Detecting and Predicting Visual
Affordances of Objects

By Bhumika Kaur Matharu Advisor: Chris Pollett
18 May, 2021 Committee Members
Robert Chun
Sunhera Paul

Overview

- Objective of Project

- Introduction

- Background

- Model Design

- Dataset and Data Preprocessing
- Experiments and Results

Conclusion and Future Work

Objective of Project

Using computer vision techniques, implement a model to learn
object affordances through RGB videos
- Detect and predict the affordance of an object along with the

interaction region between human and object

Introduction

- Rapid growth of autonomous robots is transforming many

industries (Manufacturing, Healthcare, Entertainment, Defense)
- Autonomous robots
- Perform high risk tasks
- Have low error rate
- High efficiency
High speed and reliability

Existing Problems

Robots can perform best under controlled environments, making

them unreliable for real world scenarios

- Slightest change in the environment or an encounter with novel
object requires human supervision and re-training the robots

- Difficult to comprehend and perform suitable actions on a new
object in the environment

- One of the ways to overcome these challenges is Affordance

learning

Affordance

Affordance tells what actions a user can perform on an object in

given surroundings

- Affordance learning enable robot to learn and discover set of
possible actions on a novel object

- Allow robot to perform human-Llike actions without human

supervision.

Background

- Following neural networks and models were used in the

project
- Convolutional neural networks
- Recurrent neural networks (LSTM and ConvLSTM)
- Fully convolutional network
- Transposed convolution

Attention model

Convolutional Neural Network (CNN)

Used to analyze and extract features from any kind of image or video data

Consists of convolutional layers, activation layers, max-pooling layers and

fully convoluted layers

[_;] [j — BICYCLE

FLATTEN FULLY SOFTMAX

CONVOLUTION + RELL POOLING CONNECTED

INPUT CONVOLUTION + RELL POOLING

N ~
Fig 1

Used for sequential data
or time-series data

Remember previous input

Recurrent Neural Networks (RNN)

while producing the ”

output

Output is influenced by
hidden state representing

prior input/output

Fig 2

Long Short Term Memory (LSTM)

Vanilla RNN can’t handle long input sequence
- Traditional RNN suffers from exploding gradient problem

- Long Term Short Memory units (LSTM) minimize the problem through gates

Update gate

Relevance gate

Forget gate

Output gate

10

Convolutional LSTM (ConvLSTM)

- LSTM fully connected layers does not encode any spatial

information in case of spatiotemporal data

- ConvLSTM overcome the problem by using 3D tensors, where

last two dimensions i.e. rows and columns are spatial
dimensions

- Captures underlying spatial information by performing
convolution operation at each gate in LSTM cell instead of

internal matrix manipulation

11

Fully Convolutional Network (FCN)

- FCN performs
classification at per-pixel
level on an input image

- Consists of fully
convolutional layers

- Outputs the category
prediction of each pixel
corresponding to spatial

position

forward /inference

backward/learning o S

12

Transposed Convolution

Often mistook as deconvolution operation

- Combine two operations: upscaling of an image with
convolution

- Upsamples the output feature map to the input size to predict
values at each pixel

Performs normal convolution operation in the opposite direction

13

Attention Model

Tells the network which relevant part to focus on in a sequence or
visual input.

- Gives different score to each weight which represents the relevance
- Types of attention:

- Soft Attention

- Hard Attention

P lwlwlwinl BEE
 PERFREERER

bird flying over body water

Fig 4 14

Model Design

- Model is based on an

Input Sequence

encoder-decoder architecture.

- Encoder takes the frames of the

Encoder

video as the input and produces an

|

multi-task (jointly) manner Action Label

. Video Embedded V
embedded vector of each video. O TeRe e Weee

- Decoder is composed of two \

) o Decoder
models: action classifier and
. Acti Heatmap

heatmap predictor oty Predicior

- Both of the tasks are trained in a e T

Interaction Heatmap

15

Encoder

Encoder takes two inputs:

- Visual features extracted from
from pre-trained VGG16 is fed
into ConvLSTM

- Attention mechanism is used to
aggregate the output of
ConvLSTMs per time step

- Output of the encoder is a low
dimensional embedded feature
vector extracted from the video.

motion and content of the video.

Content (t)

A4

ConvLSTM(content)

N

Motion (t, t-1)

ConvLSTM(motion)

Attention model /

A

Element wise
multiplication

n

A4

Element wise
summation

A

Encoded output

16

Action Classifier

- Encoded output is taken as

input

- Inputis repeated as many
times as the number of time
steps in a video

- LSTMis used to predict the

affordance of the given task

Encoded embedded video vector

LN

L 2 el t-2,t-1, t
Repeated embedded vector

l

LSTM

l

Densely connected
neural layer

l

Predicted action label

17

Heatmap Predictor

Two inputs: Encoder output
and object image

- Fully convolutional network

used to predict the interaction

region
- Transposed convolution to
upscale the result to the input

size

Encoded embedded video vector

Concatenated
feature vector

A

Input image

Fully convolutional
network

Transposed
convolutional network

A

Predicted heatmap

18

input: | (None, 14, 128, 128, 3)

rgb: Inputl.
CnrgD: U8y | tout: | (None, 14, 128, 128, 3)

[input: | (None, 14,128,128, 3) |
[output: | (None, 14,128,128, 3) |

‘ tion: InputLayer

[input: | (None, 14,128,128, 3) |

time_distributed_9(vgg16): TimeDi
[output: | (None, 14,4, 4,512) |

[input:] (None, 14,128,128, 3) |
[output: | (None, 14, 4,4,512) |

time_distributed_10(vgg16): TimeDistril

com_st_m2q.5: ConulTHZD |24 | {None, 14,4 4;512) |
St ‘output: | [(None, 14, 4, 4, 512), (None, 4, 4, 512), (None, 4, 4, 512;]|

conv_Ist_m2d_6: ConvLSTM2D l

put: [(None, 14, 4, 4, 512)
\ output: \ [(None, 14, 4, 4, 512), (None, 4, 4, 512), (None, 4, 4, 512)]

| input: | [(None, 14, 4, 4, 512), (None, 14, 4, 4, 512)] |

[output: |

(None, 14, 4, 4, 1024)

time_distributed_11(dense_3): TimeDistri pens) |

input: | (None, 14, 4, 4,1024) |

[[output: | (None, 14, 4,4,512) |

time_distributed_12(softmax_5): TimeDi

[Vinput: [(None, 14, 4, 4,512) |

[output: | (None, 14, 4, 4,512) |

| input: |[(None, 14, 4, 4, 512), (None, 14, 4, 4,512)1|

multiply_3: Multiply

[output: | (None, 14, 4, 4, 512)

input: | (None, 14, 4, 4, 512)

lambda_9: Lambda
output: | (None, 1, 4, 4, 512)

input: | (None, 128, 128, 3)

decoder_inp: InputLayer
output: | (None, 128, 128, 3)

Model Implementation

[input: | (None, 4, 4, 512) |
[output: | (None, 1, 8192) |

input: | (None, 1,4, 4, 512) input: | (None, 128, 128, 3)
lambda_10: Lambd 16: Model
ambda_10: Lambda I tout: | (None, 4, 4, 512) V9916: Model I out. | (None, 4, 4, 512)
input: | [(None, 4, 4, 512), (None, 4, 4, 512
reshape_3: Reshape 6: C [input: [T(None,), (None, 1]

[output: | (None, 4, 4, 1024) |

\ambda 11 Lambda | IMPUE_| (None, T, 8192)
- output: | (None, 8192)

input: | (None, 4, 4, 1024)

conv2d_5: Conv2D
- output: | (None, 4, 4, 1024)

[(input: T (None, 8192) |

repeat_vector_3
= = | output: | (None, 14, 8192) |

input: | (None, 4, 4, 1024)

conv2d_6: Conv2D
- output: | (None, 4, 4, 1024)

input: | (None, 4, 4, 1024)

conv2d_transpose_3: Conv2DTranspose

output: | (None, 128, 128, 1)

| input: | (None, 14, 8192) |

Istm_3: LSTM
= [output: | (None, 512) |
input: | (None, 512) |

fcatin; Dense |
‘ [output: | (None,5) |

input: | (None, 128, 128, 1)
lambda_12: Lambda
- output: | (None, 128, 128)

input: | (None, 128, 128)

ftmax_6: Soft
Sotmax 6 SormaX I eout: | (None, 128, 128)

Dataset

- Online Product Review dataset for Affordance (OPRA) is used

- Consists of 11,505 third person demonstration videos and
2,512 object images collected from various YouTube product
review channels.

- Affordance information of a task is incorporated by annotating
10 points on the object image highlighting the human-object

interaction region.

20

OPRA Dataset Distribution

- Consist of seven action

Opra dataset distribution

classes
- Total of 20,774 video
clips are collected

- 16,976 videos for

training and 3,798 for I I
o o i m B

te Stl n g Hold Put down Touch Push Rotate Pull

Action Class

No. of sampl

21

Data Preprocessing

OpenCV and FFmpeg are used for data pre-processing

- The videos are segmented into smaller videos, where each video contains some

human-object interaction

- Content Frames: For each segmented clip, 15 frames are generated at a 1 fps

- Motion Frames: Absolute differences between consecutive frames (frame at t and
t-1 time step)

- Custom data generator created to feed multiple input at once

- Gaussian blur ground truth heatmap computed using the annotated points on

the object image

22

https://docs.google.com/file/d/1GHcC3rpREyoz5bVFmTGQ540AaMG1YH6X/preview

Motion and Content Frames

M 2.200.3_3.6f.0001.jp.. M 2.200.3_3.6f_0002.jp.. M 2.200.3_3.6f_0003.jp.. M 2.200.3_3.6d5.png M 2.200.3_3.6d6.png M 2.200.3_3.6d7.png

24

Experiments and Results

Model Parameters

Adam optimizer
- Learning rate: 0.0001
- Action classifier loss: Categorical Cross-entropy

Heatmap Predictor loss: KL divergence

26

Experiment 1

Run the model on three classes :
- Hold with 730 videos
- Touch with 800 videos
- Push with 775 videos

- lterations: 50 epochs

- Batch size: 12

Input frame and image size: 128 by 128

27

Results - Loss

128 1 122 -
126 1
120 -
124
118 -
9 122 1 9
8 8
120 1 116 -
1151 114 1
116 1
112 -
0 10 2 0 40 50 : =2 5 % - &
epoch

Overall Loss Classification Loss

Results - Prediction

° print(prediction[@])
ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[©]])

Ground Truth: Push

[[©.32215092 ©.3157147 ©.36213437]]

push Statistics of the Experiment:

Classification Accuracy: 35.7 %
KL Divergence Loss: 6.97

29

Run the model on five classes :

Hold with 415 videos
Touch with 410 videos
Rotate with 408 videos
Push with 412 videos
Pick-up with 365 videos

- Iterations: 315 epochs
- Batch size: 12
Input frame and image size: 128 by 128

Experiment 2

30

185

180
175 -
170 -
165 1
160 1
155 1
150 -
145

Results - Loss

p

50

L] A

100 150 200 250

Overall Loss
x-axis: epoch, y-axis: loss

L)

300

175+
170 1
165 1
160 1
155
L50
145 -
140 1
L35

-

Ll

50

T L] L

100 150 200 250

Classification Loss
x-axis: epoch, y-axis: loss

|

300

31

Results - Prediction

print(prediction|9])
ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[©]])

Ground Truth: Touch

[[©.13899542 ©.3731257 ©.3403442 ©0.05909514 ©.08843959]]
touch

Statistics of the Experiment:

Classification Accuracy: 48.48 %
KL Divergence Loss: 7.012

32

Results - Failures

[100] print(prediction[@])

ind = np.argmax(prediction[@], axis=1) Ground Truth: Push
print(action_labels[ind[©]])

[[©.2202711 ©.48487148 ©.29485744]]
touch

Ground Truth: Touch

33

Distortion in Dataset

action_labels = {©: 'hold', 1: 'touch', 2: 'rotate', 3: 'push',
print(prediction[@])

ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[@]])

[[©.68775322 ©.19458954 ©.4061065 ©.25111873 ©.06044002]]
rotate

34

Conclusion

Achieved the objective of detecting and predicting affordance of the

object and interaction heatmap between user and object.

- Accuracy of the action (affordance) classifier increases with the
increase in the duration of training.

- The heatmap predictions are better with more number data samples

per class.

- The action classifier and heatmap predictor trained in a multi-task

35

manner, taking advantage of the joint learning.

Future Work

Accuracy of the heatmap predictions can be increased by more
number of data samples for each action class

- Custom loss function for better training

- Different hyper-parameters (learning rate)

Different pre-trained models and weights

36

References

Fig 1 - M. Taylor, “Computer Vision with Convolutional Neural Networks”,
https://medium.com/swlh/computer-vision-with-convolutional-neural-networks22f0636
Ocac9#:~text=Most%20computer%?20vision%20algorithms%20use,and%20edges
%2C%20from%20spatial%20data.

Fig 2 - M. Venkatachalam, “Recurrent Neural Network”,
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

Fig 3 - J. Long, E. Shelhamer and T. Darrell, “Fully Convolutional Networks for Semantic
Segmentation”, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 3431-3440

Fig 4 - K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel and Y.
Bengio, “Show, Attend and Tell: Neural Image Caption Generation with Visual

Attention”, in Proceedings of the 32nd International Conference on Machine Learning,

2015. 37

https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

Thankyou!
Any Questions?

Additional Experiment

50 100 150 200 250

Validation Loss - Together
x-axis: epoch, y-axis: loss

300

21 1

20 4

19 -

18 1

s [8

16 1

15 1

T

100 150 200 250

Validation Loss - Individual
x-axis: epoch, y-axis: loss

300

39

Additional Experiment

- Run the model on seven classes :
- Hold with 180 videos
- Touch with 200 videos
- Rotate with 201 videos
- Push with 190 videos
- Pull with 170 videos
- Pick up with 180 videos
- Put Down with 195 videos
- Iterations: 200 epochs
- Batchsize: 12
Input frame and image size: 128 by 128

40

Results - Loss

10.138 1 0.130 -
10136 1 0.128 -
10134 1 0.126
0.132 1 0.124 1
0.130 A1 0.122 1
10.128 1 : : ' : : : , : ; : 01201] ' ' i '] ' i
0 25 50 75 100 125 150 175 200 0 25 50 s 100 125 150 175 200
Overall Loss Classification Loss

41

Results - Prediction

print(prediction[@])
ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[©]])

Ground Truth: Pick up

[©.15427716 ©.1333073 ©.18406256 ©.1200726 ©.08894752 ©.18849538
0.13083749]
pick_up

Statistics of the Experiment:

Classification Accuracy: 33.7 %
KL Divergence Loss: 7.07

42

