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ABSTRACT 
 

 

We are developing a prototype computer vision system to help the deaf and mute 

communicate in a shopping setting. Our goal system would use video feeds to recognize 

American Sign Language (ASL) gestures and notify shop clerks of deaf and mute patrons’ 

intents. Our prototype will operate on videos created in Unity of 3D humanoid models in a shop 

setting performing ASL signs. 

This semester we wrote four short programs to help us towards the development of our 

final system. The first program was written for recognition of American Sign Language 

alphabets using Lenet-5 convolution neural network. Another program was written to make a 

humanoid avatar do sign language gestures in a shop setting using Animations in Unity. After 

this, a synthetic dataset creation C# program was used to capture the humanoid avatar doing 

gestures from different angles in Unity. Lastly, OpenPose, an open-source real-time pose 

estimation system, was used to detect the key points of the human body for the human gesture 

video dataset. Along with this a research paper was studied to understand how to efficiently 

recognize and classify the sign gestures performed by the human in a video using the bone key 

points information generated from OpenPose. 
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I. INTRODUCTION 
 

In this technologically advanced world, we must utilize the power of artificial 

intelligence to solve some challenging real-life problems. One of the major issues that the world 

is still trying to cope up with is establishing an efficient way for communication between people. 

Between 6 and 8 million people in the United States have some form of language impairment 

[1]. American Sign Language (ASL) is the leading minority language in the U.S. after the "big 

four": Spanish, Italian, German, and French [2]. ASL is not sign language English. ASL is a 

visual language and the signs are used to convey ideas and concepts rather than actual words. As 

a result, there comes an undeniable communication barrier between the ASL and English 

speaking population. So, this project aims at building an accessibility technology using 

convolution neural networks that will recognize the American Sign Language gestures in a video 

stream by deaf and mute people and convert it into English text. 

The barrier in communication between people obstructs the normal way of living. For 

example, if a deaf person at the shopping mall wants to seek some suggestions for clothing then 

and if there no ASL-speaking people around then one might not get the same seamless shopping 

experience like the one with the ability to speak English. 

The existing accessibility technolog[CL1] y shows an innovative application of 

Augmented Reality, Machine Learning, Artificial Intelligence, and Human-Computer Interaction 

to better accommodate mute and deaf people. In 2016, the HoloHear team prototype an 

augmented reality app using specifically the HoloLens. When a user would speak aloud, a 3D 

holographic model appeared to translate the sentence in American Sign Language in real-time 

[3]. Tap SOS app allows a person who is mute and deaf to connect with emergency services in a 



nonverbal way and won the 2018 Digital Health Award [4]. Today shops provide amplifiers to 

deaf people to fully understand the advice of the sales assistant [5]. 

This project aims at building a digital assistance system that provides a solution to in-

shop issues for mute and deaf people by providing live communication between shop keeper and 

customers through video feeds using state of the convolution neural networks. 

  

The rest of the paper is organized as follows: In Section II, we talk about our first 

Deliverable 1 which depicts the ASL alphabets recognition using LeNet-5 convolution neural 

network. In Section III, we talk about Deliverable 2 and demonstrate how to create gestures on a 

humanoid avatar using Animations in Unity. Then we describe our application of gesture 

animation on humanoids in a shop setting in Unity and record a .mp4 movie of the scene. Then 

in Section IV, we describe how can we generate a synthetic 50 video dataset for any given 

human gesture using Animation in Unity as part of Deliverable 3. This dataset is created by 

placing the camera randomly in 3D space to record the subject i.e. our humanoid model from 

different angles to get the varied dataset of a gesture. In Section VI, we demonstrated how we 

used OpenPose to generate a new dataset that has the bone key points marking on the output 

video and 3d key points in an output JSON file. Finally, we conclude the paper in Section VI by 

talking about progress for the writing project this semester and how this work prepares us and 

acts as a base for the writing project in the next semester. 

 

 

 

 

 

 

 



II. DELIVERABLE 1 : AMERICAN SIGN LANGUAGE ALPHABETS RECOGNITION 

USING LENET-5 
 

The first deliverable was to develop a neural network to recognize images of the 

American Sign Language (ASL) alphabet. This deliverable will help in building a part of our 

final system of the writing project next semester that is capable of recognizing ASL alphabets 

gestures in a video feed. Our other deliverables this semester will focus on ASL words 

recognition. The ASL alphabets have 2 motion hand gestures for J and Z as Figure 1. The rest of 

the 24 alphabet hand gestures are static. In this deliverable, only static hand gesture recognition 

is done using convolution neural networks.  

The LeNet-5 architecture has total of two sets of convolutional and average pooling 

layers, followed by a flattening convolutional layer, then two fully connected layers, and lastly a 

softmax classifier [6] as shown in Figure 2. This architecture was used for the implementation of 

our model 

 

Figure 1. ASL Alphabet 

 



 
Figure 2. LeNet-5 Architecture 

 

 

 

The model is trained and tested on the Sign Language MNIST dataset. The data is in 

CSV format with labels and pixel values in single rows. The training dataset has 27455 images 

and testing has 7172 images. The first column represents the label value for each alphabetic letter 

A-Z i.e. a value from 0-25. The 28*28 image is converted to 784-pixel cells in the row having 

grayscale values between 0-255 as shown in Figure 3. 

 

Figure 3. Train Dataset Preview 

 

 

An open-source Keras library is used to build the LeNet-5 architecture as shown in  

Figure 4.  The model takes 32*32 input size image and our dataset 784 pixels i.e. 28*28. So, 

padding the dataset images by 2 pixels will give us an input image of size 32x32.  



 
 

Figure 4. LeNet-5 Keras Model 

There are 54,367 trainable parameters as seen in the model summary in Figure 5. In both 

the fully connected layer relu is used as an activation function. Finally, the output has a value 

from 0-25 corresponding to alphabet number starting from 0 for letter ‘A’ to 25 for letter ‘Z’. 

 

Figure 5. LeNet 5 Model Summary 

When 10 epochs were run, the model gave an accuracy of 97.91% as shown in Figure 6. 

The output was saved as a csv file having the predictions stored corresponding to the test dataset. 



 

Figure 6. LeNet-5 Model Training 

To perform a prediction, an input images was given as pixel values of size 28*28 as 

shown in Figure 7 where the sample image is of letter ‘Y’.  

 

 

 

Figure 7. Sample Input to Model for testing 

Since, the model takes 32*32 size images, the input image needs to be padded with zero. 

Now this new input image is passed to the model for generate prediction and result alphabet 



number is stored in imp_pred variable. As can be seen in the Figure 8, the model gave correct 

output for the sample image as ‘Y’. 

 

 

Figure 8. Prediction output on sample image 

 

 

III. DELIVERABLE 2 : SIGN LANGUAGE GESTURE CREATION IN A SHOP SETTING 

USING ANIMATIONS IN UNITY 
 

 

We created a Unity Animation on humanoid avatars that does a sign language gesture as 

part of Deliverable 2. This small clip of animation is used to apply on humanoid avatar placed in 

shop setting of the scene in Unity. Finally, the end output of this deliverable is an mp4 video that 

captures the humanoid avatar doing some ASL signs. In this semester, we choose to do this 

deliverable for an okay sign. These animations could be created for any given gesture by 

following the steps detailed further in this section. This deliverable would enable us to generate a 

synthetic dataset for any gesture that we want the end system to be capable of predicting. So, this 

deliverable adds extensibility for the writing project in next semester. The final animation clip is 

to train our end system for American Sign Language detection from video feeds. 



 

Figure 9. Okay Sign by Humanoid Avatar 

 

In this Deliverable 2, the animation was built to make the humanoid avatar do an Okay 

Sign. For this first, we did rigs configuration for the avatar and then configured the Dopesheets. 

We start by selecting the Game object and creating a new empty Animation Clip in Unity. Then 

on the right side of the Animation View, one can see the timeline for the current clip. The 

keyframes for each animated property appear in this timeline. The timeline view has two modes, 

Dopesheets, and Curves. In Unity, Dopesheets allows viewing each property’s keyframe 

sequence in an individual horizontal track as shown in Fig 10. The Animation Curve means that 

the Animation Clip controls how a property changes over time shown in Fig 11.



 

Figure 10. Dopsesheet mode in Animation Window in Unity 

 

 

Figure 11. Curves mode in Animation Window in Unity 

 

For this deliverable, all the animations are created from scratch by configuring each 



bones points that are required to create a gesture by clicking on ‘Add Property’ in the Animation 

window. This opens a list of available animators that provides the in-built movement for the 

game object as shown in Fig 12. So, a combination of these animators is used to make an avatar 

perform specific gestures. 

 

Figure 12. Add Property in Animation 

In a given time frame, each key point in the Dopesheets at each point of time determines 

the state of that bone. It tells the action performed by the model at that time. So, once all the 

required bones are added as properties to the animation, then movements for each of these bone 

points at each point of time in the keyframe was configured in the Dopesheet mode as shown in 

Fig 10.   

Lastly, now this animation needs to be added as a state in Unity Animator to be attached 

to the game object as shown in Fig 13. The final scene in Unity was created to give a shop’s look 

and feel as shown in Fig 14. 



 

Figure 13. Okay Sign Animator 

 

Figure 14. Final Unity Scene in Shop Setting 

IV. DELIVERABLE 3 : HUMANOID GESTURE SYNTHETIC DATASET CREATION IN 

UNITY 
 

The third deliverable was to generate a video dataset capturing gestures done by a 

humanoid avatar from different angles. Since the training of the computer vision model needs 

large data sets, so we choose to create 50 videos for each gesture. This deliverable was 

specifically aimed at learning to create large datasets as per our requirements. In this semester, as 

the first step towards video creation for all sign language hand gestures that we would do as part 



of the writing project in next semester, we used the animation clips created in Unity that does an 

okay sign gesture in Deliverable 2 as an input dataset for Deliverable 3. The output dataset 

would then be used for training the AI model that is capable of recognizing the actions done in 

sign language by the humanoid avatar.  

To get a quality dataset and maintain heterogeneity in each video, each of the videos in 

the dataset was created by recording it from various angles in the Unity scene. In our writing 

project next semester, we would have to generate a very large dataset for each kind of gesture. 

So, manually setting the camera in Unity to record from different angles was not a feasible 

approach. So, we used C# scripting in Unity to position the camera randomly in 3D space. 

In Unity, the C# scripts are usually created within it directly that can be attached to 

GameObjects [7]. So, here we attached this script to the main camera in Unity. The script has a 

method Start() which starts executing on the hit of the Play button runs run the unity project. To 

get started with some initial random values for the camera position, I used Random.Range(-2.0f, 

2.0f) function. This gives a value from a minimum of -2.0f to a maximum of 2.0f. So, for all 3 

directions, the min and max values are chosen to set a boundary of where a camera could be 

placed as shown in Fig 15. This is like confining camera motion in a 3D space. 

 

Figure 15. C# code Snippet 1 

 The LateUpdate() is called after all the update methods are done with processing. 

If a unity object movement is part of the scene, then the camera should wait and track the object 

that might have moved. So, after the camera’s random position is chosen in start(), the 



LateUpdate() is used to transform and rotate the camera object as shown in Figure 16. 

 

 

Figure 16. C# code Snippet 2 

 

 So, this script was used to generate random location for the camera object and 

finally it recorded the video in mp4 format using Unity Recorder as shown in Fig 117. 

 

Figure 17. Unity Recorder 



 

V. DELIVERABLE 4 : BONE KEY POINTS DETECTION USING OPENPOSE AND 

STUDYING SKELETON-BASED ACTION RECOGNITION 
 

 

The fourth deliverable has two parts first to generate bone points dataset and secondly to 

study a paper on action recognition using these bone point co-ordinate information. After 

studying various models, we decide to use the OpenPose model [8] to generate a video dataset 

that shows bone points for humanoid avatar videos that were submitted as part of Deliverable 3. 

And for part2, Skeleton-based action recognition with convolutional neural networks [9] paper 

was studied.  

OpenPose has represented the first real-time multi-person system to jointly detect various 

human parts like body, hand, facial, and foot key points (in total 135 key points) on single 

images. The core features of OpenPose that are importantly used for this deliverable is 3D real-

time single-person keypoint detection. It provides features like 3D triangulation from multiple 

single views, synchronization of flir cameras handled and compatible with Flir/Point Grey 

cameras. 

Current state-of-the-art approaches to skeleton-based action recognition are mostly based 

on recurrent neural networks (RNN). In this paper, Chao Li and and et al proposed a novel 

convolutional neural networks (CNN) based framework for both action classification and 

detection. Raw skeleton coordinates as well as skeleton motion are fed directly into CNN for 

label prediction. A novel skeleton transformer module is designed to rearrange and select 

important skeleton joints automatically as shown in Fig. 20 



 

Figure 18. Sample output video from OpenPose 

 

Figure 19. Sample output video from OpenPose 

 

 



 

Figure 20. Sample output video from OpenPose 

 
Figure 21. CNN representation of skeleton sequences for action classification. 

 

As displayed in Fig.21, instead of region proposal network (RPN) it used window 

proposal network (WPN). The 2D anchors are flattened to 1D anchors. Window proposals along 

the temporal dimension are extracted based on pre-defined anchors. In this architecture, window 

regression instead of bounding box regression is performed to refine the temporal position of 

generated window proposals. It then pools the features of each window from the shared feature 

maps with the crop-and-resize operation once proposals are ready. These features are then fed to 

the R-CNN subnetwork for classification and window regression. 

 



VI. CONCLUSION 
 

 

During this semester, as a part of the writing project this semester, we explored various 

Convolution Neural Networks architectures, Unity animations, and C# scripting that will aid in 

the development of our final system as part of the writing project in next semester. In this 

semester, in first deliverable, we studied about LeNet architecture and then implemented it to 

build a model capable of recognizing the static ASL alphabets. Next, we explored Unity to learn 

and create custom animations on humanoid characters. This deliverable will help writing project 

next semester for the creation custom dataset having various ASL gestures.  

After a small animation clip for the okay sign gesture was ready, we worked on creating 

shop setting scenes in Unity.  Further, as part of Deliverable 3, these clips were recorded from 

various angles to generate the synthetic custom dataset required for training the AI model. In 

next semester, this approach would be used to generate a dataset for varied signs. These videos 

were lastly fed to the OpenPose model to generate a new dataset that has bone points marking in 

the video along with an output JSON file having 3D coordinates for key points like hand, legs, 

face and others. 

Lastly, a paper on ‘Skeleton-Based Action Recognition with Convolutional Neural 

Networks’ was studied which gave insights into how we can use the 3D coordinates and 

recognize the gestures done by the humanoid avatar. All these deliverables have built up a strong 

foundation for our writing project in next semester.  



In the next semester, we will try to create animation clips and corresponding datasets for 

at least five different ASL keywords using the methodology proposed in Deliverable 2 and 3. 

Also, we will work on improving the accuracy of the ASL alphabets detection model by training 

it on a custom dataset. We will try to implement the Skeleton-Based Action Recognition model 

for all the signs supported by our system. Lastly, we will deploy it on some device that can 

continuously provide video feed and recognize the ASL and finally give out its corresponding 

English text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 
 

 

1. “Statistics on Voice, Speech, and Language,” National Institute of Deafness and 

Other Communication Disorders, 01-Dec-2020. [Online]. Available: 

https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-language. 

[Accessed: 15-Dec-2020].  

2. H. Lane, B. Bahan, and R. Hoffmeister, “3,” in A journey into the deaf world, Dawn 

Sign Press, 1996.  

3. P. Chang, “Inclusive Communication Through Virtual And Augmented Reality 

Technology,” ARPost, 02-Oct-2018. [Online]. Available: 

https://arpost.co/2018/10/02/inclusive-communication-virtual-augmented-reality/. 

[Accessed: 16-Dec-2020]  

4. “5 must-have apps for deaf and hard of hearing people in 2020,” Inclusive City 

Maker, 22-Oct-2020. [Online]. Available: 

https://www.inclusivecitymaker.com/smartphone-apps-deaf-people-2020/. [Accessed: 

16-Dec-2020].  

5. “How Can Shopping Malls Be Accessible to People with Disabilities?,” Inclusive 

City Maker, 20-Oct-2020. [Online]. Available: 

https://www.inclusivecitymaker.com/shopping-malls-accessible-people-with-

disabilities/. [Accessed: 16-Dec-2020].  

6. M. Rizwan, “LeNet-5 - A Classic CNN Architecture,” engMRK, 21-Apr-2020. 

[Online]. Available: https://engmrk.com/lenet-5-a-classic-cnn-architecture/. 

[Accessed: 15-Dec-2020].  

7. Unity Technologies, “Creating and Using Scripts,” Unity. [Online]. Available: 

https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html. [Accessed: 15-Dec-

2020].  

8. CMU-Perceptual-Computing-Lab, “CMU-Perceptual-Computing-

Lab/openpose,” GitHub. [Online]. Available: https://github.com/CMU-Perceptual-

Computing-Lab/openpose. [Accessed: 15-Dec-2020].  

9. C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based Action Recognition with 

Convolutional Neural Networks,” arXiv.org, 25-Apr-2017. [Online]. Available: 

https://arxiv.org/abs/1704.07595. [Accessed: 15-Dec-2020]. 


	Abstract
	I. Introduction
	II. Deliverable 1 : American Sign Language Alphabets Recognition Using LeNet-5
	III. Deliverable 2 : Sign Language Gesture Creation In a Shop Setting Using Animations In UNITY
	IV. Deliverable 3 : Humanoid Gesture Synthetic Dataset Creation in Unity
	V. Deliverable 4 : Bone Key Points Detection Using OpenPose And Studying Skeleton-Based Action Recognition
	VI. Conclusion
	References

