

American Sign Language Assistant

A Project

Presented to

The Faculty of Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Charulata Lodha

Spring 2021

© 2021

Charulata Lodha

ALL RIGHTS RESERVED

The Designated Project Committee

Approves

the Master’s Project Titled

American Sign Language Assistant

By

Charulata Lodha

APPROVED FOR THE DEPARTMENT OF COMPUTER

SCIENCE

SAN JOSE STATE UNIVERSITY

Spring 2021

Dr. Christopher Pollett Department of Computer Science

Dr. Robert Chun Department of Computer Science

Ms. Shruti Kothari Amazon

ABSTRACT

American Sign Language Assistant

By

Charulata Lodha

Our implementation of a prototype computer vision system to help the deaf and mute

communicate in a shopping setting. Our system uses live video feeds to recognize American

Sign Language (ASL) gestures and notify shop clerks of deaf and mute patrons’ intents. It

generates a video dataset in the Unity Game Engine of 3D humanoid models in a shop setting

performing ASL signs.

Our system uses OpenPose to detect and recognize the bone points of the human body

from the live feed. The system then represents the motion sequences as high dimensional

skeleton joint point trajectories followed by a time-warping technique to generate a temporal

RGB image using the Seq2Im technique. This image is then fed to the image classification

algorithms that classify the gesture performed to the shop clerk.

We carried out experiments to analyze the performance of this methodology on the Leap

Motion Controller dataset and NTU RGB+D dataset using the SVM and LeNet-5 models. We

also tested 3D vs 2D bone point dataset performance and found 90% accuracy for the 2D

skeleton dataset.

Keywords – Unity, Convolutional Neural Network (CNN), American Sign Language(ASL)

ACKNOWLEDGEMENTS

This project is a result of constant support and guidance from Dr. Christopher Pollett. I

would like to express my sincerest gratitude to him for his unwavering supervision, patience, and

motivation throughout my project. I consider myself to be extremely fortunate to have had an

opportunity to work with someone as learned and humble as him.

I am also grateful to my committee members, Dr. Robert Chun and Shruti Kothari for

providing their valuable feedback and guidance. I would also like to thank the CS department for

providing a thriving environment for success.

And finally, I thank my supportive parents and friends for always having my back and

helping me work on something so meaningful.

LIST OF FIGURES AND TABLES

Figure 1: ASL Alphabets .. 6

Figure 2: Red Sign in ASL.. 6

Figure 3: Pay Sign in ASL .. 7

Figure 4: LeNet-5 Architecture ... 8

Figure 5: SVM Classifier .. 9

Figure 6: SVM Classifier - Outlier ... 9

Figure 7: SVM Non-Linear Hyperplane Example .. 10

Figure 8: Parameters of SVM ... 10

Figure 9: Add Property in Animation ... 12

Figure 10: Animation configuration of Okay Sign in Dopesheet mode 12

Figure 11: Animation configuration of Okay Sign in Curve Mode .. 13

Figure 12: Okay Sign Unity Animation Clip Snapshots ... 13

Figure 13: Unity Recorder .. 14

Figure 14: Input Video to OpenPose ………………………………………………………………………………………16

Figure 15: Output Video of OpenPose .. 15

Figure 16: XYZ Mapping to RGB Space ... 16

Figure 17: Sample output temporal image of human jump .. 16

Figure 18: Application Design .. 17

Figure 19: Project Architecture ... 19

Figure 20: MNIST ASL Dataset Preview ... 20

Figure 21: NTU RGB Action Classes .. 21

Figure 22: NTU RGB Skeleton Points... 22

Figure 23: Hand Joint Points as seen by Leap Motion Controller .. 23

Figure 24: LMC Orange Left Hand Dataset Preview ... 23

Figure 25: LMC Orange Right Hand Dataset Preview ... 24

Figure 26: C# code Snippet 1.. 25

Figure 27: C# code Snippet 2.. 25

Figure 28: LeNet-5 Model Architecture ... 26

Figure 29: LeNet-5 ASL Alphabet Detection Result : Y class ... 26

Figure 30: LeNet-5 Keras Model for ASL .. 27

Figure 31: SVM Model for ASL ... 28

Figure 32: MNIST ASL Alphabets on LeNet-5 model Epoch Accuracies 30

Figure 33: Training Accuracy for LeNet-5 ASL Alphabet Detection .. 31

Figure 34: NTU RGB Classification Report for SVM ... 32

Figure 35: NTU RGB Training Accuracy and Loss Graph .. 32

Figure 36: SVM Classification Report for NTU RGB Dataset .. 33

Figure 37: Classification Report for SVM for 9 classes of LMC ... 34

Figure 38: Output Skeleton visualized from OpenPose .. 36

Figure 39: Skeleton coordinates generated from OpenPose ... 36

Figure 40: 3D v/s 2D temporal mapping for Class 2 .. 37

Figure 41: 3D v/s 2D temporal mapping for Class 23 ... 37

Figure 42: 3D v/s 2D temporal mapping for Class 38 ... 37

Figure 43: SVM Classification Report for 2D NTURGB Dataset ... 38

Table 1: Sign Categories based on Depth ... 7

Table 2: Action Response Table ... 18

Table of Contents

I. Introduction 1

II. Background 5

a. Shopping Center ASL 5

b. LeNet – 5 Architecture 7

c. Support Vector Machine 8

d. Unity Game Engine 11

e. OpenPose Model 14

f. Temporal Representation of 3D Skeletal Action Sequences 15

III. Design 17

a. Application Design 17

b. Project Architecture 18

IV. Implementation 20

a. Dataset 20

b. Unity Animation Creation and Scripting 24

c. ASL Alphabet Recognition in Real-Time 25

d. ASL Word Recognition in Real-Time 27

V. Experiments 29

a. MNIST ASL Alphabet Dataset 29

b. NTU-RGB v/s LMC for SVM & LeNet-5 model 31

c. Okay Sign from Unity Dataset 35

d. Impact on accuracy 2d vs 3d co-ordinates 36

VI. Conclusion 39

References 40

 1

I. INTRODUCTION

In the United States between 6 and 8 million people suffer from language impairment [1].

Sign language focuses mainly on hands gestures for communication. In some cases, the body,

head, and facial expression are also accounted to accurately understand a sign’s intended

meaning. This report describes an approach for building a digital assistance system that provides

a solution to in-shop issues for mute and deaf people by providing live communication between

shop keeper and customers through video feeds using state-of-the-art Convolution Neural

Networks and Unity Game Engine.

American Sign Language (ASL) is one of the most widely used sign language in the U.S.

[2]. ASL is not sign language English but a visual language where signs convey ideas rather than

literal words. As a result, there comes an undeniable communication barrier between the ASL

and English speaking population.

The barrier in communication between people obstructs the normal way of living. For

example, if a deaf person at the shopping mall wants to seek some suggestions for clothing then

and if there no ASL-speaking people around then one might not get the same seamless shopping

experience just like the one with the ability to speak English. Whether one is a store owner or

government, it’s high time that we enforce a mechanism to maintain stores that are accessible for

deaf customers.

The Americans with Disabilities Act (ADA) prohibits any kind of disability-based

discrimination[3]. It is also responsible for enforcement of the law to ensure that people with

disabilities can access any online content [3]. As the world is tremendously progressing in

accessibility technologies, a resilient computer system that provides real-time communication

 2

must be built and mandated in public places to aid those hard of hearing or deaf.

The existing accessibility technologies show an innovative application of Augmented

Reality, Machine Learning, Artificial Intelligence, and Human-Computer Interaction to better

accommodate mute and deaf people. HoloHear has used HoloLens and prototyped an

augmented reality app in which as a customer speaks aloud, a 3D holographic model appears that

translates ASL to English in real-time [4]. TapSOS app allows a person who is mute and deaf to

seek help from emergency services without having to speak to it by just tapping in the app to a

particular issue like breathing issue, fire and others to inform about the respective authorities

and won the 2018 Digital Health Award [5]. Today shops provide amplifiers to deaf people to

adequately communicate with the sales assistant [6].

Convolutional Neural Networks have proven to be extremely successful for image

recognition and classification problems. It has been widely implemented for recognizing human

gestures lately. In [7] J. J. Bird, et al show that a late fusion approach to multimodality in sign

language recognition improves the overall ability of the model in comparison to the singular

approaches of image classification (88.14%) and Leap Motion data classification (72.73%).

Another approach to perform gesture recognition is through human temporal dynamics.

The Skeleton-based human action recognition is a time-series problem used by [8]. The skeleton

dataset comprises the human key joints in 3D space over time. This approach is possibly a more

detailed representation of gesture than just a few snapshots over time as here each action is being

accounted by motion of skeleton sequences as a series of time frames.

The rise of computing technologies motivated the development of Kinect and Leap

Motion that are used as an input device to capture motions. These human-machine interaction

device finds its application in many fields from augmented reality to healthcare.

 3

The availability of easy-to-use depth sensors like Microsoft Kinect™ has promoted

research work in the computer vision community specifically in action recognition by providing

3D skeletal characteristic of human body movements. This skeleton information is quite complex

for traditional 2D cameras[9]. This further alleviates the problem of hand gesture recognition by

providing the CNNs with temporal information about each of the body joint points and gives us

the motivation for this project.

The primary contribution of this project is to present an accessibility CNN-based solution

that is an economically viable and easily integrable end-to-end system for a shopping center to

recognize the intent of the deaf and mute that would help them independently shop and have a

seamless shopping experience. It simplifies the process of gesture recognition by transforming

the skeleton sequences into RGB temporal dynamics which is fed as input to CNN-based image

recognition models and thus highly reducing the training time and complexity. It also gives the

owner the ability to create their dataset as CNNs require a huge amount of training data to avoid

overfitting. This project presents a way for a generation of a great quality dataset using Unity

animations and C# scripting that could be potentially be used for computer vision research work.

This acts as an alternative to having an infrastructure with huge resources, manpower as well as

the cost to generate quality datasets. It also draws insights into how the training size of the

dataset impacts the accuracy of the experiments performed on various datasets. This will help the

user make critical decisions concerning the generation of their dataset from Unity and

partitioning it while training the model for the best accuracy.

The project report is organized into chapters as follows: Chapter 2 defines the

background and concepts used to build the final system, why we used LeNet-5 architecture,

prediction of signed alphabets, animation creation in Unity Game Engine as well scripting

 4

required for the generation of gesture dataset from Unity. Lastly, it shows how to leverage

OpenPose for the detection of body joint points and conversion of gesture frames into RGB

temporal images. Chapter 3 talks in detail about the design of the project overall. Chapter 4

describes the end-to-end implementation of our project and the setup we used to conduct the

experiments. Chapter 5 describes those experiments that we conducted and gives their results.

Finally, in Chapter 6 we have our conclusion.

 5

II. BACKGROUND

Our purpose is to design an application leveraging state-of-the-art neural networks to

classify and predict the ASL gestures in real-time. In this section, we will briefly review works

related to dataset generation and building our final model. This section outlines the background

on technical details about ASL Alphabets and most widely used words in the shopping center,

LeNet-5 architecture, Unity Animations, OpenPose to understand how to generate body key

points, and lastly about how to convert Motion Capture Sequences as 2D-RGB images from

Skeleton dataset.

a. SHOPPING CENTER ASL

Learning about ASL signs and analyzing them with the perspective of building an AI

model is focused on in this sub-section. The ASL alphabets have 24 static and 2 motion hand

gestures for J and Z namely as Figure 1. A model was built to recognize the static alphabets that

let the customer sign their name in ASL and convey it to the shop clerk. When a person shops,

the most basic and widely used words to communicate are “Hello”, “Cost”, “Offer”, “Color”,

“Size”, “Pay”, “Okay”, “No”, and “Thank You”. While all of these signs involve motion, some

of them are more complex and to build a robust model more data needs to be gathered rather than

just static images of the sign.

 6

Figure 1: ASL Alphabets

If we consider a sign in 3 dimensions, then X, Y, and Z-axis provide different views of

the sign in various planer regions. If we are viewing it from the X-Y plane, then to understand

the peculiarities of a gesture better, depth information is required. This is obtained by getting the

depth of each key point in the Z direction.

The sign for "red" is performed by using just the index finger. It is done as if one is

stroking lips with an index finger’s tip. This gesture doesn’t require much depth information as it

doesn’t involve any motion backward i.e. towards the body.

Figure 2: Red Sign in ASL

Now, if we consider the sign for “pay”, then it has a gesture in the Z direction using the

 7

index finger. So, here depth information is most crucial to analyzing the gestures.

Figure 3: Pay Sign in ASL

Based on this criterion of depth, signs are classified into 2D and 3D signs as listed in

Table 1.

Sign Category Signs

2 D Motion ASL Gesture Red, Yellow, Hand Wave, Okay,

3 D Motion ASL Gesture Blue, Pay, Hello, Eat, Thank You, Offer

Table 1: Sign Categories based on Depth

b. LENET – 5 ARCHITECTURE

Convolution Neural Networks are the standard form of multi-layer neural networks that

helps in solving recognition problems related to images. Specific architectures of CNN are

designed for solving problems like object detection, pose estimation, and others. CNN is capable

of recognizing visual patterns in an image through pixel processing. Our project aims at finding

visual patterns in the temporal representation of ASL action sequences. In this subsection, we

will explore more LeNet-5 as will be using it as our base architecture for all the implementations.

The LeNet-5 architecture is one of the earliest to be used for deep learning and employs a

backtracking algorithm. Yann LeCun showed that minimizing the number of free parameters in

 8

neural networks can enhance the generalization ability of neural networks. This architecture was

used for the recognition of the handwritten and machine-printed characters. It is widely used for

various image recognition problems because of its simple and quite elementary architecture.

It has a total of two convolutional layer, two pooling layers, followed by a flattening

convolutional layer, then two fully connected layers, and lastly a SoftMax classifier [10] as

shown in Figure 2. The number of training parameters is approximately seventy thousand.

Figure 4: LeNet-5 Architecture

c. SUPPORT VECTOR MACHINE

SVM (Support Vector Machine) is a machine learning model and falls into the category

of supervised learning. It has been widely used for classification and regression analysis as

SVMs are proved to one of the most robust prediction methods based on statistical learning

frameworks [11]. SVM is capable of producing results on complex datasets that are smaller in

size. Our datasets are temporal images that are very complex for the general object recognition

model. So, for this project will run our experiments for various datasets on SVM as well with

LeNet-5 to analyze the accuracy of our model. Hence, understanding the working of the SVM

https://en.wikipedia.org/wiki/Support-vector_machine

 9

model is important.

In the SVM algorithm, we start by plotting every single data as a point in n-dimensional

space where n is defined as the number of features. Each coordinate represents the value of each

feature. Next, we start the process of segregating the data points into certain categories. For this,

a hyperplane is searched that separates each category distinctly as shown in Figure 5.

Figure 5: SVM Classifier

To find the right segregation hyperplane, among the multiple possibilities can be done by

finding the Margin which is the distance between the nearest data point to the hyperplane and the

hyperplane. If a low margin data plane is selected, then it might result in miss classification.

Figure 6: SVM Classifier - Outlier

SVM can also be used to solve problems where linear hyperplane is not possible for

 10

example as shown in Figure 5. In this case, an additional feature is added to solve it which results

in the equation z=x^2 + y^2 [12].

Figure 7: SVM Non-Linear Hyperplane Example

Figure 8: Parameters of SVM

SVM can be implemented using sci-kit-learn library in Python. There are various

parameters like kernel, gamma, and C that need to be tuned to get the best accuracy and avoid

overfitting of the model as seen in Figure 8. To control the error, C is used as the penalty

parameter. It is used to do a tradeoff between the classification of the training points correctly

and smooth decision boundaries. Gamma is the kernel coefficient for sigmoid, rbf, and poly. A

lower value of gamma will lead the training data into efficient segregation [12]. But higher value

may cause generalization error and the issue of overfitting of the data. SVM can ignore outliers.

It can determine the maximum margin required to find the hyper-plane. Therefore, SVM

 11

classifications are said to be robust to outliers and hence prove efficient over other machine

learning models.

d. UNITY GAME ENGINE

For any computer vision model, the efficiency relies on the quality and size of the

dataset. Many times, we might not have the exact dataset we need. So, having an approach that is

easier to implement can certainly solve this problem. In this subsection, we present a way of

leveraging animations on a humanoid avatar in Unity Game Engine. It outlines how to make an

avatar that does a sign language gesture in ASL. It then uses a script that places a camera in

random locations to generate a varied video dataset that captures gestures done by a humanoid

avatar from different angles in the 3-dimensional space of the Unity Scene.

In Unity, we explored Animations, Skeleton Rigs configuration that helps in marking the

bones points, Dopesheet that helps in configuring motion of avatar at a specific interval of time

during the clip, Workflow creation in Animator that helps in designing the overall flow from the

start state to exit state having transitions between multiple animations, light setting that helps in

setting the Sun direction and Camera light, shopping center related custom object placement and

finally learned how to add properties in Animations that helps in making the avatar do a custom

motion for that specific body part as shown in Fig 9. A combination of animators is used to make

an avatar perform specific gestures.

 12

Figure 9: Add Property in Animation

The Animation timeline view has two modes, Dopesheets, and Curves. In Unity,

Dopesheets allows viewing each property’s keyframe as shown in Fig 10. The Animation Curve

gives control of a property at a particular instant of time shown in Fig 10. The final result is

Unity Scene in a shopping setting where the customer is making an Okay sign gesture to

communicate to the shop owner as shown in Fig 11.

Figure 10: Animation configuration of Okay Sign in Dopesheet mode

 13

Figure 11: Animation configuration of Okay Sign in Curve Mode

Figure 12: Okay Sign Unity Animation Clip Snapshots

After the animation is ready, Unity Recorder is used to record the video in mp4 format as

 14

shown in Fig 12. To get a quality dataset and maintain heterogeneity in each video, each of the

videos in the dataset needs to be created by recording it from various angles in the Unity scene.

Now to generate these large number of videos, manually configuring the camera each time with

different angles and appropriately placement of it in 3D space in the Unity Scene is not a feasible

approach. So, we used a C# script to achieve the said requirement and attached it to the camera

object.

In Unity, the C# scripts are usually created within it directly that can be attached to

GameObjects [13]. So, here we attached this script to the main camera in Unity.

Figure 13: Unity Recorder

e. OPENPOSE MODEL

OpenPose is a real-time approach for multi-person key point detection: body, foot, hand,

and facial key points [14]. For this project, we used 2D real-time multi-person key point

detection, the output of which is being fed to get the 3D temporal mapping of skeleton frames.

 15

The custom Unity videos as seen in Fig 13 are fed to the OpenPose model to generate a

new dataset that has bone points marking in the video along with an output JSON file having 2D

coordinates for key points of the human body as shown in Fig 14.

Figure 14: Input Video to OpenPose Figure 15: Output Video of OpenPose

f. TEMPORAL REPRESENTATION OF 3D SKELETAL ACTION SEQUENCES

The motion sequences for the human skeleton can be represented as 3-dimensional

trajectories [15][16][17]. In [18] Sohaib, et al proposed a way to transform a sequence into an

RGB image. The 3D skeleton data is normalized and mapped into RGB space as shown in Fig.

16. This results in reducing the high dimensionality of motion capture sequences to 2D color

images. For this project for all the motion-based ASL gestures, we employed this methodology

and then performed image recognition using SVM and LeNet-5 models to classify and detect

ASL gestures.

For example, if a human jump twice then it’s a vertical direction motion over some time.

When this is mapped to RGB space, 2 green patterns can be seen as shown in Fig 16. Also, as a

 16

person jumps, all his body joint points have an upward motion with it i.e. in Y-Axis, and thus

clear broad green bars can be seen in the image as Y maps to green color.

Figure 16: XYZ Mapping to RGB Space

Figure 17: Sample output temporal image of human jump

 17

III. DESIGN

a. APPLICATION DESIGN

Figure 18: Application Design

As the application starts, the user activates the application by saying “hello” in ASL.

When the gesture is recognized as “hello” correctly by the model it takes the user to the

homepage screen. In that live video, feed is continuously captured and gestures are recognized.

Once the ASL sign is recognized and classified, then the corresponding response will be given

by the system. For example, we the customer does a calling gesture then the system will notify

the clerk to come to visit the customer to provide support. Until the gesture is a “Bye” sign in

ASL, a user is allowed to interact with the application.

New Customer

 “Says Hello in ASL”
Recognize the gesture

Show response for the

recognized action.

“Bye” ? Reset the UI

Y

N

 18

Sample Use cases:

Action in ASL Response

Mobile Sign Call clerk for help

Brush Teeth Show navigation map to reach the Toiletry section.

Make Victory Sign Show the way to the washroom

Table 2: Action Response Table

b. PROJECT ARCHITECTURE

In this system, as soon as the user starts performing ASL gestures, the live feed is

captured and passed to OpenPose. The OpenPose outputs frame sequences from the video feed

representing the 27-body joint point skeleton sequences. Then human skeleton coordinates

specifically focused on hands are recognized for each frame of the video. The first major step

towards effective sign language recognition is capturing these critical components, but a much

more complex process is required to turn this data into meaningful information. These time

sequence skeletons are then transformed into an RGB image using the Temporal Image

Generator and finally passed on to the image classifier as an input image. The classifier classifies

the gesture and gives the predicted class label for the ASL word to the user as shown in Fig. 18.

 19

Figure 19: Project Architecture

 20

IV. IMPLEMENTATION

This section focuses on datasets used, model architecture implemented, and methodology

followed in this project. It also describes the configuration done for the image recognition model.

a. DATASET

1. MNIST ASL Alphabets Dataset

The MNIST ASL alphabets dataset [21] of hand gestures represent a multi-class problem

with 24 classes of all letters except J and Z. Unlike all the letters that have static gestures, J and Z

are motion-based gestures hence excluded from this dataset.

The dataset format draws its inspiration MNIST. Each training and test case represent a

label from 0 to 25 map to A-Z. For motion gestures J=9 or Z=25 because of gesture motions. The

training data has 27,455 and test data has 7,172. This dataset is provided as a .csv file that has 1

column for label and 784 columns for pixel values of the gesture image. This dataset thus helps

in identifying the letter signed by the customer in a shop setting when they want to sign their

name.

Figure 20: MNIST ASL Dataset Preview

2. NTU-RGB+D Action Recognition Dataset

 21

NTU-RGB+D dataset [19][20] contains 56,880 videos captured from Kinect V2 cameras

providing RGB videos, 3D skeletal data, depth map sequences for each video sample. In all, it

represents 60 action classes as shown in Fig. 21. There is another extended dataset called NTU

RGB+D 120 has 120 classes and 114,480 videos. For this project, we used classes that represent

actions that map to ASL gestures example eat is food in ASL, salute is hello in ASL, handwave

is goodbye. We used these classes to analyze the efficiency of the approach presented in this

project as this has been widely used as a benchmark in [18][19][20] for action recognition. The

skeleton dataset used has 25 body joints co-ordinates as shown in Fig. 22 in a .skeleton file.

Figure 21: NTU-RGB+D Action Classes

 22

Figure 22: OpenPose Skeleton Points[14]

3. ASL Leap Motion Controller Dataset

This dataset [22] contains 25 subjects performing 60 different signs of the ASL and

includes more than 17,000 signs in total. The dataset is composed of the joint positions provided

by the Leap Motion API for both hands as shown in Fig. 23. The dataset contains ASL gesture

classes like red, blue, yellow, come, cost, shop, big, small, and others that are widely used in a

shop setting and hence are idle for our project.

 23

Figure 23: Hand Joint Points as seen by Leap Motion Controller[22]

Every action has a separate dataset file for the left and right hand. Each of these files

represents the skeleton motion trajectory in 3D for that single hand. So, gestures that need both

hands to sign focuses on combined results from left & right-hand datasets. For gestures that are

performed by a single hand, then right-hand files contain the motion and the left-hand motion are

generally constant and hence can be ignored as seen in Fig. 24 and Fig. 25.

Figure 24: LMC Orange Left Hand Dataset Preview

 24

Figure 25: LMC Orange Right Hand Dataset Preview

b. UNITY ANIMATION CREATION AND SCRIPTING

We start by creating a Unity Scene where all the objects related to Shopping Center like a

side table, chairs, main counter, walls, and floor are added. Next humanoid avatars are placed in

the 3D space. Then to perform rigs configuration for the animated skeletons of these humanoid

avatars that help in controlling its motion in the 3D space using Unity Animations. We start by

selecting the Game object and creating a new empty Animation Clip in Unity. Then on the right

side of the Animation View, one can see the timeline for the current clip. The keyframes for each

animated property appear in this timeline.

The C# script has a method Start() which starts executing on the hit of the Play button

runs run the unity project. To get started with some initial random values for the camera position,

I used Random.Range(-2.0f, 2.0f) function. This gives a value from a minimum of -2.0f to a

maximum of 2.0f. So, for all 3 directions, the min and max values are chosen to set a boundary

of where a camera could be placed as shown in Fig. 26. This is like confining camera motion in a

3D space.

 25

Figure 26: C# code Snippet 1

The LateUpdate() is called after all the update methods are done with processing. If a

unity object movement is part of the scene, then the camera should wait and track the object that

might have moved. So, after the camera’s random position is chosen in start(), the LateUpdate()

is used to transform and rotate the camera object as shown in Fig. 27.

Figure 27: C# code Snippet 2

c. ASL ALPHABET RECOGNITION IN REAL-TIME

ASL letter recognition system is a neural network to recognize letters of the American

Sign Language (ASL). This implementation provides feature to recognize ASL alphabets

gestures from a live video feed. The ASL alphabets have 2 motion hand gestures for J and Z. The

rest of the 24 alphabet hand gestures are static. In this system, only static hand gesture

 26

recognition is done using convolution neural networks. The network that we have designed has a

total of 54,367 parameters based on LeNet-5 architecture as seen in Fig. 28 and it classifies the

captures gesture and gives out a corresponding English alphabet in real-time as seen in Fig. 29.

Figure 28: LeNet-5 Model Architecture

Figure 29: LeNet-5 ASL Alphabet Detection Result : Y class

 27

d. ASL WORD RECOGNITION IN REAL-TIME

For this project, we have done Keras implementation of LeNet-5 architecture for ASL

Word Recognition as seen in Fig. 30 which contains 2 Convolution layer & 2 Max pooling layer,

and then it was flattened. The next two dense layers are added which have an activation function

like sigmoid and relu. Finally, a SoftMax classifier is used to give out final results.

Figure 30: LeNet-5 Keras Model for ASL

 28

To better compare the performance of the model as part of our analysis, we have also

implemented a Support Vector Machine for ASL Word Recognition. We configured the

hyperparameters like C, kernel, and gamma as seen in Fig. 31.

Figure 31: SVM Model for ASL

 29

V. EXPERIMENTS

This section describes various experiments that we performed to analyze the performance

of our proposed methodology for ASL gesture recognition on various datasets.

a. MNIST ASL ALPHABET DATASET

In this experiment, we used the MNIST ASL Alphabet dataset that contains the 24 ASL

letters that are static in nature, and the remaining 2 letters are motion-based which are not

part of the dataset. The class labels range from 0 to 25 corresponding to alphabets starting

from 0 for the letter ‘A’ to 25 for the letter ‘Z’. While training the model we got an accuracy

of 95.08% as shown in Fig. 32 in 20 epochs where steps per epoch were 10. The graph of the

training accuracy was observed to be monotonically increasing with the number of epochs as

seen in Fig. 33. When real-time predictions were tested, they performed well as can be seen

in the sample demo in Fig. 29 where ‘Y’ was predicted accurately.

 30

Figure 32: MNIST ASL Alphabets on LeNet-5 model Epoch Accuracies

 31

Figure 33: Training Accuracy for LeNet-5 ASL Alphabet Detection

b. NTU-RGB+D V/S LMC FOR SVM & LENET-5 MODEL

As part of this experiment, we tried to compare the performance of the NTU-RGB dataset

and Leap Motion Controller dataset on LeNet-5 and SVM models.

1. NTU – RGBD+ Dataset

In this, the skeleton has 25 bone points and each of them had 3D coordinates. From this

dataset, we considered the following classes for this experiment for ASL Action recognition:

Hello (Salute), Hand Wave (Bye), Food (Eat).

13.24%

22.81%

34.26%

47.76%

55.48% 61.54%

68.42% 72.82%

76.55% 81.88%

86.58%
90.26%

92.95%
95.08%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 3 5 7 9 11 13 15 17 19

A
C

C
U

R
A

C
Y

NO. OF EPOCHS

 32

a. LeNet-5 Results

 When we trained the model on LeNet-5 architecture, for this particular dataset, we

observed 86% training accuracy. The precision was best for class 2 i.e. eat gesture which was

mostly focused on depth dimension i.e. Z coordinate.

Figure 34: NTU RGB Classification Report for SVM

Figure 35: NTU RGB Training Accuracy and Loss Graph

As we can observe in the training accuracy and loss, the accuracy increased from 83.5%

to 86% when learning_rate was 0.001 and optimizer was adam. The decrease in loss is also

constant.

 33

b. Support Vector Machine

In this experiment, we got an accuracy of 89% for the SVM model. This is better as

compared to the LeNet-5 model’s accuracy that was just 86%.

Figure 36: SVM Classification Report for NTU RGB Dataset

2. Leap Motion Controller Dataset

In this, the skeleton has 27 bone points and each of them had 3D coordinates. These

points were focused on hand joints. From this dataset we considered the following classes for

this experiment for ASL Action recognition: Please, Blue, Red, Yellow, Where, Stop, Water,

Orange, Thanks performed majorly by the right hand.

a. LeNet-5 Result

When we trained the model on this architecture, we got an accuracy of 15% which was

very low. We tried to use different learning rates like 0.00001, 0.001, and 0.0001 but the

accuracy still was extremely poor. We also tried to change the activation function used in the

model architecture, but again it did not help in any way. We then tried to work with different

 34

epoch steps and increased the number of epochs, it still did not perform. Because the skeleton

point from LMC (Leap Motion Controller) was focused only on hand points the accuracy should

have been much better than the NTU-RGB+D gesture dataset which focuses on full body. But

from all these experiments, we deduced that the quality of the dataset from the LMC for LeNet-5

as an image classifier wasn’t good and hence it did not do well on this methodology proposed in

this report.

b. Support Vector Machine

When we trained the model on this architecture, we got much better results than the

LeNet-5 model. The training accuracy for SVM is 65%. We observed from the classification

report that most classes got precision around 60% and one of the classes was 100% classified.

Figure 37: Classification Report for SVM for 9 classes of LMC

 35

c. OKAY SIGN FROM UNITY DATASET

As part of this experiment, we generated the Unity Game Engine based gesture dataset

where a humanoid avatar closely resembling a human is performing an ‘Okay’ gesture in

ASL. The dataset has 50 videos taken from varied angles in the 3D Unity Scene. This adds to

the heterogeneity of the dataset. The key points of the skeleton as seen in Fig. 39 were

collected from OpenPose and these were used to generate the temporal mappings. The

skeleton file gives the X and Y coordinates and the confidence score of that bone point.

These collective points were used to create a 2D matrix and then transformed into temporal

mappings and passed to the image classifier. It was observed that the standalone OpenPose

installation is too slow without GPU support for the given video. It took 58 minutes to

process a 5 sec video and to generate the co-ordinates. The average length of each video of

our dataset is around 10sec and there are 50 videos in total. So, the total time duration was

500 secs. It was taking too long to just get the bone points from the dataset. And furthermore,

adding the time duration to train the model for temporal mapping and action recognition also

needs to be accounted. So, making it overall a computationally expensive process. We tried

using Google Colab for getting GPU support, but it does not support symbolic link in drive

which was necessary for building the OpenPose project. Since, we aimed for real-time

recognition, given the high processing time we kept this for future scope.

 36

Figure 38: Output Skeleton visualized from OpenPose

Figure 39: Skeleton coordinates generated from OpenPose

d. IMPACT ON ACCURACY 2D VS 3D CO-ORDINATES

In this experiment, we tried to find the performance of the model when only 2D (X, Y)

data points of the skeleton are provided instead of 3D (X, Y, Z). As can be seen in Fig. 38,

Fig. 39, and Fig. 40 after removing the Z coordinate which maps to blue color in the RGB

pallet, the temporal patterns remain the same, but the dominance of blue color is taken over

by green.

 37

Figure 40: 3D v/s 2D temporal mapping for Class 2

Figure 41: 3D v/s 2D temporal mapping for Class 23

Figure 42: 3D v/s 2D temporal mapping for Class 38

When the model was trained with these new temporal images generated by 2D body joint

coordinates, the accuracy wasn’t impacted much. There was a slight increase of 1% in the

accuracy leading it to 90% overall training accuracy as seen in Fig. 41. Also, the testing

accuracy was found to be 89.52%. It was also observed that the precision of all the action

 38

classes was almost the same. The reason that could be deduced from these results is that

since the actions did not have much depth, so just considering 2D coordinates did not affect

the performance of the model.

Figure 43: SVM Classification Report for 2D NTURGB Dataset

 39

VI. CONCLUSION

The barrier in communication between people obstructs the normal way of living. This

project creates a seamless experience for the deaf at the shopping mall by providing features that

responds based on the recognized gesture from the customer. It helps customers to ask where to

look for a certain item in-store, seek suggestions for clothing or ask for navigating to a

washroom or request special assistance from a clerk.

We can use these models and add more gestures to the dataset to make the system more

user-friendly and robust. We can also try to use more computer vision architecture for this

methodology like LSTM that could be used to get the real-time ASL speech. Also, if facial

features are combined with hand gestures then we could have a better understanding of the

gestures. Whether one is a store owner or government, it’s high time that we enforce a

mechanism to maintain stores that are accessible for deaf customers.

 40

REFERENCES

1. “Statistics on Voice, Speech, and Language,” National Institute of Deafness and Other

Communication Disorders, 01-Dec-2020. [Online]. Available:

https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-language.

[Accessed: 15-Dec-2020].

2. H. Lane, B. Bahan, and R. Hoffmeister, “3,” in A journey into the deaf world, Dawn Sign

Press, 1996.

3. “Americans with Disabilities Act,” U.S. Department of Labor, 01-Dec-2020. [Online].

Available: https://www.dol.gov/general/topic/disability/ada. [Accessed: 06-May-2021].

4. P. Chang, “Inclusive Communication Through Virtual And Augmented Reality

Technology,” ARPost, 02-Oct-2018. [Online]. Available:

https://arpost.co/2018/10/02/inclusive-communication-virtual-augmented-reality/.

[Accessed: 16-Dec-2020]

5. “5 must-have apps for deaf and hard of hearing people in 2020,” Inclusive City Maker,

22-Oct-2020. [Online]. Available: https://www.inclusivecitymaker.com/smartphone-

apps-deaf-people-2020/. [Accessed: 16-Dec-2020].

6. “How Can Shopping Malls Be Accessible to People with Disabilities?,” Inclusive City

Maker, 20-Oct-2020. [Online]. Available:

https://www.inclusivecitymaker.com/shopping-malls-accessible-people-with-disabilities/.

[Accessed: 16-Dec-2020].

7. J. J. Bird, A. Ekárt, and D. R. Faria, “British Sign Language Recognition via Late Fusion

of Computer Vision and Leap Motion with Transfer Learning to American Sign

Language,” Sensors, vol. 20, no. 18, p. 5151, Sep. 2020.

8. B. Ren, M. Liu, R. Ding, and H. Liu, “A Survey on 3D skeleton-based Action Recognition

Using Learning Method,” arXiv.org, 14-Feb-2020. [Online]. Available:

https://arxiv.org/abs/2002.05907. [Accessed: 13-May-2021]

9. H. H. Pham, H. Salmane, L. Khoudour, A. Crouzil, P. Zegers, and S. A. Velastin, “Spatio
Temporal Image Representation of 3D Skeletal Movements for View-Invariant Action

Recognition with Deep Convolutional Neural Networks,” Sensors (Basel, Switzerland),

24-Apr-2019. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514994/. [Accessed: 13-May-2021]

 41

10. M. Rizwan, “LeNet-5 - A Classic CNN Architecture,” engMRK, 21-Apr-2020. [Online].

Available: https://engmrk.com/lenet-5-a-classic-cnn-architecture/. [Accessed: 15-Dec-

2020].

11. “Support-vector machine,” Wikipedia, 07-May-2021. [Online]. Available:

https://en.wikipedia.org/wiki/Support-vector_machine. [Accessed: 13-May-2021].

12. S. Ray, “SVM: Support Vector Machine Algorithm in Machine Learning,” Analytics

Vidhya, 23-Dec-2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-

example-code/. [Accessed: 13-May-2021]

13. Unity Technologies, “Creating and Using Scripts,” Unity. [Online]. Available:

https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html. [Accessed: 15-Dec-

2020].

14. CMU-Perceptual-Computing-Lab, “CMU-Perceptual-Computing-

Lab/openpose,” GitHub. [Online]. Available: https://github.com/CMU-Perceptual-

Computing-Lab/openpose. [Accessed: 15-Dec-2020].

15. C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based Action Recognition with

Convolutional Neural Networks,” arXiv.org, 25-Apr-2017. [Online]. Available:

https://arxiv.org/abs/1704.07595. [Accessed: 15-Dec-2020].

16. Jun Liu, Amir Shahroudy, Dong Xu, Alex C. Kot, Gang Wang, "Skeleton-Based Action

Recognition Using Spatio-Temporal LSTM Network with Trust Gates", TPAMI, 2018.

17. Jun Liu, Gang Wang, Ling-Yu Duan, Kamila Abdiyeva, Alex C. Kot, "Skeleton-Based

Human Action Recognition with Global Context-aware Attention LSTM Networks", TIP,

2018.

18. S. Laraba, M. Brahimi, J. Tilmanne, and T. Dutoit, “3D skeleton‐based action recognition

by representing motion capture sequences as 2D‐RGB images,” Wiley Online Library,

21-May-2017. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1782. [Accessed: 5-March-2021]

19. Amir Shahroudy, Jun Liu, Tian-Tsong Ng, Gang Wang, "NTU RGB+D: A Large Scale

Dataset for 3D Human Activity Analysis", IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016 [PDF] [bibtex].

20. Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, Alex C. Kot,

"NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding",

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.

21. Tecperson, “Sign Language MNIST,” Kaggle, 20-Oct-2017. [Online]. Available:

https://www.kaggle.com/datamunge/sign-language-mnist. [Accessed: 13-May-2021]

 42

22. R. Dias, “American Sign Language Hand Gesture Recognition,” Medium, 18-Dec-2019.

[Online]. Available: https://towardsdatascience.com/american-sign-language-hand-

gesture-recognition-f1c4468fb177. [Accessed: 13-May-2021]

	Abstract
	I. Introduction
	II. Background
	a. Shopping Center ASL
	b. LeNet – 5 Architecture
	c. Support Vector Machine
	d. Unity Game Engine
	e. OpenPose Model
	f. Temporal Representation of 3D Skeletal Action Sequences
	III. Design
	a. Application Design
	b. Project Architecture
	IV. Implementation
	a. Dataset
	b. Unity Animation Creation and Scripting
	c. ASL Alphabet Recognition in Real-Time
	d. ASL Word Recognition in Real-Time
	V. Experiments
	a. MNIST ASL Alphabet Dataset
	b. NTU-RGB+D v/s LMC for SVM & LeNet-5 model
	c. Okay Sign from Unity Dataset
	d. Impact on accuracy 2d vs 3d co-ordinates
	VI. Conclusion
	References

