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Objective of Project

Using computer vision techniques, implement a model to learn
object affordances through RGB videos
- Detect and predict the affordance of an object along with the

interaction region between human and object




Introduction

- Rapid growth of autonomous robots is transforming many

industries (Manufacturing, Healthcare, Entertainment, Defense)
- Autonomous robots
- Perform high risk tasks
- Have low error rate
- High efficiency
High speed and reliability




Existing Problems

Robots can perform best under controlled environments, making

them unreliable for real world scenarios

- Slightest change in the environment or an encounter with novel
object requires human supervision and re-training the robots

- Difficult to comprehend and perform suitable actions on a new
object in the environment

- One of the ways to overcome these challenges is Affordance

learning




Affordance

Affordance tells what actions a user can perform on an object in

given surroundings

- Affordance learning enable robot to learn and discover set of
possible actions on a novel object

- Allow robot to perform human-Llike actions without human

supervision.




Background

- Following neural networks and models were used in the

project
- Convolutional neural networks
- Recurrent neural networks (LSTM and ConvLSTM)
- Fully convolutional network
- Transposed convolution

Attention model




Convolutional Neural Network (CNN)

Used to analyze and extract features from any kind of image or video data

Consists of convolutional layers, activation layers, max-pooling layers and

fully convoluted layers
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Used for sequential data
or time-series data

Remember previous input

Recurrent Neural Networks (RNN)

while producing the ”

output

Output is influenced by
hidden state representing

prior input/output
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Long Short Term Memory (LSTM)

Vanilla RNN can’t handle long input sequence
- Traditional RNN suffers from exploding gradient problem

- Long Term Short Memory units (LSTM) minimize the problem through gates

Update gate

Relevance gate

Forget gate

Output gate
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Convolutional LSTM (ConvLSTM)

- LSTM fully connected layers does not encode any spatial

information in case of spatiotemporal data

- ConvLSTM overcome the problem by using 3D tensors, where

last two dimensions i.e. rows and columns are spatial
dimensions

- Captures underlying spatial information by performing
convolution operation at each gate in LSTM cell instead of

internal matrix manipulation
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Fully Convolutional Network (FCN)

- FCN performs
classification at per-pixel
level on an input image

- Consists of fully
convolutional layers

- Outputs the category
prediction of each pixel
corresponding to spatial

position

forward /inference

backward/learning o S
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Transposed Convolution

Often mistook as deconvolution operation

- Combine two operations: upscaling of an image with
convolution

- Upsamples the output feature map to the input size to predict
values at each pixel

Performs normal convolution operation in the opposite direction
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Attention Model

Tells the network which relevant part to focus on in a sequence or
visual input.

- Gives different score to each weight which represents the relevance
- Types of attention:

- Soft Attention

- Hard Attention
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Model Design

-  Model is based on an

Input Sequence

encoder-decoder architecture.

- Encoder takes the frames of the

Encoder

video as the input and produces an

|

multi-task (jointly) manner Action Label

. Video Embedded V
embedded vector of each video. O TeRe e Weee

- Decoder is composed of two \

) o Decoder
models: action classifier and
. Acti Heatmap

heatmap predictor oty Predicior

- Both of the tasks are trained in a e T

Interaction Heatmap
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Encoder

Encoder takes two inputs:

- Visual features extracted from
from pre-trained VGG16 is fed
into ConvLSTM

- Attention mechanism is used to
aggregate the output of
ConvLSTMs per time step

- Output of the encoder is a low
dimensional embedded feature
vector extracted from the video.

motion and content of the video.

Content (t)
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Encoded output
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Action Classifier

- Encoded output is taken as

input

- Inputis repeated as many
times as the number of time
steps in a video

- LSTMis used to predict the

affordance of the given task

Encoded embedded video vector

LN

L 2 el t-2,t-1, t
Repeated embedded vector

l

LSTM

l

Densely connected
neural layer

l

Predicted action label
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Heatmap Predictor

Two inputs: Encoder output
and object image

- Fully convolutional network

used to predict the interaction

region
- Transposed convolution to
upscale the result to the input

size

Encoded embedded video vector

Concatenated
feature vector

A

Input image

Fully convolutional
network

Transposed
convolutional network

A

Predicted heatmap
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Model Implementation
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Dataset

- Online Product Review dataset for Affordance (OPRA) is used

- Consists of 11,505 third person demonstration videos and
2,512 object images collected from various YouTube product
review channels.

- Affordance information of a task is incorporated by annotating
10 points on the object image highlighting the human-object

interaction region.
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OPRA Dataset Distribution

- Consist of seven action

Opra dataset distribution

classes
- Total of 20,774 video
clips are collected

- 16,976 videos for

training and 3,798 for I I
o o i m B

te Stl n g Hold Put down Touch Push Rotate Pull

Action Class

No. of sampl
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Data Preprocessing

OpenCV and FFmpeg are used for data pre-processing

- The videos are segmented into smaller videos, where each video contains some

human-object interaction

- Content Frames: For each segmented clip, 15 frames are generated at a 1 fps

- Motion Frames: Absolute differences between consecutive frames (frame at t and
t-1 time step)

- Custom data generator created to feed multiple input at once

- Gaussian blur ground truth heatmap computed using the annotated points on

the object image

22






https://docs.google.com/file/d/1GHcC3rpREyoz5bVFmTGQ540AaMG1YH6X/preview

Motion and Content Frames

M 2.200.3_3.6f.0001.jp.. M 2.200.3_3.6f_0002.jp.. M 2.200.3_3.6f_0003.jp.. M 2.200.3_3.6d5.png M 2.200.3_3.6d6.png M 2.200.3_3.6d7.png
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Experiments and Results




Model Parameters

Adam optimizer
- Learning rate: 0.0001
- Action classifier loss: Categorical Cross-entropy

Heatmap Predictor loss: KL divergence
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Experiment 1

Run the model on three classes :
- Hold with 730 videos
- Touch with 800 videos
- Push with 775 videos

- lterations: 50 epochs

- Batch size: 12

Input frame and image size: 128 by 128
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Results - Loss
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Results - Prediction

° print(prediction[@])
ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[©]])

Ground Truth: Push

[[©.32215092 ©.3157147 ©.36213437]]

push Statistics of the Experiment:

Classification Accuracy: 35.7 %
KL Divergence Loss: 6.97
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Run the model on five classes :

Hold with 415 videos
Touch with 410 videos
Rotate with 408 videos
Push with 412 videos
Pick-up with 365 videos

- Iterations: 315 epochs
- Batch size: 12
Input frame and image size: 128 by 128

Experiment 2

30




185

180
175 -
170 -
165 1
160 1
155 1
150 -
145

Results - Loss

p

50

L] A

100 150 200 250

Overall Loss
x-axis: epoch, y-axis: loss

L)

300

175+
170 1
165 1
160 1
155
L50
145 -
140 1
L35

-

Ll

50

T L] L

100 150 200 250

Classification Loss
x-axis: epoch, y-axis: loss

|

300

31




Results - Prediction

print(prediction|9])
ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[©]])

Ground Truth: Touch

[[©.13899542 ©.3731257 ©.3403442 ©0.05909514 ©.08843959]]
touch

Statistics of the Experiment:

Classification Accuracy: 48.48 %
KL Divergence Loss: 7.012
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Results - Failures

[100] print(prediction[@])

ind = np.argmax(prediction[@], axis=1) Ground Truth: Push
print(action_labels[ind[©]])

[[©.2202711 ©.48487148 ©.29485744]]
touch

Ground Truth: Touch
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Distortion in Dataset

action_labels = {©: 'hold', 1: 'touch', 2: 'rotate', 3: 'push',
print(prediction[@])

ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[@]])

[[©.68775322 ©.19458954 ©.4061065 ©.25111873 ©.06044002]]
rotate
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Conclusion

Achieved the objective of detecting and predicting affordance of the

object and interaction heatmap between user and object.

- Accuracy of the action (affordance) classifier increases with the
increase in the duration of training.

- The heatmap predictions are better with more number data samples

per class.

- The action classifier and heatmap predictor trained in a multi-task

35

manner, taking advantage of the joint learning.




Future Work

Accuracy of the heatmap predictions can be increased by more
number of data samples for each action class

- Custom loss function for better training

- Different hyper-parameters (learning rate)

Different pre-trained models and weights

36




References

Fig 1 - M. Taylor, “Computer Vision with Convolutional Neural Networks”,
https://medium.com/swlh/computer-vision-with-convolutional-neural-networks22f0636
Ocac9#:~text=Most%20computer%?20vision%20algorithms%20use,and%20edges
%2C%20from%20spatial%20data.

Fig 2 - M. Venkatachalam, “Recurrent Neural Network”,
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

Fig 3 - J. Long, E. Shelhamer and T. Darrell, “Fully Convolutional Networks for Semantic
Segmentation”, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 3431-3440

Fig 4 - K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel and Y.
Bengio, “Show, Attend and Tell: Neural Image Caption Generation with Visual

Attention”, in Proceedings of the 32nd International Conference on Machine Learning,

2015. 37



https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

Thankyou!
Any Questions?




Additional Experiment

50 100 150 200 250

Validation Loss - Together
x-axis: epoch, y-axis: loss

300

21 1

20 4

19 -

18 1

s [ 8

16 1

15 1

T

100 150 200 250

Validation Loss - Individual
x-axis: epoch, y-axis: loss

300

39




Additional Experiment

- Run the model on seven classes :
- Hold with 180 videos
- Touch with 200 videos
- Rotate with 201 videos
- Push with 190 videos
- Pull with 170 videos
- Pick up with 180 videos
- Put Down with 195 videos
- Iterations: 200 epochs
- Batchsize: 12
Input frame and image size: 128 by 128
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Results - Loss
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Results - Prediction

print(prediction[@])
ind = np.argmax(prediction[@], axis=1)
print(action_labels[ind[©]])

Ground Truth: Pick up

[©.15427716 ©.1333073 ©.18406256 ©.1200726 ©.08894752 ©.18849538
0.13083749]
pick_up

Statistics of the Experiment:

Classification Accuracy: 33.7 %
KL Divergence Loss: 7.07
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