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ABSTRACT 

 

We describe our implementation of AIs for the Chinese game Dou Di Zhu. Dou Di Zhu 

is a three-player game played with a standard 52 card deck together with two jokers. One 

player acts as a landlord and has the advantage of receiving three extra cards, the other 

two players play as peasants. We designed and implemented a Deep Q-learning Neural 

Network (DQN) agent to play the Dou Di Zhu. At the same time, we also designed and 

made a pure Q-learning based agent as well as a Zhou rule-based agent to compare with 

our main agent. We show the DQN model has a 10% higher win rate than the Q-learning 

model and Zhou rule-based model when playing as the landlord, and a 5% higher win 

rate than the other models when playing as a peasant. 
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CHAPTER 1 

INTRODUCTION 

AI has provided a variety of possible applications and has been widely entered into 

people's lives, learning and work, even people do not realize how many times they use it 

every day. Many people's lives are closely connected with Siri and Cortana. Just a few 

years before, AlphaGo successfully defeated human world champion Li Shishi in the Go 

game. As people know that Go is the most complex board game in the world, and its 

complexity was proved to be PSPACE-hard by Robertson and Munro in 1978 [12]. 

Although Go is the most complex board game, this game is fair for the players. The card 

games are different, and most cards game refers to the gambling. Playing cards is a 

famous pastime that people from all corners of the world enjoy, but how did it all get 

started? The first playing cards appeared in the 9th century during Tang Dynasty China 

[1]. The first reference to the card game in world history dates no later than the 9th century, 

when the Collection of Miscellanea at Duyang, written by Tang Dynasty writer Su E, 

described Princess Tongchang (daughter of Emperor Yizong of Tang) playing the “leaf 

game” with members of the Wei clan (the family of the princess' husband) in 868 [2][3]. 

Playing cards first appeared in Europe in the last quarter of the 14th century [4].  
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Nowadays, Dou Di Zhu is a famous card game in China. In the past, it was just a 

provincial game in China, originating in the Huangshan District and Anhui. However, just 

a few years ago, there were almost 1 million concurrent Dou Di Zhu players on 

the Tencent QQ game platform alone [5]. Except for Mahjong, the Chinese favorite card 

game is Dou Di Zhu. 

 

In China, many people like playing Dou Di Zhu online, but not many researches focus 

on AI playing Dou Di Zhu. It does not like a board game: Go. Few research papers focus 

on the AI for playing Dou Di Zhu, like the Rule-Based, Decision Tree, and Q-Learning 

algorithm. Renzhi Wu, Shuai Liu, Shuqin Li, and Meng Ding [9] designed a Rule-Based 

model for playing Dou Di Zhu, and their model set many different rules to simulate the 

human behaviors for playing Dou Di Zhu. Their rule-based model can be easy to beat two 

Standard AIs (Pos. West/A and East/C) in Dou Di Zhu. Zhennan Yan, Xiang Yu, Tinglin 

Liu, and Xiaoye Han [10] designed a Decision Tree model. This model is similar to the 

rule-based model, by picking the best action beyond the previous actions, their model has 

more than 50% winning rate VS human beings. 

 

In this project, we designed a Deep Q-learning Neural Network (DQN) for playing 

Dou Di Zhu. At the same time, we also compared the DQN model with the Q-learning 
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model and the Zhou rule-based model in the same environment to prove that the DQN 

model works better on Dou Di Zhu than the Q-learning model or rule-based model.  

 

The report is organized in five chapters. The first chapter briefly introduces the main 

problems to be studied and related work in this project. The second chapter discusses the 

background information need to understand and related information need to know. The 

third chapter covers all the details of the design and implantation in the project. The fourth 

chapter talks about multiple experiments and tests of the project. Finally, the last chapter 

concludes the project results and the future works we can do. 
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CHAPTER 2 

BACKGROUND 

    In this project, our purpose is to design a DQN model for playing the Dou Di Zhu. We 

need to know the game rules of the Dou Di Zhu. At the same time, in order to better 

understand DQN, we need first to understand what is Q-learning algorithm and Neural 

Network. 

2.1 What is Dou Di Zhu? 

Dou Di Zhu is a three players card game with a 54-card deck. There are two sides: one 

player will be the landlord, and two other players will be the peasants. The peasants are 

allies, and they need to compete with the landlord. During the game, some information on 

both sides is open to each player, like: the three landlord cards will show to every player; 

every player knows who the landlord is; and standard game includes dealing, biding, and 

playing.  

 

2.1.1 Dealing 

At the beginning of a game, 17 cards are dealt to each of the three players. The three 

remaining cards are given to the landlord after the landlord is selected. 
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2.1.2 Bidding Rule 

After 51 cards have been dealt, players bid to become the landlord (in some variations 

of Dou Di Zhu, the landlord is selected by rolling dice). The dealer first says whether or 

not they want to become the landlord. If not, the person to his right can choose whether 

or not they are the landlord. Finally, if both pass, then the remaining player becomes the 

landlord. Suppose that the player who has the priority to be the landlord renounces the 

right to be a landlord, and that either of the other two players is eligible to become a new 

landlord. As for who may become the new landlord, it depends on the three players' 

standard default rules, such as, to decide by re-rolling the dice, or to decide by other rules, 

and so on. If all three players give up their eligibility to become a landlord, they can 

decide to reissue the cards for the next round of the game. Once a landlord, the player is 

entitled to the remaining three landlord cards, and should play card first at each game. The 

other two players become peasants and allies. As the game continues, the cooperation 

and competition between the three players are constantly changing, and their gains and 

losses are changing based on when someone decides to become a landlord.  

 

2.1.3 Playing Order 

In Dou Di Zhu, the landlord will play cards first, and then the two peasants will play 

their cards by order. 
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For example, there are A, B, and C three players, and assume A is the landlord. The 

play order is as follows: 

A → B → C   →   A → B → C   →   A → B → C   → …… 

or  

A → C → B   →   A → C → B   →   A → C → B   → …… 

Until a player finishes playing all his hands. This game round is over, and the winner 

will be the player and his teammate (the landlord does not have a teammate). For example, 

if B or C (peasant) is the first player to play all hand cards, both B and C win this round of 

the game. If A is the first player to be the landlord and finishes playing cards first, only A 

win this round of the game. 

 

2.1.4 Playing Cards Rule 

As players, how to play the card at themselves turn? In Dou Di Zhu, there are many 

different card combination: (shown in Table 2-1) 

Table 2-1 The description of suit patterns 

Card combination Description 

Rocket Same as the Joker Bomb, both jokers (Red and 

Black), is the highest Bomb. 

Bomb Four cards with the same points. (e.g. AAAA) 

Single One single card. (e.g. A) 
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Pair Two cards with the same points. (e.g. AA) 

Triplet Three cards with the same points. (e.g. AAA) 

Triplet with an 

attached card/pair 

Triplet with an attached card/pair. (e.g. AAA+B 

or AAA+BB) 

Single Sequence 

 

Five of more Singles in sequence excluding two 

and Jokers. (E.g. ABCDE or ABCDE...) 

Double Sequence 

 

Three of more pairs in sequence, excluding two 

and Jokers. (E.g. AABBCC or AABBCC...) 

Pass Choose not to play a card this turn. It is also 

called as a trivial pattern. 

 

Players should follow the rules to play the different card combination: 

1) The single card combination is ranked by:  

Red Joker, Black Joker, 2, A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3 

2) Rocket is the highest rank card. 

3) Bomb is ranked lower than Rocket, but higher than any other card combination. If 

you want to compare the rankings of two bombs here, you should rank based on the 

combination of single cards. 

4) Except for Rocket and Bomb, comparison can only be performed within the same 

card combination based on the single card combination rank.  
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At the beginning, the landlord should play cards first, and he could play any 

combination of cards he likes. The next player should play the same combination of cards, 

and his card combination rank is higher than the landlord’s card combination rank or use 

Rocket or Bomb to beat it. 

 

Assume that just now, the last played cards dealt were Pair. The current player needs to 

play Pair cards (higher rank than last played cards of a Pair), or he also can use Rocket or 

Bomb to beat it. If the last played cards’ owner is the same player as the current player, the 

current player can play any kind of card combination he likes to continue the game. 

 

2.2 What is Q-Learning Algorithm?  

Q-learning is a model-free reinforcement learning algorithm to learn a policy telling an 

agent what action should be taken under what situations [6]. Q-learning learning is good at 

training the model on playing various games. People like to use the Q-learning algorithm 

to play video games, card games, or board games. 

 

2.2.1 Model-Free Learning Algorithm 
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  The term, Model-Free, means that the Q-learning algorithm is a kind of model, 

regardless of the environment, without making any modification, it can handle the 

rewards and transitions. 

 

2.2.2 Reinforcement Learning Algorithm 

The term, Reinforcement, means that the Q-learning algorithm model differs from the 

supervised learning model in not needing labeled input/output pairs to be presented, and in 

not needing sub-optimal actions to be explicitly corrected. Instead, the focus is on finding a 

balance between exploration (of uncharted territory) and exploitation (of current 

knowledge) [8]. Reinforcement learning usually includes the two entities: agent and 

environment. The interaction between the two entities is as follow: 

 

    

 

 

 

 

 

 

 

 

Figure 2-1 The interaction between Agent and Environment. 
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    Figure 2-1 uses the relation graph to show us the interaction between the agent and the 

environment. An agent takes actions in an environment, which is interpreted into a reward 

and a representation of the state, which are fed back into the agent. The problems 

applicable to reinforcement learning usually have the following characteristics: 

1) Different actions cause different rewards 

2) Reward is delayed 

3) The reward for an action is based on the current state 

 

2.2.3 Q-Learning 

    Q-learning is one kind of reinforcement learning algorithm. The kernel of the 

Q-learning algorithm is Q-Table. The rows and columns of Q-Table represent the values of 

state and action, respectively. The value of Q-table Q (s, a) measures the current state s is 

good or bad to take action a. Figure 2-2 shows us the interaction between the state, action, 

and Q-Table to get Q-value (reward). 

 

 

 

 

 

Figure 2-2 The interaction between the state, action, and Q-value 

 

state 

action 
Q-Table Q-value 
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Let us probe into more detail about the Q-Table. At the beginning, the Q-Table is 

empty. If people hope to have a better Q-Table, they need to learn every value into the 

Q-Table to satisfy all situations in the environment.  

 

Figure 2-3 shows us how to use the Q-learning algorithm to update the last Q-Table 

(good Q-Table).  

 

Initialize Q table

Choose an action

Perform action

Measure reward

Update Q
At the end of the training

Good Q* Table
 

Figure 2-3. Q-learning Algorithm flow 

 

First, we need to initialize an empty Q-table with all Q-value(reward) is 0. Then choose 

an action in the current state based on the current Q-value (choose the best reward action) 
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in the Q-Table. Furthermore, take the action and figure out the new state and new reward. 

Then through new rewards to update the Q-Table. The Q-learning pseudocode is shown in 

Table 2-2.  

 

Table 2-2 Q-learning pseudocode 

 

 

 

2.3 What are Neural Networks? 

A neural network is an interconnected assembly of simple processing elements, units, 

or nodes, is a computing system inspired by the biological neural network that constitutes 

the brain of animals [7]. The processing ability of the network is stored in the interunit 

connection strengths, or weights, obtained by the process of adaptation to, or learning 

from, a set of training patterns. 

 

1)  Initialize Q-values 𝑄(𝑠, 𝑎)  arbitrarily for all state-action pairs. 

2)  For life or until learning is stopped...  

3)  Choose an action (a) and in the current world state (s) based on current Q-value 

estimates 𝑄(𝑠, · ). 

4)  Take the action (a) and observe the outcome state 𝑠′  and reward (r) 

5)  Update 𝑄 𝑠, 𝑎 ： = 𝑄 𝑠, 𝑎 + 	α	[	r +	𝑚𝑎𝑥
0′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]  
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2.3.1 Perceptron 

Historically, scientists have always wanted to simulate the human brain and create 

machines that can think. Why can people think? Scientists discovered that the reason is 

based on the human neural network. Figure 2-4 shows us the human brain’s neuron. 

 

Figure 2-4 The human brain’s neuron 

 

 

External stimuli are converted into electrical signals and transfer to the human’ 

neurons. Numerous neurons constitute the nerve center. The nerve center synthesizes 

various signals to make judgments. At last, the human body responds to external stimuli 
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based on instructions from the nerve center. Since the basis of thinking is neurons, if 

“artificial neurons” can be formed, artificial neural networks can be formed to simulate 

thinking. In the 1960s, the earliest “artificial neuron” model, called the “perceptron”, was 

still used today.  

 

In Figure 2-5, the circle represents a basic perceptron. It accepts multiple inputs (x1, x2, 

x3…), and one output. Just like human’ neurons feeling the changes of various external 

environments and finally generating electrical signals. 

 

∑ 

x1

xi

xn

w1j

wij

wnj

Outputj

 
Figure 2-5 Basic perceptron 
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2.3.2 Weights and Thresholds 

At most times, we have multiple inputs to represent multiple influencing factors. 

Moreover, some factors are decisive, and others are secondary factors. Therefore, weights 

can be assigned to these factors to represent their importance levels. 

With different situations, we input different factors. Based on their weight, we can the 

different temp results. At this moment, we need a threshold to judge the temp result. If the 

temp result is greater than the threshold, the perceptron outputs 1; otherwise, it outputs 0.  

 

output = 	
0 if		 𝑤;𝑥;; 	≤ threshold
1 if		 𝑤;𝑥; 	>; 	threshold		       (2-1) 

 

Formula 2-1 Weight and Threshold 

 

In Formula 2-1, x is the input factor, w is the weight.  

If we can make some modifications base on math, and change it into Formula 2-2. 

 

output	= 	0
	1   			 if 	w · x		+	b	≤	0

 			 if 	w	·	x		+	b	>	0 																																			(2-2) 

 

Formula 2-2 Mathematical Expression of Perceptron  

 

In Formula 2-2, x is the input factor, w is the weight, and b is the threshold. 
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When we use neural networks, we always need to build a complex network containing 

many neurons. Figure 2-6 shows us an example of Artificial Neural Networks (ANN). 

There are three input factors for the input layer, and there are two hidden layers, and each 

hidden layer has four perceptron and only one output in the output layer.  

Output LayerHidden Layer 2Hidden Layer 1Input Layer

 
Figure 2-6 Artificial Neural Network 

 

In the neural networks, the most difficult place is to determine the weight w and 

threshold b. If we hope to find the best weight w and threshold b, we could use one way: 

minor changes in w (or b) are recorded as Δw (or Δb), and then observe the output changes, 

as Figure 2-7 show us. 
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output + ∆output

w + ∆w
Small change in any weight (or bias) 
causes a small change in the output

 
 

Figure 2-7 Change in weight or bias 

 

 

2.3.4 Activation Function 

As mentioned before, the output only gives you 0 or 1 to tell you it right or wrong. It 

cannot show us the output influence by changing in weight or bias. At this time, we need to 

use the Activation function, so that the output will be a continuity function. 

 

Assume z = wx + b, we can image in a single neuron: 𝑆 = 	𝑥E𝑤E + 𝑥F𝑤F +⋯⋯+

𝑥H𝑤H + 𝑏  

if we use the original function, the output will look like in Figure 2-8. 
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1.0

S
0

step(S)

 
Figure 2-8 Step function 

 

If the activation function we use is the Sigmoid, the Tanh, or the Relu. Like: Figure 2-9 (a), 

Figure 2-9 (b), or 2-10 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑆 = 	
1

1 + 𝑒OP
 

 

0.5

1.0

Sigmoid(S)

S0
 

Figure 2-9 (a) Sigmoid function curve 
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𝑇𝑎𝑛ℎ 𝑆 = 	
2

1 + 𝑒OFP
− 1 

 

1.0

Tanh(S)

-1.0

S
0

 

Figure 2-9 (b) Tanh function curve 

 

 

 

 

𝑅𝑒𝑙𝑢 𝑆 = 	𝑚𝑎𝑥(0, 𝑆) 

 

Relu(S)

S
0

 
Figure 2-10 Relu function curve 
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2.4 What is Deep Q-learning (DQN)? 

We already know that Q-learning has a Q-Table to save the different states, actions, 

and Q-values. However, there are many problems that are too complicated, and the state 

can be more than the stars in the sky (such as playing Go). If you use a Q-Table to store 

them, your computer might not have more memory, and it also needs a massive time for 

searching in the Q-Table.  

1) We can use the state and action as the input of the neural network, and then get 

the Q-value of the action after the neural network analysis, so that we do not have to 

record the Q-value in the Q-Table, but directly use the neural network to generate 

the Q-value.  

2)We can also input only the state value, output all the action values, and then 

directly select the action with the maximum value as the next action according to the 

principle of Q-learning. 

 

Based on the second way, shown in Figure 2-10, we need the correct Q-values of (aE, 

aF). We will use the Q-value in Q-learning to replace it. Similarly, we also need a 

Q-Evaluation to update the neural network. So the parameters of the neural network are 

The old NN parameter plus the learning rate alpha (α) multiplied by the gap between 

Q-Target and Q-Evaluation. 
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Figure 2-10 Update NN by Q-target and Q-evaluation 

 

 

 

2.4.1 Experience replay  

There is one crucial part of DQN, Experience replay. Q-learning is an off-policy 

offline learning method, and it can learn the experience of what is going through, it also 

can learn what has been experienced in the past, and even learn the experience of others. 

All experiences <s, a, r, s'> are stored in a retrospective memory pool. When the model is 

training, it randomly selects some previous experiences to learn. The random selection 

method disrupts the correlation between experiences and makes the neural network 

update more efficient. 

 

a1 value a2 value 

NN 

s 

Q(s’) Target: 

target 

Q(s) Evaluate: 

R + g* maxQ(s’) 

Q(s) 

new NN = old NN + a(QTarget - QEvaluate) 
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2.4.2 Exploration and experience 

At first, the Q-Table and Q-network are randomly initialized, and the following series 

of predictions are also random. If we select the action corresponding to the highest 

Q-value, then this action is naturally random. Now, the agent is doing “exploration”. As 

the Q function converges, the returned Q-value will tend to be consistent, indicating that 

it has figured out the routine. The number of choices for exploration will also become 

less and less, we can say that exploration is also part of the Q-learning algorithm, but this 

exploration is “greedy”, it will satisfy and find the first feasible routine 

 

For the above problem, a simple and effective solution is an ε-greedy exploration, 

which is to use probability ε to choose whether to continue exploration or make decisions 

directly based on experience. Table 2-3 is the DQN pseudocode.  

In line 11, DQN uses the experience reply, randomly selects the sample from the 

experience pool. 

In line 12, DQN calculates the Q-Target value of Target Network. 

In line 13, DQN perform the gradient descent to update the θ = θ + Δθ 

In line 14, DQN upgrade the Target Network value every C steps. 
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Table 2-3 DQN pseudocode 

Algorithm Deep Q-learning with experience replay 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 𝜃 

Initialize target action-value function 𝑄 with weights 𝜃O = 	𝜃   

for episode 1, M do Initialize sequence 𝑠E = 	 𝑥E  and preprocessed sequence 𝛷E = 	𝛷(𝑠E) 

    for t =1, T do 

        With probability 𝜀 select a random action 𝑎\ 

        Otherwise select 𝑎\ = argmax0 𝑄 𝛷 𝑠\ , 𝑎; 𝜃  

        Execute action 𝑎\ in the emulator and observe reward 𝑟\ and image 𝑥\bE 

 Set 𝑠\bE = 	 𝑠\, 𝑎\, 𝑥\bE and preprocess 𝛷\bE = 	𝛷(𝑠\bE)  

 Store experience (𝛷\, 𝑎\, 𝑟\, 𝛷\bE) in D 

 Sample random minibatch of experience (𝛷;, 𝑎;, 𝑟;, 𝛷;bE) from D 

 Set 𝑦; = 	
𝑟;																																																		

𝑟; + 𝛾𝑚𝑎𝑥0/	𝑄(𝛷;bE, 𝑎′; 𝜃O)
				𝑖𝑓	𝑒𝑝𝑖𝑠𝑜𝑑𝑒	𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑎𝑡𝑒𝑠	𝑎𝑡	𝑠𝑡𝑒𝑝	𝑗 + 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																							

	 

 Perform a gradient descent step on (𝑦; − 𝑄(𝛷;, 𝑎;; 	𝜃))F with respect to the weights 𝜃 

 Every C steps reset 𝑄 = 𝑄 

    end for 

end for 
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CHAPTER 3 

DESIGN AND IMPLEMENTATION 

In this section, the paper discusses the tools and environment used for the project. 

After that, the paper elaborates more details on the DQN model, which is used to train the 

agent that can play the card game Dou Di Zhu.  

 

3.1 Tools and Environments 

The thesis uses Python as the programming language for the project. The reason is that 

Python is a	flexible language as the various artificial intelligence tools API. When using 

Python, the thesis can more easily use the Tensorflow, Scikit-learn, or Keras as the 

project’s intelligence tools. By using Python, the thesis can focus on how to construct an 

architecture of the models rather than other programming languages. The version of 

Python that the thesis used is 3.6. The thesis also uses the Tensorflow as the model 

backend. The Tensorflow version is 2.2. The thesis uses the sublime text and Python 

IDEL as the editor. 

 

The code is executed on two machines, one MacBook Pro and another desktop PC. The 

MacBook pro system is MacOS Mojave 10.14 with 2.7 GHz Intel Core i5 CPU, 8 GB 
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1867 MHz DDR3 memory, and graphic is Intel Iris Graphics 6100 1536 MB. The 

desktop PC system is Windows 10, with 4.2GHz Intel Core I7-7700K CPU, 25GM 

memory, and NVIDIA GeForce GTX 1070-Ti graphic. Because this project is not based 

on the images, so the work does not need to train my model on the cloud. 

 

3.2 Dataset 

The project trained a model to play the Dou Di Zhu card game. Based on these game 

rules, we know that players always use one deck with 54 cards for playing the game. The 

54 cards will not change. At each game round, the players’ roles (landlord and peasants) 

are different, the players’ hand cards are different, and every turn for the players, their 

playing cards are also different. For training the model, the work needs to use the players 

played card at each turn as the input data.  

 

 

 

 

  Figure 3-1 Card suits. 

 

One deck includes 54 cards, and four suits for each number: Hearts, Tiles, Clovers and 

Pikes, the card suits are showing in Figure 3-1. The work gives a number order for each 

card in the deck: 0, 1, 2, 3, …,50, 51, 52, 53. In this order: 0, 1, 2, 3 corresponds to a card: 
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3-Hearts, 3-Tiles, 3-Clovers, and 3-Pikes. 4, 5, 6, 7 corresponds to a card: 4-Hearts, 4-Tiles, 

4-Clovers, and 4-Pikes, and so on. The 52 and 53 are Black Joker and Red Joker. In Dou Di 

Zhu, we do not need to check the card suits, only focus on the card number. The work can 

use the formula:  

  card = n // 4 

n is the card order number, to calculate the real card number from 0 to 14. 0 is 3, 1 is 4, …, 

9 is J, 10 is Q, …, 13 is Black Jack, 14 is Red Jack. Based on this way, the work succeeds 

in transferring cards into numbers that can be used in the code and model.  

 

3.3. Flowchart of Technique 

For building the machine learning model, we have designed the way to transfer card 

into the data could be used for the model. Figure 3-2 shows us how, before training the 

model, the flowchart of the method we need to do. 

As Figure 3-2 shows us, after dealing the cards for players and bid the landlord, the 

current player's hand card needs to be decomposed and find out all possible card 

combinations based on current player hand cards and previously played cards. Then put 

these all possible card combinations as input data to feed the model for training. If we 

decide to train a Q-learning model, we can feed the data for the Q-learning algorithm, if we 
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decide to train a DQN model, we also can feed the data for the DQN model, and even if we 

can use random selection method. Then output the cards that current players need to play. 

 

Figure 3-2 Game Flow 
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3.4 Card Decomposition 

Before we feed the data for the training model, we need to find all possible card 

combinations that could be played. So, card decomposition is an essential part of this 

project.  

 

Let us input the [current player, current player hand cards, previously played cards 

owner, previously played cards] as the parameters for the card decomposition function. 

There one evidence need to check before: 

previously played cards owner ≠ current player  

or previously played cards owner ≠ None 

 

We need to follow the Dou Di Zhu rules base on previously played cards to decompose 

the hand cards if the above condition happened. Otherwise, we should decompose all 

possible card combinations of current player hand cards. 

 

We prepared the function to check every card suit: single suit, pair suit, triple suit, 

bomb suit, rocket suit, and so on. Then use the get_total_moves function to find all 

possible card combinations and save them in the corresponding card type dictionary 



29 
 

separately. Then based on the previously played cards type, find out all card combinations 

that could play (beat the previously played cards).  

 

 

3.5 Q-Learning Architecture 

Before designing the DQN model, we designed a Q-learning model for playing Dou Di 

Zhu. This Q-learning is very simple to understand. We utilized the Q-learning strategy that 

each player has an independent Q-Table to store the different playing action and 

corresponded reward. 

 

In each game round, the players played cards should keep saving in a temporary list 

separately for each turn. When the round is over, these card combinations will transfer into 

Q-Table, and based on the win or loss of this game round, we plus one score or minus one 

score for these card combinations as the reward. 

 

Figure 3-3 shows us how to update the Q-Table for one player. At the beginning of 

each game round, the “Historical card list” (list for saving the current player played card 

combinations in this round) is initialized. Whenever the player's turn, the player played 

cards would be saved in the “Historical card list”. During the game, we used a probabilistic 
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method for the Q-learning greedy, the probability based on the known and unknown card 

combinations in Q-Table. At the end of the whole game round, we can begin to update the 

Q-Table through “Historical card list” and win/lose.  

 

 

Figure 3-3 Update the Q-learning strategy 
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3.6 DQN Architecture 

 

 

 

 

 

 

 

 

 

Figure 3-4 DQN model architecture 

 

As shown in Figure 3-4, the DQN model is created by two same architecture networks: 

Target Network and Evaluation Network.  

 

 Our DQN model uses the Tensorflow to build the network. Before the data is inputted 

into the DQN model, this model needs to be set the parameters to build the network, and 

then the model could be trained. Because the model is prepared to train for Dou Di Zhu, 

and this game has many different card combinations, and an agent can play any 

combination in the game; So we set the model has two hidden layers as shows in the Figure 

3-5. The input node numbers are the numbers of all card combinations. For the hidden 

layer 1, it has 256 nodes (neurons) with Relu activation function. For the hidden layer 2, 
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we also set 256 nodes (neurons) with Relu activation function. For the output layer, there 

are the same numbers of inputs. These layers are fully connected. For the parameters 

weight and bias, we use the tf.random_normal_initializer(0., 0.3) to initialize the weight 

value, and tf.constant_initializer(0.1) to initialize the bias value. 

 
Figure 3-5 The network of Target and Evaluation 

     

Both Target Network and Evaluation Network have the same setting. The different 

things between the two networks are: in the Target Network, we do not need to calculate 
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the loss or consider about train; in the Evaluation Network, the loss need the loss function 

to calculate (show in Formula 3-1). In this project, the initialized model has a vast number 

of input features. Nevertheless, when we train the model for playing the game, the model 

only feeds the all possible card combinations which could be played under each turn in the 

game round.  

 

Loss = 	E (𝑞\0tuv\ − 𝑞vw0xy0\nzH)F = 𝐸[(𝑅 + 𝛾𝑚𝑎𝑥0𝑄 𝑠′, 	𝑎， −𝑚𝑎𝑥0𝑄 𝑠, 𝑎 )F] 

Formula 3-1. the loss function of DQN 

 

Except for the network setting, we also set the parameters for the memory pool. The 

size of the memory pool is called memory size, and the size value is 500, it means memory 

pool could save 500 [action, state, reward, state’] value inside. We set batch_size = 32, so 

DQN would take 32 values from the memory pool each time when it needs to do the 

experience replay. 

 

At last, we set the 100,000 times of training epoch. The first 2500 times for memory 

pool to save the record. After 2500 epoch, the DQN begins to learn and update. Every 300 

epochs, in the DQN model, the Evaluation Network will replace the parameters of the 

Target Networks. 
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During the training, the model uses the “e-greedy” strategy to store the sample in 

memory pool and save them as [action, state, reward, state’]. After a certain number of 

epochs, the DQN model begins to learn, when the model takes some “experience” from the 

memory pool, the Evaluation Network uses state from the “experience ([action, state, 

reward, state’])”, and the Target Network uses state’ from the “experience”.  

 

The reward is essential to influence the agent to select the action. In most cases, the agent 

has many different card combinations to select. So, we set different reward values for 

different card combinations (actions), like the model gets a minus reward if the agent can 

play a card or cards but does not play any card. The other reward rules are shown below: 

1)The model gets a minus reward when it selects Bomb or Rocket if it also has other 

selection of card combinations. 

2)The model prefers Single Sequence cards, more rewards with the longer sequence. 

3)The model prefers Double Sequence cards, more rewards with the longer 

sequence. 

4)The model prefers Triple with Single or Pair than Triple solo to get more rewards. 

5)Win the game, and the model gets rewards; conversely, the model gets minus 

rewards.  
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CHAPTER 4 

EXPERIMENT RESULTS 

In this section, the results of the training models are discussed. We also compared the 

DQN model with the Q-learning model and the Zhou rule-based model we implement 

before.  

 

4.1 Test 

DQN VS Random    

In this test, we compare with the DQN model with the random selection model. 

Figure 4-1 Result of DQN VS Random 1 
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After 100,000 times training and 10,000 times test, if DQN model trains the landlord 

agent, and the other two peasant agents use the random selection method, Figure 4-1 shows 

us the result: that DQN model has a 71.8% winning rate; peasant 1 has 13.4% winning rate, 

and peasant 2 has 14.7% winning rate; if DQN model trains the two peasant agents, and the 

landlord agent use the random selection method, Figure 4-2 shows us the result: that DQN 

model has 43.8% and 41.3% winning rate; the random selection landlord only has 14.9% 

winning rate. 

 

Figure 4-2 Result of DQN vs Random 2 
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DQN VS Q-learning 

In this test, we compare with the DQN model with the Q-learning model. 

                  Figure 4-3 Result of DQN VS Q-learning 1 
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Figure 4-4 Result of DQN vs Q-learning 2 
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Q-learning VS Random 

In this test, we compare the Q-learning model with the random selection method. 

Figure 4-5 result of Q-learning VS Random 1 
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Figure 4-6 result of Q-learning VS Random 2 
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Rule-based model VS Random 

This Zhou rule-based model is made by Zhouzhou [11]. We just re-implement the 

rule-based algorithm from his project. 

Figure 4-7 result of rule-based VS Random 
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(random) only has 19.1% winning rate, and two peasants (rule-based) have 39.2% and 41.7% 

winning rate. 

                    Figure 4-8 result of Rule-based VS Random 
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DQN VS Rule-based model 

Except compare the Zhou rule-based model versus the random method, we also 

compare the DQN model versus the Zhou rule-based model. 

Figure 4-9 result of DQN VS Rule-based 
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                    Figure 4-10 result of DQN VS Rule-based 
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DQN model VS Human 

The last experience is about the DQN model versus the human player. First, the 

human player play as the landlord, and the two peasant agents use the trained DQN 

peasant agent models from the DQN VS rule-based model experience, which shows above. 

After ten games, the result is that: the human landlord get five game wins, and the two 

DQN peasant agents also get five game wins totally, like the Figure 4-11 shows us. The 

peasant, right side of the landlord, get two game wins, the peasant, left side of the landlord, 

gets three game wins. 

Figure 4-11 result of Human VS DQN 
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After ten game rounds, the result is that: the DQN landlord gets three game wins, and the 

two human peasants get seven game wins totally, like the Figure 4-12 shows us. The 

human peasant, right side of the landlord, gets three game wins, and the human peasant, 

left side of the landlord, gets four game wins. 

Figure 4-12 result of DQN VS Human 
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4.2 Observation 

    To compare the differences between the three models directly, we compare the results 

of the DQN model VS the random, the Q-learning model VS the random, and the Zhou 

rule-based model VS the random based on the previous test result. 

Figure 4-9 shows us directly that three different models’ winning rate on playing with 

the random selection methods. DQN has a 71.80% winning rate, Q-learning has a 53.68% 

winning rate, the Zhou rule-based model has a 62.24% winning rate. The DQN model has 

more than a 10% higher winning rate than the other two models.  

Figure 4-9 Three model comparison 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In this project, we developed a DQN model for playing the Dou Di Zhu card game. We 

also made some comparisons between the DQN model, Q-learning model, and the Zhou 

rule-based model. Depends on the result, the DQN model is better than Q-learning and 

rule-based on playing Dou Di Zhu. In the same environment, we test the three models; 

each of them is set as the landlord agent and should play with random selection agents 

(peasants) in Dou Di Zhu. The result of the DQN model has the highest winning rate VS 

the random: 71.8%. The results of the Q-learning VS the random and the Zhou rule-based 

VS the random only have 60.24% and 55.79% winning rate.  

 

Of the three models, DQN performed best, followed by the Q-learning model and the 

Zhou rule-based model. Our last experiment was to compare DQN versus human players. 

We performed a total of 20 test games. For the first ten games, we had DQN play the 

landlord agent against human peasants. For the last ten games, we had a human landlord 

play against two DQN peasants. As can be seen from our tables, the DQN agent performed 

only slightly worse than a human player, but it can still have a good game interaction with 

human players. 
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One important aspect of Dou Di Zhu we have not implemented is the process of 

bidding to become the landlord. Dou Di Zhu is a luck-based game like Texas Hold’em. In 

Dou Di Zhu, after the players are dealt their hands, they must bid to be or not to be the 

landlord. The initial hand assignment together with this bidding are critical in determining 

whether a player wins or loses. As a possible future work, it would be nice to 

programmatically implement this landlord bidding process. It would also be nice to 

consider different variants of the DQN model, such as DDQN, Prioritized ReplayDQN, 

and Dueling DQN. 
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