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ABSTRACT 
 

American Sign Language Assistant 

By  

Charulata Lodha 

 

Our implementation of a prototype computer vision system to help the deaf and mute 

communicate in a shopping setting. Our system uses live video feeds to recognize American 

Sign Language (ASL) gestures and notify shop clerks of deaf and mute patrons’ intents. It 

generates a video dataset in the Unity Game Engine of 3D humanoid models in a shop setting 

performing ASL signs. 

Our system uses OpenPose to detect and recognize the bone points of the human body 

from the live feed.  The system then represents the motion sequences as high dimensional 

skeleton joint point trajectories followed by a time-warping technique to generate a temporal 

RGB image using the Seq2Im technique. This image is then fed to the image classification 

algorithms that classify the gesture performed to the shop clerk. 

We carried out experiments to analyze the performance of this methodology on the Leap 

Motion Controller dataset and NTU RGB+D dataset using the SVM and LeNet-5 models. We 

also tested 3D vs 2D bone point dataset performance and found 90% accuracy for the 2D 

skeleton dataset.  

 

Keywords – Unity, Convolutional Neural Network (CNN), American Sign Language(ASL) 
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I. INTRODUCTION 

 
 

In the United States between 6 and 8 million people suffer from language impairment [1]. 

Sign language focuses mainly on hands gestures for communication. In some cases, the body, 

head, and facial expression are also accounted to accurately understand a sign’s intended 

meaning. This report describes an approach for building a digital assistance system that provides 

a solution to in-shop issues for mute and deaf people by providing live communication between 

shop keeper and customers through video feeds using state-of-the-art Convolution Neural 

Networks and Unity Game Engine. 

American Sign Language (ASL) is one of the most widely used sign language in the U.S. 

[2]. ASL is not sign language English but a visual language where signs convey ideas rather than 

literal words. As a result, there comes an undeniable communication barrier between the ASL 

and English speaking population.  

The barrier in communication between people obstructs the normal way of living. For 

example, if a deaf person at the shopping mall wants to seek some suggestions for clothing then 

and if there no ASL-speaking people around then one might not get the same seamless shopping 

experience just like the one with the ability to speak English. Whether one is a store owner or 

government, it’s high time that we enforce a mechanism to maintain stores that are accessible for 

deaf customers.  

The Americans with Disabilities Act (ADA) prohibits any kind of disability-based 

discrimination[3]. It is also responsible for enforcement of the law to ensure that people with 

disabilities can access any online content [3]. As the world is tremendously progressing in 

accessibility technologies, a resilient computer system that provides real-time communication 
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must be built and mandated in public places to aid those hard of hearing or deaf. 

The existing accessibility technologies show an innovative application of Augmented 

Reality, Machine Learning, Artificial Intelligence, and Human-Computer Interaction to better 

accommodate mute and deaf people.  HoloHear has used HoloLens and prototyped an 

augmented reality app in which as a customer speaks aloud, a 3D holographic model appears that 

translates ASL to English in real-time [4]. TapSOS app allows a person who is mute and deaf to 

seek help from emergency services without having to speak to it by just tapping in the app to a 

particular issue like breathing issue, fire and others to inform about the  respective authorities 

and won the 2018 Digital Health Award [5]. Today shops provide amplifiers to deaf people to 

adequately communicate with the sales assistant [6]. 

Convolutional Neural Networks have proven to be extremely successful for image 

recognition and classification problems. It has been widely implemented for recognizing human 

gestures lately. In [7] J. J. Bird, et al show that a late fusion approach to multimodality in sign 

language recognition improves the overall ability of the model in comparison to the singular 

approaches of image classification (88.14%) and Leap Motion data classification (72.73%). 

Another approach to perform gesture recognition is through human temporal dynamics. 

The Skeleton-based human action recognition is a time-series problem used by [8]. The skeleton 

dataset comprises the human key joints in 3D space over time. This approach is possibly a more 

detailed representation of gesture than just a few snapshots over time as here each action is being 

accounted by motion of skeleton sequences as a series of time frames. 

The rise of computing technologies motivated the development of Kinect and Leap 

Motion that are used as an input device to capture motions. These human-machine interaction 

device finds its application in many fields from augmented reality to healthcare. 



 

 3 

The availability of easy-to-use depth sensors like Microsoft Kinect™ has promoted 

research work in the computer vision community specifically in action recognition by providing 

3D skeletal characteristic of human body movements. This skeleton information is quite complex 

for traditional 2D cameras[9]. This further alleviates the problem of hand gesture recognition by 

providing the CNNs with temporal information about each of the body joint points and gives us 

the motivation for this project. 

The primary contribution of this project is to present an accessibility CNN-based solution 

that is an economically viable and easily integrable end-to-end system for a shopping center to 

recognize the intent of the deaf and mute that would help them independently shop and have a 

seamless shopping experience. It simplifies the process of gesture recognition by transforming 

the skeleton sequences into RGB temporal dynamics which is fed as input to CNN-based image 

recognition models and thus highly reducing the training time and complexity. It also gives the 

owner the ability to create their dataset as CNNs require a huge amount of training data to avoid 

overfitting. This project presents a way for a generation of a great quality dataset using Unity 

animations and C# scripting that could be potentially be used for computer vision research work. 

This acts as an alternative to having an infrastructure with huge resources, manpower as well as 

the cost to generate quality datasets. It also draws insights into how the training size of the 

dataset impacts the accuracy of the experiments performed on various datasets. This will help the 

user make critical decisions concerning the generation of their dataset from Unity and 

partitioning it while training the model for the best accuracy. 

The project report is organized into chapters as follows: Chapter 2 defines the 

background and concepts used to build the final system, why we used LeNet-5 architecture, 

prediction of signed alphabets,  animation creation in Unity Game Engine as well scripting 
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required for the generation of gesture dataset from Unity. Lastly, it shows how to leverage 

OpenPose for the detection of body joint points and conversion of gesture frames into RGB 

temporal images. Chapter 3 talks in detail about the design of the project overall. Chapter 4 

describes the end-to-end implementation of our project and the setup we used to conduct the 

experiments. Chapter 5 describes those experiments that we conducted and gives their results. 

Finally, in Chapter 6 we have our conclusion. 
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II. BACKGROUND 
 

Our purpose is to design an application leveraging state-of-the-art neural networks to 

classify and predict the ASL gestures in real-time. In this section, we will briefly review works 

related to dataset generation and building our final model. This section outlines the background 

on technical details about ASL Alphabets and most widely used words in the shopping center, 

LeNet-5 architecture, Unity Animations, OpenPose to understand how to generate body key 

points, and lastly about how to convert Motion Capture Sequences as 2D-RGB images from 

Skeleton dataset. 

 

a. SHOPPING CENTER ASL 
 

Learning about ASL signs and analyzing them with the perspective of building an AI 

model is focused on in this sub-section. The ASL alphabets have 24 static and 2 motion hand 

gestures for J and Z namely as Figure 1.  A model was built to recognize the static alphabets that 

let the customer sign their name in ASL and convey it to the shop clerk. When a person shops, 

the most basic and widely used words to communicate are “Hello”, “Cost”, “Offer”, “Color”, 

“Size”, “Pay”, “Okay”, “No”,  and  “Thank You”. While all of these signs involve motion, some 

of them are more complex and to build a robust model more data needs to be gathered rather than 

just static images of the sign. 
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Figure 1: ASL Alphabets 

 

If we consider a sign in 3 dimensions, then X, Y, and Z-axis provide different views of 

the sign in various planer regions. If we are viewing it from the X-Y plane, then to understand 

the peculiarities of a gesture better, depth information is required. This is obtained by getting the 

depth of each key point in the Z direction.  

The sign for "red" is performed by using just the index finger. It is done as if one is 

stroking lips with an index finger’s tip. This gesture doesn’t require much depth information as it 

doesn’t involve any motion backward i.e. towards the body. 

 
Figure 2: Red Sign in ASL 

 

Now, if we consider the sign for “pay”, then it has a gesture in the Z direction using the 
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index finger. So, here depth information is most crucial to analyzing the gestures.  

 
Figure 3: Pay Sign in ASL 

Based on this criterion of depth, signs are classified into 2D and 3D signs as listed in 

Table 1. 

Sign Category Signs 

2 D Motion ASL Gesture Red, Yellow, Hand Wave, Okay,  

3 D Motion ASL Gesture Blue, Pay, Hello, Eat, Thank You, Offer 

Table 1: Sign Categories based on Depth 

 

 

b. LENET – 5 ARCHITECTURE 
 

Convolution Neural Networks are the standard form of multi-layer neural networks that 

helps in solving recognition problems related to images. Specific architectures of CNN are 

designed for solving problems like object detection, pose estimation, and others. CNN is capable 

of recognizing visual patterns in an image through pixel processing. Our project aims at finding 

visual patterns in the temporal representation of ASL action sequences. In this subsection, we 

will explore more LeNet-5 as will be using it as our base architecture for all the implementations.  

The LeNet-5 architecture is one of the earliest to be used for deep learning and employs a 

backtracking algorithm. Yann LeCun showed that minimizing the number of free parameters in 
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neural networks can enhance the generalization ability of neural networks. This architecture was 

used for the recognition of the handwritten and machine-printed characters. It is widely used for 

various image recognition problems because of its simple and quite elementary architecture. 

It has a total of two convolutional layer, two pooling layers, followed by a flattening 

convolutional layer, then two fully connected layers, and lastly a SoftMax classifier [10] as 

shown in Figure 2. The number of training parameters is approximately seventy thousand. 

 

 
Figure 4: LeNet-5 Architecture 

 

 

 

c. SUPPORT VECTOR MACHINE 
 

 

SVM (Support Vector Machine) is a machine learning model and falls into the category 

of supervised learning. It has been widely used for classification and regression analysis as 

SVMs are proved to one of the most robust prediction methods based on statistical learning 

frameworks [11]. SVM is capable of producing results on complex datasets that are smaller in 

size. Our datasets are temporal images that are very complex for the general object recognition 

model. So, for this project will run our experiments for various datasets on SVM as well with 

LeNet-5 to analyze the accuracy of our model. Hence, understanding the working of the SVM 

https://en.wikipedia.org/wiki/Support-vector_machine
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model is important. 

In the SVM algorithm, we start by plotting every single data as a point in n-dimensional 

space where n is defined as the number of features.  Each coordinate represents the value of each 

feature. Next, we start the process of segregating the data points into certain categories.  For this, 

a hyperplane is searched that separates each category distinctly as shown in Figure 5. 

 

Figure 5: SVM Classifier 

To find the right segregation hyperplane, among the multiple possibilities can be done by 

finding the Margin which is the distance between the nearest data point to the hyperplane and the 

hyperplane. If a low margin data plane is selected, then it might result in miss classification.  

 

Figure 6: SVM Classifier - Outlier 

SVM can also be used to solve problems where linear hyperplane is not possible for 
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example as shown in Figure 5. In this case, an additional feature is added to solve it which results 

in the equation z=x^2 + y^2 [12]. 

 

 

Figure 7: SVM Non-Linear Hyperplane Example 

 

Figure 8: Parameters of SVM 

 

SVM can be implemented using sci-kit-learn library in Python. There are various 

parameters like kernel, gamma, and C that need to be tuned to get the best accuracy and avoid 

overfitting of the model as seen in Figure 8. To control the error, C is used as the penalty 

parameter. It is used to do a tradeoff between the classification of the training points correctly 

and smooth decision boundaries. Gamma is the kernel coefficient for sigmoid, rbf, and poly. A 

lower value of gamma will lead the training data into efficient segregation [12]. But higher value 

may cause generalization error and the issue of overfitting of the data. SVM can ignore outliers. 

It can determine the maximum margin required to find the hyper-plane. Therefore, SVM 
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classifications are said to be robust to outliers and hence prove efficient over other machine 

learning models. 

 

d. UNITY GAME ENGINE 

 
For any computer vision model, the efficiency relies on the quality and size of the 

dataset. Many times, we might not have the exact dataset we need. So, having an approach that is 

easier to implement can certainly solve this problem. In this subsection, we present a way of 

leveraging animations on a humanoid avatar in Unity Game Engine. It outlines how to make an 

avatar that does a sign language gesture in ASL. It then uses a script that places a camera in 

random locations to generate a varied video dataset that captures gestures done by a humanoid 

avatar from different angles in the 3-dimensional space of the Unity Scene. 

In Unity, we explored Animations, Skeleton Rigs configuration that helps in marking the 

bones points, Dopesheet that helps in configuring motion of avatar at a specific interval of time 

during the clip, Workflow creation in Animator that helps in designing the overall flow from the 

start state to exit state having transitions between multiple animations, light setting that helps in 

setting the Sun direction and Camera light, shopping center related custom object placement and 

finally learned how to add properties in Animations that helps in making the avatar do a custom 

motion for that specific body part as shown in Fig 9. A combination of animators is used to make 

an avatar perform specific gestures. 
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Figure 9: Add Property in Animation 

 

The Animation timeline view has two modes, Dopesheets, and Curves. In Unity, 

Dopesheets allows viewing each property’s keyframe as shown in Fig 10. The Animation Curve 

gives control of a property at a particular instant of time shown in Fig 10. The final result is 

Unity Scene in a shopping setting where the customer is making an Okay sign gesture to 

communicate to the shop owner as shown in Fig 11. 

 

Figure 10: Animation configuration of Okay Sign in Dopesheet mode 



 

 13 

 
 

Figure 11: Animation configuration of Okay Sign in Curve Mode 

 

 

 

  

 

Figure 12: Okay Sign Unity Animation Clip Snapshots 

 

 

After the animation is ready, Unity Recorder is used to record the video in mp4 format as 
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shown in Fig 12. To get a quality dataset and maintain heterogeneity in each video, each of the 

videos in the dataset needs to be created by recording it from various angles in the Unity scene. 

Now to generate these large number of videos, manually configuring the camera each time with 

different angles and appropriately placement of it in 3D space in the Unity Scene is not a feasible 

approach. So, we used a C# script to achieve the said requirement and attached it to the camera 

object. 

In Unity, the C# scripts are usually created within it directly that can be attached to 

GameObjects [13]. So, here we attached this script to the main camera in Unity. 

 

 

Figure 13: Unity Recorder 

 

e. OPENPOSE MODEL 
 

OpenPose is a real-time approach for multi-person key point detection: body, foot, hand, 

and facial key points [14]. For this project, we used 2D real-time multi-person key point 

detection, the output of which is being fed to get the 3D temporal mapping of skeleton frames. 
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The custom Unity videos as seen in Fig 13 are fed to the OpenPose model to generate a 

new dataset that has bone points marking in the video along with an output JSON file having 2D 

coordinates for key points of the human body as shown in Fig 14. 

 

           
 

Figure 14: Input Video to OpenPose  Figure 15: Output Video of OpenPose 

 

 

f. TEMPORAL REPRESENTATION OF 3D SKELETAL ACTION SEQUENCES 

 
The motion sequences for the human skeleton can be represented as 3-dimensional 

trajectories [15][16][17]. In [18]  Sohaib, et al proposed a way to transform a sequence into an 

RGB image. The 3D skeleton data is normalized and mapped into RGB space as shown in Fig. 

16. This results in reducing the high dimensionality of motion capture sequences to 2D color 

images. For this project for all the motion-based ASL gestures, we employed this methodology 

and then performed image recognition using SVM and LeNet-5 models to classify and detect 

ASL gestures. 

For example, if a human jump twice then it’s a vertical direction motion over some time. 

When this is mapped to RGB space, 2 green patterns can be seen as shown in Fig 16. Also, as a 
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person jumps, all his body joint points have an upward motion with it i.e. in Y-Axis, and thus 

clear broad green bars can be seen in the image as Y maps to green color. 

 

 

 

 

Figure 16: XYZ Mapping to RGB Space 

 

 

 

 

 
 

 

Figure 17: Sample output temporal image of human jump 

 

 



 

 17 

 

 

III. DESIGN 
 

a. APPLICATION DESIGN 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 18: Application Design 

 

 

As the application starts, the user activates the application by saying “hello” in ASL. 

When the gesture is recognized as “hello” correctly by the model it takes the user to the 

homepage screen. In that live video, feed is continuously captured and gestures are recognized.  

Once the ASL sign is recognized and classified, then the corresponding response will be given 

by the system. For example, we the customer does a calling gesture then the system will notify 

the clerk to come to visit the customer to provide support. Until the gesture is a “Bye” sign in 

ASL, a user is allowed to interact with the application.  

New Customer 

 “Says Hello in ASL” 
Recognize the gesture 

Show response for the 

recognized action. 

“Bye” ? Reset the UI 

Y 

N 
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Sample Use cases: 

Action in ASL Response 

Mobile Sign Call clerk for help 

Brush Teeth Show navigation map to reach the Toiletry section. 

Make Victory Sign Show the way to the washroom 

Table 2: Action Response Table 

 

b. PROJECT ARCHITECTURE 
 

In this system,  as soon as the user starts performing ASL gestures, the live feed is 

captured and passed to OpenPose. The OpenPose outputs frame sequences from the video feed 

representing the 27-body joint point skeleton sequences. Then human skeleton coordinates 

specifically focused on hands are recognized for each frame of the video. The first major step 

towards effective sign language recognition is capturing these critical components, but a much 

more complex process is required to turn this data into meaningful information. These time 

sequence skeletons are then transformed into an RGB image using the Temporal Image 

Generator and finally passed on to the image classifier as an input image. The classifier classifies 

the gesture and gives the predicted class label for the ASL word to the user as shown in Fig. 18. 
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Figure 19: Project Architecture 
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IV. IMPLEMENTATION 
 

This section focuses on datasets used, model architecture implemented, and methodology 

followed in this project. It also describes the configuration done for the image recognition model. 

a. DATASET 

 
 

1. MNIST ASL Alphabets Dataset 

 

The MNIST ASL alphabets dataset [21] of hand gestures represent a multi-class problem 

with 24 classes of all letters except J and Z. Unlike all the letters that have static gestures, J and Z 

are motion-based gestures hence excluded from this dataset.  

The dataset format draws its inspiration MNIST. Each training and test case represent a 

label from 0 to 25 map to A-Z. For motion gestures J=9 or Z=25 because of gesture motions. The 

training data has 27,455 and test data has 7,172. This dataset is provided as a .csv file that has 1 

column for label and 784 columns for pixel values of the gesture image. This dataset thus helps 

in identifying the letter signed by the customer in a shop setting when they want to sign their 

name. 

 
Figure 20: MNIST ASL Dataset Preview 

 

 

2. NTU-RGB+D Action Recognition Dataset 
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NTU-RGB+D  dataset [19][20] contains 56,880 videos captured from Kinect V2 cameras 

providing RGB videos, 3D skeletal data, depth map sequences for each video sample. In all, it 

represents 60 action classes as shown in Fig. 21. There is another extended dataset called NTU 

RGB+D 120 has 120 classes and 114,480 videos. For this project, we used classes that represent 

actions that map to ASL gestures example eat is food in ASL, salute is hello in ASL, handwave 

is goodbye. We used these classes to analyze the efficiency of the approach presented in this 

project as this has been widely used as a benchmark in [18][19][20] for action recognition. The 

skeleton dataset used has 25 body joints co-ordinates as shown in Fig. 22 in a .skeleton file. 

 

Figure 21: NTU-RGB+D  Action Classes 
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Figure 22: OpenPose Skeleton Points[14] 

 

 

3. ASL Leap Motion Controller Dataset 

 

This dataset [22] contains 25 subjects performing 60 different signs of the ASL and 

includes more than 17,000 signs in total. The dataset is composed of the joint positions provided 

by the Leap Motion API for both hands as shown in Fig. 23. The dataset contains ASL gesture 

classes like red, blue, yellow, come, cost, shop, big, small, and others that are widely used in a 

shop setting and hence are idle for our project. 
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Figure 23: Hand Joint Points as seen by Leap Motion Controller[22] 

 

Every action has a separate dataset file for the left and right hand. Each of these files 

represents the skeleton motion trajectory in 3D for that single hand. So, gestures that need both 

hands to sign focuses on combined results from left & right-hand datasets. For gestures that are 

performed by a single hand, then right-hand files contain the motion and the left-hand motion are 

generally constant and hence can be ignored as seen in Fig. 24 and Fig. 25. 

 

Figure 24: LMC Orange Left Hand Dataset Preview 
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Figure 25: LMC Orange Right Hand Dataset Preview 

 

 

 

 

b. UNITY ANIMATION CREATION AND SCRIPTING 
 

 

We start by creating a Unity Scene where all the objects related to Shopping Center like a 

side table, chairs, main counter, walls, and floor are added. Next humanoid avatars are placed in 

the 3D space. Then to perform rigs configuration for the animated skeletons of these humanoid 

avatars that help in controlling its motion in the 3D space using Unity Animations. We start by 

selecting the Game object and creating a new empty Animation Clip in Unity. Then on the right 

side of the Animation View, one can see the timeline for the current clip. The keyframes for each 

animated property appear in this timeline. 

 

The C# script has a method Start() which starts executing on the hit of the Play button 

runs run the unity project. To get started with some initial random values for the camera position, 

I used Random.Range(-2.0f, 2.0f) function. This gives a value from a minimum of -2.0f to a 

maximum of 2.0f. So, for all 3 directions, the min and max values are chosen to set a boundary 

of where a camera could be placed as shown in Fig. 26. This is like confining camera motion in a 

3D space. 
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Figure 26: C# code Snippet 1 

 

The LateUpdate() is called after all the update methods are done with processing. If a 

unity object movement is part of the scene, then the camera should wait and track the object that 

might have moved. So, after the camera’s random position is chosen in start(), the LateUpdate() 

is used to transform and rotate the camera object as shown in Fig. 27.  

 

 

Figure 27: C# code Snippet 2 

 

 

 

c. ASL ALPHABET RECOGNITION IN REAL-TIME 
 

 

ASL letter recognition system is a neural network to recognize letters of the American 

Sign Language (ASL). This implementation provides feature to recognize ASL alphabets 

gestures from a live video feed. The ASL alphabets have 2 motion hand gestures for J and Z. The 

rest of the 24 alphabet hand gestures are static. In this system, only static hand gesture 
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recognition is done using convolution neural networks.  The network that we have designed has a 

total of 54,367 parameters based on LeNet-5 architecture as seen in Fig. 28 and it classifies the 

captures gesture and gives out a corresponding English alphabet in real-time as seen in Fig. 29. 

 

 
Figure 28: LeNet-5 Model Architecture 

 

 

 
 

Figure 29: LeNet-5 ASL Alphabet Detection Result : Y class 
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d. ASL WORD RECOGNITION IN REAL-TIME 

 
For this project, we have done Keras implementation of LeNet-5 architecture for ASL 

Word Recognition as seen in Fig. 30 which contains 2 Convolution layer & 2 Max pooling layer, 

and then it was flattened. The next two dense layers are added which have an activation function 

like sigmoid and relu. Finally, a SoftMax classifier is used to give out final results. 

 

 

Figure 30: LeNet-5 Keras Model for ASL 
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To better compare the performance of the model as part of our analysis, we have also 

implemented a Support Vector Machine for ASL Word Recognition. We configured the 

hyperparameters like C, kernel, and gamma as seen in Fig. 31. 

 

 

Figure 31: SVM Model for ASL 
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V. EXPERIMENTS 
 

 

This section describes various experiments that we performed to analyze the performance 

of our proposed methodology for ASL gesture recognition on various datasets. 

 

a. MNIST ASL ALPHABET DATASET 

 

In this experiment, we used the MNIST ASL Alphabet dataset that contains the 24 ASL 

letters that are static in nature, and the remaining 2 letters are motion-based which are not 

part of the dataset. The class labels range from 0 to 25 corresponding to alphabets starting 

from 0 for the letter ‘A’ to 25 for the letter ‘Z’. While training the model we got an accuracy 

of 95.08% as shown in Fig. 32 in 20 epochs where steps per epoch were 10. The graph of the 

training accuracy was observed to be monotonically increasing with the number of epochs as 

seen in Fig. 33. When real-time predictions were tested, they performed well as can be seen 

in the sample demo in Fig. 29 where ‘Y’ was predicted accurately. 
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Figure 32: MNIST ASL Alphabets on LeNet-5 model Epoch Accuracies 
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Figure 33: Training Accuracy for LeNet-5 ASL Alphabet Detection 

 

b. NTU-RGB+D V/S LMC FOR SVM & LENET-5 MODEL 

 
 

As part of this experiment, we tried to compare the performance of the NTU-RGB dataset 

and Leap Motion Controller dataset on LeNet-5 and SVM models. 

 

1. NTU – RGBD+ Dataset 

In this, the skeleton has 25 bone points and each of them had 3D coordinates. From this 

dataset, we considered the following classes for this experiment for ASL Action recognition: 

Hello (Salute), Hand Wave (Bye), Food (Eat).  
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a. LeNet-5 Results 

 When we trained the model on LeNet-5 architecture, for this particular dataset, we 

observed 86% training accuracy. The precision was best for class 2 i.e. eat gesture which was 

mostly focused on depth dimension i.e. Z coordinate.  

 

Figure 34: NTU RGB Classification Report for SVM 

 

 

Figure 35: NTU RGB Training Accuracy and Loss Graph 

 

As we can observe in the training accuracy and loss, the accuracy increased from 83.5% 

to 86% when learning_rate was 0.001 and optimizer was adam. The decrease in loss is also 

constant.  
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b. Support Vector Machine 

In this experiment, we got an accuracy of 89% for the SVM model. This is better as 

compared to the LeNet-5 model’s accuracy that was just 86%.  

 

 
 

Figure 36: SVM Classification Report for NTU RGB Dataset 

 

 

2. Leap Motion Controller Dataset 

In this, the skeleton has 27 bone points and each of them had 3D coordinates. These 

points were focused on hand joints. From this dataset we considered the following classes for 

this experiment for ASL Action recognition: Please, Blue, Red, Yellow, Where, Stop, Water, 

Orange, Thanks performed majorly by the right hand. 

a. LeNet-5 Result 

When we trained the model on this architecture, we got an accuracy of 15% which was 

very low. We tried to use different learning rates like 0.00001, 0.001, and 0.0001 but the 

accuracy still was extremely poor. We also tried to change the activation function used in the 

model architecture, but again it did not help in any way. We then tried to work with different 



 

 34 

epoch steps and increased the number of epochs, it still did not perform.  Because the skeleton 

point from LMC (Leap Motion Controller) was focused only on hand points the accuracy should 

have been much better than the NTU-RGB+D gesture dataset which focuses on full body. But 

from all these experiments, we deduced that the quality of the dataset from the LMC for LeNet-5 

as an image classifier wasn’t good and hence it did not do well on this methodology proposed in 

this report.  

 

 

b. Support Vector Machine 

When we trained the model on this architecture, we got much better results than the 

LeNet-5 model. The training accuracy for SVM is 65%. We observed from the classification 

report that most classes got precision around 60% and one of the classes was 100% classified. 

 

 

Figure 37: Classification Report for SVM for 9 classes of LMC 
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c. OKAY SIGN FROM UNITY DATASET 
 

As part of this experiment, we generated the Unity Game Engine based gesture dataset 

where a humanoid avatar closely resembling a human is performing an ‘Okay’ gesture in 

ASL. The dataset has 50 videos taken from varied angles in the 3D Unity Scene. This adds to 

the heterogeneity of the dataset. The key points of the skeleton as seen in Fig. 39 were 

collected from OpenPose and these were used to generate the temporal mappings. The 

skeleton file gives the X and Y coordinates and the confidence score of that bone point. 

These collective points were used to create a 2D matrix and then transformed into temporal 

mappings and passed to the image classifier. It was observed that the standalone OpenPose 

installation is too slow without GPU support for the given video.  It took 58 minutes to 

process a 5 sec video and to generate the co-ordinates. The average length of each video of 

our dataset is around 10sec and there are 50 videos in total. So, the total time duration was 

500 secs. It was taking too long to just get the bone points from the dataset. And furthermore, 

adding the time duration to train the model for temporal mapping and action recognition also 

needs to be accounted. So, making it overall a computationally expensive process. We tried 

using Google Colab for getting GPU support, but it does not support symbolic link in drive 

which was necessary for building the OpenPose project. Since, we aimed for real-time 

recognition, given the high processing time we kept this for future scope. 
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Figure 38: Output Skeleton visualized from OpenPose 

 

 

Figure 39: Skeleton coordinates generated from OpenPose 

  

 

 

d. IMPACT ON ACCURACY 2D VS 3D CO-ORDINATES 
 

 

In this experiment, we tried to find the performance of the model when only 2D (X, Y) 

data points of the skeleton are provided instead of 3D (X, Y, Z). As can be seen in Fig. 38, 

Fig. 39, and Fig. 40 after removing the Z coordinate which maps to blue color in the RGB 

pallet, the temporal patterns remain the same, but the dominance of blue color is taken over 

by green.  
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Figure 40: 3D v/s 2D temporal mapping for Class 2 

 

Figure 41:  3D v/s 2D temporal mapping for Class 23 

 

Figure 42:  3D v/s 2D temporal mapping for Class 38 

 

When the model was trained with these new temporal images generated by 2D body joint 

coordinates, the accuracy wasn’t impacted much. There was a slight increase of 1% in the 

accuracy leading it to 90% overall training accuracy as seen in Fig. 41. Also, the testing 

accuracy was found to be 89.52%. It was also observed that the precision of all the action 
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classes was almost the same. The reason that could be deduced from these results is that 

since the actions did not have much depth, so just considering 2D coordinates did not affect 

the performance of the model. 

 

Figure 43: SVM Classification Report for 2D NTURGB Dataset 
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VI. CONCLUSION 
 

 

 

The barrier in communication between people obstructs the normal way of living. This 

project creates a seamless experience for the deaf at the shopping mall by providing features that 

responds based on the recognized gesture from the customer. It helps customers to ask where to 

look for a certain item in-store, seek suggestions for clothing or ask for navigating to a 

washroom or request special assistance from a clerk. 

We can use these models and add more gestures to the dataset to make the system more 

user-friendly and robust. We can also try to use more computer vision architecture for this 

methodology like LSTM that could be used to get the real-time ASL speech. Also, if facial 

features are combined with hand gestures then we could have a  better understanding of the 

gestures. Whether one is a store owner or government, it’s high time that we enforce a 

mechanism to maintain stores that are accessible for deaf customers. 
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