# AI METHODS AND DOU DI ZHU

XUESONG LUO

#### AI ARTICLE OF DOU DI ZHU

- Airticle: "THE DESIGN AND IMPLEMENTATION OF A COMPUTER GAME ALGORITHM OF DODIZHU"
  - Author: Renzhi Wu, Shuai Liu, Shuqin Li, Meng Ding
  - Published 2017
- Airticle: "Combinational Q-Learning for Dou Di Zhu"
  - Author: Yang You, Liangwei Li, Baisong Guo, Weiming Wang, Cewu Lu
- Article: "FIGHT THE LANDLORD (DOU DI ZHU)"
  - Author: Zhennan Yan, Xiang Yu, Tinglin Liu, Xiaoye Han

## RULE BASE OF DOU DI ZHU

- THE DESIGN AND IMPLEMENTATION OF A COMPUTER GAME ALGORITHM OF DO DIZHU
- SPLITTING STRATEGIES
- BIDDING STRATEGIES
- PLAYING STRATEGIES

## SPLITTING STRATEGIES

Definition of Weights of Suit Patterns

| Suit Pattern                                               | Weight |
|------------------------------------------------------------|--------|
| Single                                                     | 1      |
| Pair                                                       | 2      |
| Triple                                                     | 3      |
| Single Sequence (Every card in addition then weight+1)     | 4      |
| Double Sequence (Every pair in addition then weight +2)    | 5      |
| Triple Sequence (Every triplet in addition then weight +3) | 6      |
| Bomb(Including Rocket)                                     | 7      |

## SPLITTING STRATEGIES

- 1. Define the weight of the suit patterns.
- 2. Isolate the independent patterns from the hand and then isolate the cards with the same points.
- 3. Isolate all the bombs, triplets and pairs, which form a set a = {bombs, triplets, pairs}
- 4. Select a set b and put the elements of a-b in the rest of cards.
- 5. Find the longest single sequence from the smallest point to the biggest from the rest of cards. The length of the single sequence should be equal or greater than 5.
- 6. Isolate all other cards left as singles.
- 7. Record the result of splitting in set si = {b, single sequence, single}, and calculate the weight and the hand of the result.
- 8. Repeat step 4 to step6 until all the elements in p(a) has been selected.



- Joker, 2 and A a are independent suit patterns. Then find out their same cards:{Joker, 222, AA}
- Next, isolate all the Bombs, Triplets and Pairs, that is A = {QQQ, 66, 44}.
- First, choose "QQQ" from A, so B = {QQQ}, and the result set will be {QQQ,45678910J,4,6}.
  We can get hands number and weight number.
- Then if B = {QQQ,66}, and the result set will be {QQQ,66,78910J,5,44}. We can get hands number and weight number.
- If  $B = \{QQQ,66\}...$
- So on.
- Compare each method, choose the highest weight and minimum hands number.

### BIDDING STRATEGIES

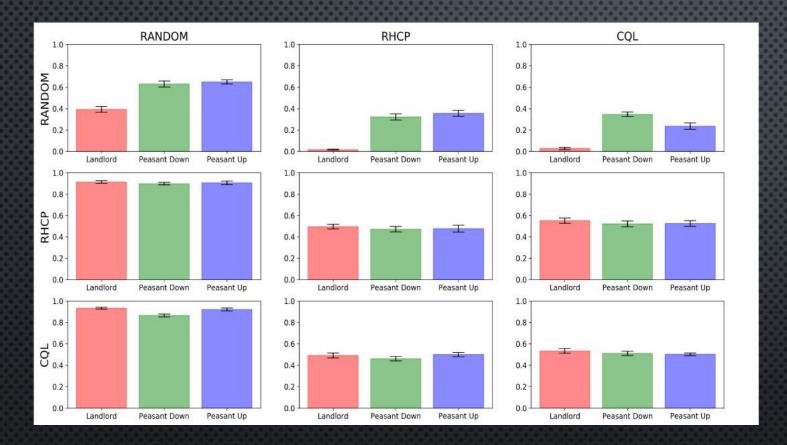
- Rockets, Bombs, Jokers and 2 can be seen as major suits.
- Rule:
  - Assume the weight of Rocket is 8, Red Joker is 4, Black
  - Joker is 3, and Single 2 is 2.
  - So if the total weight of these patterns is:
  - Equal or greater than 7, bid for 3 points;
  - Equal or greater than 5, bid for 2 points;
  - Equal or greater than 3, bid for 1 point;
  - Not bidding if less than 3.

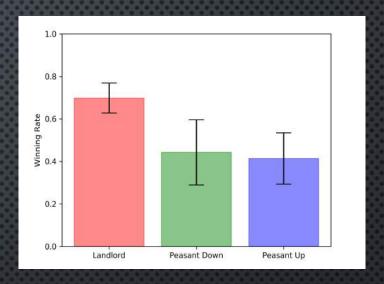
#### PLAYING STRATEGIES

- Base on the Rule Base:
  - Strategy of play
    - For Pair: check the amount of Triplets and Triplet Sequences, if Sum (Triplets, Triple Sequences) <= Pairs + Singles – 2, play Pair, otherwise pass this turn.
    - For Single: check the amount of Triplets and Triple Sequences, if Sum (Triplets, Triple Sequences) <= Pairs + Singles – 2, play Single, otherwise pass this turn
  - STRATEGY OF FOLLOW
    - CARD 2 COULD BE PLAYED AS SINGLES, PAIRS OR TRIPLETS.
    - Check if there's Pairs, max Pair of 4-Card-Double-Sequence, Triplets, Double Sequence, Triple Sequences, Bombs in the above sequence, then split for an appropriate Pair to follow. If there's not, pass.

## Q-LEARNING OF DOU DI ZHU

COMBINATIONAL Q-LEARNING FOR DOU DI ZHU


#### COMBINATIONAL Q-LEARNING


- It depend on the current handled card, to make the new strategy.
- Before each step to play the card, Al need to prepare the newest strategy depend on the right now handle cards. It is defined as 2 state: **c** and **f**.
- When in  $S_c$  (state c), agents choose the best decomposition, and then in  $S_f$  (state c), agents choose the best final move within previously selected decomposition. At each stage, a new set of actions need to be defined,  $A_c$  and  $A_f$  respectively.
- $A_c := \{A^{(1)}_f, A^{(2)}_f, \dots, A^{(D)}_f\}$   $A^{(i)}_f := \{C^1_{(i)}, C^2_{(i)}, \dots, C^k_{(i)}\}$
- D is the number of possible decompositions given current handheld cards and K is the number of card groups within each decomposition.

## THE TWO STATES

- 2 state:
- $S_c$  and  $S_f$
- In  $S_c$ , agents choose the best decomposition.
- In  $S_f$ , agents choose the best final move within previously selected decomposition.

## CONCLUSION





Winning rates of human players against our agents.

Winning rates of different models playing against each other.

## FIGHT THE LANDLORD (DOU DI ZHU)

- There are four different level AI agent.
  - Random Agent
  - Simple Agent
  - Advanced Agent
  - Predictive Agent

#### FOUR AGENTS

- Random Agent: believes the playing is stochastic process, plays valid cards randomly,
- doesn't consider cooperation, doesn't remember history, doesn't plan for future
- • Simple Agent: plans for future, plays the low-ranking valid card(s) first if possible
- Advanced Agent: analyzes different contexts, and plays conditionally according to
- decision tree and sometimes probabilities.
- Predictive Agent: remembers cards played and related context, predicts the possible
- remaining cards in other players' hands, plays card(s) as optimal as possible