
Long Short Term Memory (LSTM)



Recurrent Neural Network (RNN)

To understand RNNs, let’s use a simple perceptron network with one hidden 
layer.

Loops ensure a consistent flow of informa=on. A (chunk of neural network) 
produces an output ht based on the input Xt .

A — Neural Network
Xt — Input
ht — Output



Disadvantages of RNN
• RNNs have a major setback called vanishing gradient; that is, they have difficul=es in 

learning long-range dependencies (rela=onship between en==es that are several steps 
apart)

• In theory, RNNs are absolutely capable of handling such “long-term dependencies.” A 
human could carefully pick parameters for them to solve toy problems of this form. 
Sadly, in prac=ce, RNNs don’t seem to be able to learn them. The problem was explored 
in depth by Bengio, et al. (1994), who found some preTy fundamental reasons why it 
might be difficult.

Solu%on
• To solve this issue, a special kind of RNN called Long Short-Term Memory cell 

(LSTM) was developed.



Introduc@on to LSTM
• Long Short Term Memory networks – usually just called “LSTMs” – are a special 

kind of RNN, capable of learning long-term dependencies.

• LSTMs are explicitly designed to avoid the long-term dependency problem. 
Remembering informa=on for long periods of =me is prac=cally their default 
behavior, not something they struggle to learn!

• All recurrent neural networks have the form of a chain of repea=ng modules of 
neural network. In standard RNNs, this repea=ng module will have a very simple 
structure, such as a single tanh layer.

• LSTMs also have this chain like structure, but the repea=ng module has a 
different structure. Instead of having a single neural network layer, there are four, 
interac=ng in a very special way.



Ordinary RNN vs LSTM



LSTM Walkthrough

• The first step in our LSTM is to decide what informa=on we’re going to throw away from the cell 
state. This decision is made by a sigmoid layer called the “forget gate layer.”

• It looks at ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell 
state Ct−1. A 1 represents “completely keep this” while a 0 represents “completely get rid of this.”



LSTM Walkthrough(contd.)

• The next step is to decide what new informa=on we’re going to store in the cell state. This has 
two parts.

• First, a sigmoid layer called the “input gate layer” decides which values we’ll update.
• Next, a tanh layer creates a vector of new candidate values, Ct̂, that could be added to the state.



LSTM Walkthrough(contd.)

• It’s now =me to update the old cell state, Ct−1, into the new cell state Ct. The previous steps 
already decided what to do, we just need to actually do it.

• We mul=ply the old state by ft, forge`ng the things we decided to forget earlier. Then we 
add it∗Ct̂. This is the new candidate values, scaled by how much we decided to update each state 
value.



LSTM Walkthrough(contd.)
• Finally, we need to decide what we’re going to output. This output will be based on our cell state, 

but will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell 
state we’re going to output.

• Then, we put the cell state through tanh (to push the values to be between −1 and 1) and mul=ply 
it by the output of the sigmoid gate, so that we only output the parts we decided to.



Acknowledgement

• hTp://colah.github.io/posts/2015-08-Understanding-LSTMs/
• hTps://heartbeat.fritz.ai/a-beginners-guide-to-implemen=ng-long-

short-term-memory-networks-lstm-eb7a2ff09a27

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

