid, rbf and poly
in size.
e Our datasets are temporal images
© raram_grid = [
that are very Complex for general {'C': [1, 10, 100, 1000], 'kernel': ['linear'l},
object recognition model. {'c': [1, 10, 100, 1000], 'gamma': [0.001, 0.00011, 'kernel': ['rbf'l},
]
, svc = svm.SVC()
clf = GridSearchCV(svc, param_grid)

clf.fit(X_train, y_train)

Figure 5: SVM Parameters for our model




Implementation : Unity Game Engine

We leveraged animations on humanoid avatar in Unity Game Engine for gesture
dataset generation.

Typical Steps Involved :
1. Designing shop with items and humanoid avatars in 3D Unity Scene
Rescaling objects

Configuring Humanoid Rigs: Skeleton and Muscle Setting

powoN

. Adding Animation Properties to Bone Points

5. Build custom gesture animation using Dopesheets and Curves
6. Designing Workflow/Animation State Diagram of events

8. IK Scriptwriting for object movement & camera placement

9. Light Settings in Unity

10. Mp4 video generation using Unity Recorder

Figure 6: ASL Gesture by Humanoid
Avatar in Unity



> customer : Animator.Root T
> customer : Animator.Spine Fro 0.4

| I I i | r r I " . Add Property A Transform
p e e n a I O n . > Animator

> Chest Front-Back

Dopesheet > Chest Left-Right

Unity Game Engine st

» Head Nod Down-Up

Figure 7: Bone Motion Property in Animation Configuration
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Figure 8: Okay Sign Curves Configuration Figure 9: Okay Sign Dopesheet Configuration




ﬁp\ementation . Unity Game Engine

Figure 10: Unity Scene : Customer doing Okay ASL Gesture Sign in a shop setting

y %



Implementation : OpenPose

OpenPose is a real time approach for multi-person
key point detection : body, foot, hand, and facial key
points.

For this project, we used 2D real-time multi-person =
key point detection, the output of which is being fed Figure 11: Unity Dataset Input
to get the 3D temporal mapping of skeleton frames. Video to OpenPose

It outputs 25 body part locations (x, y) and detection
confidence (c) formatted as x0,y0,c0,x1,y1,c1....

test20ut_000000000020_keypoints.json ) No Selection

1 K"version":1.3,"people":[{"person_id":[-1], "pose_keypoints_2d":
[369.846,248.453,0.878195,352.889,390.735,0.577411,223.693,380.309,0.361781,138.859,476.929, 0
146586,0,0,0,483.414,399.883,0.415472,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,338.581, 218
.429,0.892067,401.146,223.67,0.929188,299.364,230.204,0.737117,435.166,253.715,0

Figure 12: Output Video from
OpenPose



Implementation : OpenPose

|




Implementation : Temporal Representation of
3D Skeletal Action Sequences

* The 3D skeleton is mapped into
RGB color palettes.

* Its body invariant approach.

* We followed the approach
proposed in [3] Sohaib, et al for
transforming skeleton sequences
into a temporal RGB image.

* This approach reduces the high
dimensionality of action
sequences to just image
classification.

Labeled skeleton seguence

Frame 1 Frame 2 Frame N-1 Frame N

i i f ,‘ Skeleton- to—lmage
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Figure 13: Skeleton to RGB Transformation
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Figure 14: 3D coordinates to RGB Mapping
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Implementation : Temporal Representation of
3D Skeletal Action Sequences

* High Level Steps:

» Input : json/.skeleton skeleton files

» Parse the input file to get the co-ordinates into numpy X,Y,Z matrix where each matrix has the
shape = Number of Joint * Number of Frames

» Normalized the X,Y,Z Matrix using Head Body Joint

» RGB Channel Generation

» Normalization of this to map to a range of 0 — 255 color value
» Temporal Image Generation of size = 64*64

>

for i in range(self.data.shape[@]): self.datal:, :, 0] = (self.datal:, :, @] - min_x) / (max_x — min_x)
) self.datal:, :, 1] = (self.datal:, :, 1] - min_y) / (max_y - min_y)
self.datali,:, 0] —= self.datal[self.norm, : , 0] self.datal:, :, 2] = (self.datal:, :, 2] - min_z) / (max_z - min_z)
self.datali, :, 1] —= self.datal[self.norm, :, 1]
self.datali, :, 2] -= self.datalself.norm, :, 2] # for 2d ,
self.datal:, :, 2] = (self.datal:, :, 2]1%0) / (max_z - min_z)

Figure 15: Normalization for 3D co-ordinate Figure 16: Normalization for 2D co-ordinate



Implementation : Temporal Representation Examples

X

Figure 17: Human Figure 18: Human Figure 19: Human

Jump (Sample output Hop (Sample output Hand Wave (Sample

temporal image) temporal image) output temporal
image) G

L — (00,0

— Cmi B i \P Y
Pnorm — floor (255 X P min ) L] 1 '
Cmax — Cmin 3 i
y X B &
Vi) = +o0

Figure 20: Skeleton Format



Related Work

» “British Sign Language Recognition via Late Fusion of Computer
Vision and Leap Motion with Transfer Learning to American Sign
Language” by Bird, J.J.; Ekart, A.; Faria, D.R

* fusion approach to multi-modality in sign language recognition

» “Skeleton-based Action Recognition with Convolutional Neural
Networks” by Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu

* first to adapt Faster R-CNN to the task of skeleton-based temporal action detection

e “3D Skeleton-Based Action Recognition by Representing Motion
Capture Sequences as 2D-RGB Images” by Sohaib Laraba, Med
Brahimi, Joélle Tilmanne and Thierry Dutoit

* present a new representation of motion sequences Seq2Im for sequence to image)
which projects motion sequences onto the RGB domain.

Image Courtesy: https://akorbi.com/5-facts-you-didnt-know-
about-american-sign-language/




Design : Application Design

. New Customer
. “Says Hello in ASL”

Recognize the gesture LR

Show response for the

recognized action.

Figure 21 : Application Design



Design : Project Architecture

.mp3video 5 "
Live Video B Mgzgl ose

Feed

lSkeleton Sequences

Temporal Image Generator

RGB Temporal Image

v

Word Action o |  Output
Classifier Label to User

Figure 22 : Application Design



Datasets Overview

MNIST ASL Alphabets Dataset

Unity Okay Animation Dataset

NTU RGB Action Recognition Dataset

ASL Leap Motion Controller Dataset



Datasets : MNIST ASL Alphabets Recognition

* It matches closely with the classic MNIST.  pataset sample preview:

* This dataset is provided as a .csv file that label pixell pixel? pixeld ... pixel781 pixel782 pixel783 pixel784
0 3 107 118 127 ... 206 204 203 202

hgs 1 column for label and 784 columns for | e 1ss 151 1s6 . 17 T03 ipe 149
pixel values of the gesture image. 2 2 187 188 188 ... 198 195 194 195
3 2 211 211 212 ... 225 222 229 163

4 13 164 167 170 ... 157 163 164 179

27450 13 189 189 190 ... 234 200 222 225

27451 23 151 154 157 ... 195 195 195 194

_ 27452 18 174 174 174 ... 203 202 200 200

* Class label from 0 to 25 map to A-Z. e 1L o s o o
27454 23 179 180 180 ... 197 205 209 215

* Motion gestures J=9 or Z=25 excluded.

* Training data size = 27,455 and
Test data size = 7,172 Figure 23: MNIST ASL Dataset Preview

[27455 rows x 785 columns]



Datasets : Unity
Okay Animation
Dataset

* This is the synthetic video dataset
generated by us using Unity
Animation where a person is
performing an ‘Okay’ sign in ASL .

 The dataset has 50 videos taken
from varied angles in the 3D Unity
Scene.

* Variety is added through different

background contrast, various angles

of camera, light settings and through
addition of shop objects.




Datasets : NTU RGB+D Action Recognition Dataset

* It contains videos captured from
Kinect V2 cameras providing RGB
videos, 3D skeletal data, depth map
sequences for each video sample.

e Class labels from 1 - 60 to
represent respective action classes.

* Total dataset = 56,880 videos and
.skeleton files

1.1 Daily Actions (82)

A1: drink water |A2: eat meal A3: brush teeth |A4: brush hair
A5: drop IAB: pick up A7: throw |A8: sit down
A9: stand up IA10: clapping A11: reading A12: writing

IA13: tear up paper

IA14: put on jacket

A15: take off jacket

[A16: put on a shoe

A17: take off a shoe

IA18: put on glasses

A19: take off glasses

|A20: put on a hat/cap

IA21: take off a hat/cap

IA22: cheer up

A23: hand waving

[A24: kicking something

A25: reach into pocket

IA26: hopping

A27: jump up

|A28: phone call

IA29: play with phone/tablet

IA30: type on a keyboard

A31: point to something

|A32: taking a selfie

A33: check time (from watch)

IA34: rub two hands

IA35: nod head/bow

{A36: shake head

A37: wipe face

IA38: salute

|A39: put palms together

[A40: cross hands in front

IAB1: put on headphone

IAB2: take off headphone

IA63: shoot at basket

|A64: bounce ball

AB5: tennis bat swing

IA66: juggle table tennis ball

A67: hush

|A68: flick hair

AB9: thumb up

IA70: thumb down

A71: make OK sign

|A72: make victory sign

IA73: staple book

IA74: counting money

A75: cutting nails

|A76: cutting paper

A77: snap fingers

IA78: open bottle

A79: sniff/smell

|A80: squat down

A81: toss a coin

IA82: fold paper

A83: ball up paper

|A84: play magic cube

A85: apply cream on face

IA86: apply cream on hand

A87: put on bag

|A88: take off bag

A89: put object into bag

|A90: take object out of bag

A91: open a box

[A92: move heavy objects

A93: shake fist

IA94: throw up cap/hat

A95: capitulate

IA96: cross arms

IA97: arm circles

IA98: arm swings

A99: run on the spot

IA100: butt kicks

A101: cross toe touch

IA102: side kick

Figure 24: NTU RGB Action Classes




Datasets : NTU RGB Action Recognition Dataset

[ ) @ /. S018C001P041R00]A102.9keleton
67
1 Class label

72057594037934351 0 1 1 0 0 © 0.1998573 -0.2021501 2
Body joints

-0.1603807 0.006462337 3.412063 239.1637 207.8031 927.1428 565.0251 -0.2092761 0.04693484 0.9730155 -0.08509673 2
-0.142735 0.317171 3.353397 240.7749 173.8903 932.3832 467.1323 -0.2265078 0.04843735 0.9691491 -0.08425056 2
-0.1245192 0.6206408 3.281826 242.4364 139.1553 937.8688 367.192 -0.2436049 0.0616893 0.9604627 -0.1198433 2

' —0.1732171 0.7506473 3.269492 236.8981 124.2077 922.1119 324.2775 @0 0 0 0 2

-0.2891632 0.5207086 3.374737 224.9455 151.9475 886.8051 403.857 0.1884566 0.7486431 -0.6274622 -0.1015321 2
-0.3409766 0.2730556 3.486886 220.5545 179.8318 873.2759 484.1526 0.1131782 0.7911696 -0.1994244 -0.5669842 2
-0.3601164 0.04360022 3.508726 218.7969 203.9491 867.8653 553.7488 0.06113227 0.5744343 0.01482306 0.8161301 2
-0.3817433 -0.03365478 3.519233 216.6565 211.9947 861.572 576.9638 0.1482188 0.573288 -0.0248821 0.805452 2

{0.002205719 0.4739555 3.217169 256.5992 154.5444 978.96 411.5305 -0.1241538 0.7933295 0.5251671 -0.2818041 2
0.05945465 0.196763 3.235404 263.0675 186.2579 997.3299 502.9835 0.01569892 0.9815378 0.1053612 0.1588586 2

[ 0.05145715 -0.02871202 3.232117 262.1676 211.7426 994.5536 576.5731 0.0186449 -0.5835288 0.004429252 0.8118663 2
0.04317311 -0.08645608 3.240051 261.219 218.2497 991.7154 595.3612 0.01806303 -0.5794056 0.09620306 0.8091401 2

{—0.2273161 0.009071837 3.407381 231.9532 207.5219 906.3223 564.1605 -0.04321315 -0.6873973 0.7194186 -0.08974711 2
-0.2179198 -0.3453481 3.546755 233.8631 244.1286 910.9375 669.8456 -0.1106592 -0.5280138 0.1502727 0.828477 2

1 —0.1807852 -0.6735729 3.706198 238.4653 275.1238 923.3652 759.0821 -0.1633541 -0.5204976 0.1608808 0.8225054 2

1 -0.2076803 -0.7639376 3.66709 235.5691 284.9297 915.1207 787.2019 @ 0 0 @ 2

1 —0.08982801 0.003812812 3.344495 246.5302 208.0788 948.7761 565.8752 -0.2272923 0.6508409 0.6593801 -0.2999372 2

1-0.02175445 -0.3444034 3.428887 254.027 245.2426 969.7429 673.2144 0.04987678 0.8408145 0.141843 0.5200229 2

{ 0.04655967 -0.6998987 3.614395 261.0714 279.4981 988.9349 771.7944 0.1392087 0.7820653 0.2089046 0.570398 2
0.03869141 -0.793726 3.584099 260.3096 289.7632 986.77 801.2334 0 0 0 0 2

| —0.1291854 0.5458355 3.30203 242.0125 147.9243 936.4594 392.3806 -0.244032 0.05520767 0.9630563 -0.09961461 2
-0.3832865 -0.1154108 3.539151 216.7171 220.4287 861.5961 601.313 @ 0 @ 0 2

-0.3533302 -0.0449665 3.514429 219.5656 213.1766 869.9846 580.3987 0 0 0 0 2

0.02505606 —-0.1676084 3.252883 259.1643 227.334 985.6303 621.58 0 0 0 0 2

10.007986417 -0.06139053 3.240583 257.249 215.4202 980.2557 587.1609 0 @ @

Skeleton Points(x,y,z)

0 2

Figure 25: NTU RGB Skeleton for an Action Class



Datasets : ASL Leap Motion Controller Dataset

* This dataset contains 25 subjects
performing 60 different signs of the ASL and
includes more than 17,000 signs in total.

* The dataset contains ASL gesture classes
like red, blue, yellow, come, cost, shop, big,
small and others that are widely used in a
shop setting and hence is idle for our project.
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Figure 26: Bone Point Representation



Datasets : ASL Leap Motion Controller Dataset

Every action has a separated dataset
file for left and right hand.

Each of these files represent the
skeleton motion trajectory in 3D for
that single hand.

A W N

Time

21:34:36.368 PM
21:34:36.395 PM
21:34:36.425 PM
21:34:36.456 PM

21:34:36.485 PM

thumbProximal_L_X
0.11964489999999998
0.1194022

0.1191847

0.1186636

0.1180744

thumbProximal_L_Y
0.02544089
0.02560966
0.02572824
0.02577735

0.02620117

thumbProximal_L_Z

0.40602309999999997
0.40558299999999997
0.40531690000000004
0.40505399999999997

0.4046636

thumbDistal_L_X
0.11842480000000001
0.1180625

0.1177519
0.11715899999999999

0.116481

Figure 27: LMC Orange Left Hand Dataset Preview

Time

21:34:36.368 PM
21:34:36.395 PM
21:34:36.425 PM
21:34:36.456 PM
21:34:36.485 PM

21:34:36.517 PM

thumbProximal_L_X

-0.1097075

-0.10988230000000002
-0.1100047
-0.1098692
-0.10983820000000001

-0.10987960000000001

thumbProximal_L_Y
0.01622243
0.01601733
0.01598163
0.01586817
0.01578118

0.01576672

thumbProximal_L_Z
0.39756579999999997
0.3980123
0.39820559999999994
0.39831500000000003
0.3984414

0.39838850000000003

thumbDistal_L_X
-0.11329960000000001
-0.1135501
-0.11370119999999999
-0.11356589999999998
-0.11358519999999998

-0.11361500000000001

Figure 28: LMC Orange Right Hand Dataset Preview



Experiments and Results

ASL Alphabet Recognition

NTU-RGB+D on SVM & LeNet-5 model

Leap Motion Controller on SVM & LeNet-5 model

Impact on accuracy 2d vs 3d co-ordinates



Experiments : ASL Alphabets Recognition

100

150

200

250

300

100

(1,:32::32; 1]
Predicted ASL Alphabet: Y

Figure 29: ASL Live Alphabet Recognition Preview

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 28, 28, 6) 156
max_pooling2d (MaxPooling2D) (None, 14, 14, 6) 0
conv2d_1 (Conv2D) (None, 10, 10, 16) 2416
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 16) 0
flatten (Flatten) (None, 400) 0

dense (Dense) (None, 120) 48120
dense_1 (Dense) (None, 25) 3025
dense_2 (Dense) (None, 25) 650

Total params: 54,367
Trainable params: 54,367
Non-trainable params: @

None

Figure 30: Le-Net 5 Model Summary



Results : ASL Alphabet Recognition

(B3

The graph of the training accuracy was observed to be monotonically increasing with the number of

epochs and accuracy was found to be 95.08% at the end of 20 epochs.

Also, the loss was decreasing monotonically and reached to a final value of 0.2245

#train the data on lenet5 arch
model. fit(X_train ,Y_train, steps_per_epoch = 10, epochs = 20)

Epoch 1/20 100.00%
10/10 [ ] - 1s 26ms/step — loss: 3.1731 - accuracy: 0.0548

Epoch 2/20

10/10 [ ] - @0s 21ms/step — loss: 2.9280 - accuracy: 0.1324

Epoch 3/20 90.00%
10/10 [ ] — 0s 18ms/step — loss: 2.6138 - accuracy: 0.2281

Epoch 4/20

10/10 [ ] — @s 18ms/step — loss: 2.2653 - accuracy: 0.3426 80.00%
Epoch 5/20 z
10/10 [ ] - 0s 17ms/step — loss: 1.8969 - accuracy: 0.4776

Epoch 6/20

10/10 [ ] — @s 18ms/step — loss: 1.5729 — accuracy: 0.5548 70.00% E
Epoch 7/20

10/10 [ ] - @s 19ms/step — loss: 1.3218 - accuracy: 0.6154

Epoch 8/20 =
10/10 [=== === ] - @s 20ms/step — loss: 1.1046 — accuracy: 0.6842 60.00% &
Epoch 9/20 g
10/10 [ ] — 0s 20ms/step — loss: ©0.9556 — accuracy: 0.7282

Epoch 10/20 50.00%
10/10 [ ] - 0s 18ms/step — loss: ©0.8303 - accuracy: 0.7655

Epoch 11/20

10/10 [ ] — 0s 18ms/step — loss: 0.7274 — accuracy: 0.7951

Epoch 12/20 40.00%
10/10 [ ] - 0s 18ms/step — loss: 0.6501 — accuracy: 0.8188

Epoch 13/20

10/10 [ ] - s 18ms/step - loss: ©.5701 - accuracy: 0.8412 30.00%
Epoch 14/20

10/10 [ ] — 0s 19ms/step — loss: ©.5001 — accuracy: 0.8658

Epoch 15/20

10/10 [ ] — @s 18ms/step — loss: ©0.4455 - accuracy: 0.8814 20.00%
Epoch 16/20

10/10 [ ] — 0s 18ms/step — loss: 0.3815 - accuracy: 0.9026

Epoch 17/20

10/10 [ ] - 0s 18ms/step — loss: ©.3451 — accuracy: 0.9114 10.00%
Epoch 18/20

10/10 [ ] — 0s 18ms/step — loss: 0.2949 - accuracy: 0.9295

Epoch 19/20 0.00%
10/10 [ ] — 0s 18ms/step — loss: 0.2592 - accuracy: 0.9407 ’
Epoch 20/20

10/10 [ ] - @0s 18ms/step — loss: ©.2245 - accuracy: 0.9508

<tensorflow.python.keras.callbacks.History at 0x7fb5088c7950>

92.95%

86.58%

90.26%
81.88%
72.82%
55.48% 61.54%
47.76%

34.26%

22.81%
13.24%

NO. OF EPOCHS
3 5 7 9 1 13 15 17

95.08%

19



Experiments : NTU-RGB on LeNet-5 model

« When we trained the model on LeNet-5 architecture we observed 86% training accuracy for 3 classes
whose gestures have complex motion in 3D space.

* The precision was best for eat gesture class which was most focused on depth dimension, i.e., Z coordinate.

[ 1 labels = np.argmax(yy, axis = 1)
# print(labels.shape, labels)
print(classification_report(y_test, labels, target_names =
[' Hand Waving(Class 23)','Food Sign : Eat (Class 2)','Hello Sign (Salute) (Class 38)']))

precision recall fl-score support

Hand Waving(Class 23) 0.86 0.83 0.84 270

Food Sign : Eat (Class 2) 0.89 0.88 0.89 301
Hello Sign (Salute) (Class 38) 0.82 0.85 0.83 279
accuracy 0.86 850

macro avg 0.86 0.85 0.85 850

weighted avg 0.86 0.86 0.86 850



Results : NTU-RGB+D on LeNet-5 Model

* As we can observe in the training accuracy and loss, the accuracy increased from 83.5% to 86%
when learning rate was kept at 0.001 and Adam optimizer was used.

* The decrease in loss is also constant.

Trainmng Accuracy

0360
Training Loss

—— Faining Loss

043 4

042 1
0850

041 4

0.845 040 4

0391
0840
038 1

s Taming Accuracy

LSS % 2 > o <~ 0 100 200 300 400 500



Experiments : NTU-RGB+D on SVM

> Classification report for -

° In thiS experiment we gOt aCCu raCy Of GridSearchCV(cv=None, error_score=nan, ' '
89% for SVM model for the 3 classes. O e Nore contbog g S7em200,

decision_function_shape='ovr', degree=3,
gamma='scale', kernel='rbf', max_iter=-1,

ici probability=False, random_state=None, shrinking=True,
* This is better as compared to the R 120,001, ve boemsrarse)”
- 4 iid='deprecated', n_jobs=None,
LeNet-5 model’s accuracy that was param_grid=[{'C': [1, 10, 100, 1000], 'kernel': ['linear'l},
just 86%. {'c': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],

'kernel': ['rbf']}],
pre_dispatch="'2%n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0):

precision recall fl-score support

0 0.89 0.88 0.88 270

1 0.93 0.88 0.91 301

2 0.86 0.91 0.88 279

accuracy 0.89 850
macro avg 0.89 0.89 0.89 850
weighted avg 0.89 0.89 0.89 850



Experiment : Leap Motion Controller Classes Used

 ASL Actions :

Please, Blue, Red, Yellow, Where, Stop, Water, Orange and Thanks performed
majorly by right hand.



Experiments : Leap Motion Controller on SVM

[» Classification report for -
GridSearchCV(cv=None, error_score=nan,
estimator=SVC(C=1.0, break_ties=False, cache_size=200,

. 1 ight=| : f0=0.0,
* When we traInEd the mOdeI on geziz_i‘gﬁiguﬁc':(ijzﬁ_sﬁggeg'2v?", degree=3,
. . =I 'L I’ k 'L=I bfl' _' —— .
thlS arChIteCture' we gOt mUCh g?‘gggbiiciztay:Falszrniandgm_sta?ZZN;ﬁzr srlwrinking=True,
1=0.001, b =False),
better results than the LeNet-5 T, e e
_grid=[{'C': [1, 10, 100, 1000], 'k ) B B B gl b
model. PROSRES {'C': [1, 10, 100, 1000], 'g:n:r::': [o.e;fag.eooll,
‘kernel': ['rbf']}],
ini dispatch="'2%n_jobs', refit=True, return_train_ =False,
* The overall training accuracy for D it ot ERELIUS TSTUER SR SC0ieTTates
SVM iS 65% for 9 Classes. precision recall fl-score  support
0 0.64 0.88 0.74 8
i E 0.33 0.80 0.47 5
* We observed from the . b o g %
£ H 3 0.89 0.89 0.89 9
classification repqrt that most R - 2.0 o g >
classes got precision around 60% : 9: S Gl "
“ ” 7 0.44 0.80 0.57 5
and “where” of the class was : g g o 9% 2
100% classified. o 0.62 68
macro avg 0.65 0.63 0.60 68
weighted avg 0.67 0.62 0.61 68



Experiments: Leap Motion Controller on LeNet-5 model

* When we trained the model on this architecture, but it did not do well.

* We tried to use different learning rate like 0.00001, 0.001 and 0.0001
but the accuracy still was extremely poor around 13-15%.

* We also tried to change the activation function, epoch steps and
number of epochs but accuracy was unaffected.

* As this dataset was totally focus on hand points, we deduced that the
quality of dataset from the LMC for LeNet-5 as image classifier wasn’t
good and hence it did not do well on this methodology proposed in this

report.



Experiments : Impact on accuracy 2d vs 3d co-ordinates

* This experiment aimed at finding the
performance of the model when only 2D
(X, Y) data points of the skeleton are
provided instead of 3D (X,Y, Z) using NTU
RGB+D dataset.

* We observed that after removing the Z
coordinate which maps to blue color in
the RGB pallet, the temporal patterns
remain same, but the dominance of
colors is taken over by green and red
with a huge contrast.

* Also, the accuracy wasn’t impacted
much. There was a slight increase of 1%
in the accuracy leading it to 90% overall
training accuracy.

> Classification report for -
GridSearchCV(cv=None, error_score=nan,

0
1
2
accuracy

macro avg
weighted avg

Figure 43: SVM Classification Report for 2D NTURGB Dataset

estimator=SVC(C=1.0, break_ties=False, cache_size=200,
class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='scale', kernel='rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
to1=0.001, verbose=False),

iid='deprecated', n_jobs=None,

param_grid=[{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'Cc': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
'kernel': ['rbf'l1}],
pre_dispatch='2xn_jobs"', refit=True, return_train_score=False,
scoring=None, verbose=0):
precision recall fl-score support
0.89 0.94 0.91 270
0.89 0.88 0.89 301
0.91 0.86 0.88 279
0.90 850
0.90 0.90 0.90 850
0.90 0.90 0.89 850



Results : Impact on accuracy 2d vs 3d co-ordinates

T
Figure 31: 3D v/s 2D temporal mapping Figure 32: 3D v/s 2D temporal mapping for
for Class 2 : Food (Eat) Class 38 : Hello (Salute)

Figure 33: 3D v/s 2D temporal mapping
for Class 23 - Bye

Output Temporal Images after transformation from Skeleton points to RGB image



Conclusions

* This project presented a prototype to helps customer to ask where to look for certain item in
store, seek suggestions for clothing or ask for navigating to a washroom or request for special
assistance from clerk.

* Accessibility technologies must provide real-time communication and be mandated in public
places to aid with those hard of hearing or deaf just like we have strict enforcements for website.

* Also, with the spread of COVID-19 like virus, the demand for more and more contactless gesture-
based technology is tremendously increasing.

* We can use these methodology and add more gesture to the dataset to make the system more
user friendly and robust. We can also try to use other neural networks for this methodology like
LSTM that could possibly be used to get the real time ASL speech.
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