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Abstract 

The 2008 housing crisis was caused by faulty banking policies and the use of credit derivatives 

of mortgages for investment purposes. In this project, we look into datasets that are the markers 

to a typical housing crisis. Using those data sets we build three machine learning techniques 

which are, Linear regression, Hidden Markov Model, and Long Short-Term Memory.  After 

building the model we did a comparative study to show the prediction done by each model. The 

linear regression model did not predict a housing crisis, instead, it showed that house prices 

would be rising steadily and the R-squared score of the model is 0.76. The Hidden Markov 

Model predicted a fall in the house prices and the R-squared score for this model is 0.706. 

Lastly, the Long Short-Term Memory showed that the house price would fall briefly but would 

stabilize after that. Also, fall is not as sharp as what was predicted by the HMM model. The R-

squared scored for this model is 0.9, which is the highest among all other models. Although the 

R-squared score doesn’t say how accurate a model it definitely says how closely a model fits 

the data. From our model R-square score the model that best fits the data was LSTM. As the 

dataset used in all the models are the same therefore it is safe to say the prediction made by 

LSTM is better than the other ones. 

Index Terms — Subprime mortgage, credit derivatives, linear regression, hidden markov 

model, long short-term memory. 
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1. INTRODUCTION 
 

The United States of America has had many recessions in the past. The total number of 

recessions seen by the US is about 47, both major and minor. The 2008 recession was caused by 

faulty banking policies, mainly the sub-prime mortgage policy and selling the subprime mortgage 

securities in the market. Sub-prime mortgages are those mortgages that are given to people who 

do not qualify for prime mortgages. There can be many reasons for these viz. having low credit 

score, or, not being able to put a certain amount of down payment towards the house etc. This 

crisis caused a major ripple effect on the banks and the people. This crisis shut down many banks 

like Bear and Stearns and Lehmann Brothers. But it mostly affected people in the US, it drove 

many people homeless, jobless, and cashless for a long time. Crises like this can be avoided if we 

are aware of a bubble that would burst. Econometric and intelligent techniques can help us predict 

a bubble. Intelligent techniques especially those that analyze times series data can be used to 

predict the housing market crisis very accurately [1]. In this project we use econometric and 

intelligent techniques to predict the next housing crisis. Previous works that have been done in this 

area used Logistic regression and Back-propagation Neural Network (BPNN) [1][2]. Housing 

market prediction using Hidden Markov Model and Long Short-Term Memory has not been done 

yet, therefore in this project we would be using these techniques along with addition of Linear 

regression. 

The 2008 housing crisis devastated the American economy. But before a recession comes 

there are markers to show trends that all housing recessions follow. The factors that led us to the 

2008 recession [2]: 

1) Inflated housing prices, that created a housing bubble 
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2) Relaxed banking policies that led to the high borrowing rate 

3) Relaxed overall financial regulation i.e., how poorly the regulating bodies worked 

4) Policies developed by banks to give more subprime mortgages  

The mortgages were made more lucrative when the Federal Reserve Bank reduced the 

interest rates extremely low for short-term loans (ARM), along with easy availability of subprime 

mortgages. There were more and more people buying houses. As a result, the house prices started 

going up very quickly as there was a lot of demand for houses and the supply was not that high. 

Also, people thought that the housing market is the pillar for investment as the housing market had 

never crashed before. But everything changed in 2007-2009. The sub-prime loans were a huge risk 

the banks were taking and it all backfired when a lot of people started defaulting. The problem 

aggravated more when the banks started to take their houses and sell them in the already slow 

market. The house prices which were the highest a year ago, reached the rock-bottom.  There were 

more houses for sale than there were buyers to buy. In this project we will look into few elements 

that are related to housing market to predict for the next year. 

Now we discuss the organization of this report. In the next chapters we will look into the 

background of the financial institutions and how the change from the norm caused one of the 

biggest financial crises in the history of the US housing market. In Chapter 3 we will look in the 

algorithms that we have used to predict the housing market. Next in Chapter 4 we will look into 

the results from the machine learning models that we have built. Chapter 5 is the conclusion and 

future work. 
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2. BACKGROUND 
 

In order to understand the financial crisis and how the banks played a major role in that we 

will be looking into the background of those policies. In this section we will also see how machine 

learning models can be used to help us predict crises like that of 2008 in advance by using relevant 

datasets. 

The elements that were controlled by the banks in the US were the major elements that 

contributed to the financial recession of 2008. During this period the very thriving housing market 

was affected very badly which in turn affected the global economy. To understand how the banking 

system created havoc in the US, it is necessary to look at how the housing market was in the pre-

recession period. The housing market was doing well before the 2008 recession. People could get 

sub-prime mortgages without any substantial credit score so more people could now afford houses. 

Therefore, there was an initial boom in the housing market. Housing prices were rising, as the 

market was very competitive. There were more buyers than there was a supply of houses. People 

(investors) could also invest in the housing market even without buying a house through Mortgage-

Backed Securities (MBS). An MBS is a type of asset-based derivative security that derives its 

value from the underlying asset, the mortgages.  

In the old days, there was no concept of these securities that were tied to mortgages. Buying 

houses did not have too many layers under them. If people had money, they would buy a house all 

cash and if they did not then they would have to a get mortgage from a bank to buy their house. 

These banks or credit unions had very strict lending rules and it was almost impossible for people 

with low credit history to get mortgages. But as the risks were low there were low mortgages that 

were given out and also the interest that was earned by the banks was also very low. This was pre-

1970’s. 
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In the 1970s the dollar value inflated rapidly as the then President of the US declared that 

the US dollar would not be tied to the gold standards going forward. This policy led banks to lose 

all the assets that they had as they were not being able to match the interest that was paid by the 

money market. This resulted in losing the deposits they had to give out loans to people. So, the 

banks were not being able to make profits. To help the banks from this bad situation the Congress 

then passed an act that could give the banks the liberty to raise interest rates on mortgages and also 

to lower the quality of the mortgage to make short-term profits. 

During the early 2000s after the dot-com crisis, it was thought that the housing market was 

the sturdiest market as the housing prices increased throughout this crisis. Therefore, people started 

investing more money in the housing market. Investors who were not buying houses were investing 

in the housing market through MBS. The investors of MBS receive periodic payments just like 

other bonds. 

 

2.1   MORTGAGE BACKED SECURITY 
 

“Mortgage-backed securities (MBS) are debt obligations that represent claims to the cash 

flows from pools of mortgage loans, most commonly on residential property. Mortgage loans are 

purchased from banks, mortgage companies, and other originators and then assembled into pools 

by a governmental, quasi-governmental, or private entity. The entity then issues securities that 

represent claims on the principal and interest payments made by borrowers on the loans in the 

pool, a process known as securitization.” 

   -US Securities and Exchange Commission 

 
A bank first makes a mortgage and it then sells those mortgages to investment banks to 

make more money and that money is used to make more mortgages. The investment banks then 

bundle this pool of mortgages into securities. These securities are called mortgage-backed 
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securities. MBSs are investments that are backed by the mortgages. After making them into 

securities it is then sold to investors. The investors receive their regular payments when people 

buying mortgage loans pay towards their monthly mortgages.  

 

Fig 1: Pictorial description of Mortgage backed Securities 

 
2.2   CAUSES OF HOUSING CRISIS  
 

 
In the 2000s the MBS investments started getting sophisticated. Investment banks started 

slicing MBS’s into tranches. The banks were also becoming greedy and they started giving out 

low-quality mortgages to people with bad credit scores. As banks were giving out more sub-prime 

mortgages than prime mortgages, MBSs mainly consisted of sub-prime mortgages. The quality of 

these subprime loans has been constantly deteriorating every year since 2001 [5]. The problem 

started when the banks gave out too many of these low-quality sub-prime mortgages to people who 

had a bad credit history. The tranches that had these MBSs of the sub-prime mortgages had the 
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chance of most percent to gain as these were given out at a very high-interest rate. Everything 

works fine if mortgagees pay their mortgages on time. But the problem starts when people start 

defaulting. Then the investors start losing their money. During the 2008 recession many people 

together defaulted on their mortgages. Therefore, the investors lost money and also the banks lost 

money from the mortgage non-payment. 

 

Fig 2: Division of Tranches 

 

Derivative securities and their complexities also attributed to the collapse of the housing 

market. Securities such as MBS were split and then repackaged into tranches, then they were 

again split and repackaged. A tranche is a portion of something, here it means a security that 

can be split into several smaller pieces. The splitting and repackaging happened several times 

over and after that, rating agencies like S&P and Moody’s Analytics gave ratings to these 
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tranches. Therefore, securitization of the mortgages into MBS and making a complex financial 

entity can also be blamed for the 2008 crisis [5], [6], [7]. 

The effects of the crisis were a drop in the housing prices, a sharp rise in unemployment, 

and the decline in overall GDP. The housing prices dropped by 32% from 2006 prices and 

homeownership also dropped from its peak at 69% to about 66%. About 61,000 businesses filed 

for bankruptcies which resulted in sharp decline in employment, 8.8 million people lost their jobs 

which resulted the long-term unemployment to rise to 45% in 2010 [3]. During this period the US 

saw the worst GDP decline since 1939, it dropped by 4.7% [3]. Everything described above made 

common people suffer more than anyone else. 

 

2.3   PREDICTION OF HOUSING CRISES 

 

Studies have shown that various econometric techniques can be helpful in predicting 

such housing crises. If these crises can be predicted such, then measures can be taken to prevent 

or lessen the impact of the crisis. Techniques for predicting can range from simple statistical 

techniques to more complex deep learning ones. Simple statistical techniques like linear 

regression can be used to predict banking or financial crisis. The working of this simple 

technique is different than the more complex machine learning techniques as the complex ones 

require more computation to produce more intelligent results. In this project we make use of 

the following techniques: 

1. Hidden Markov Model (HMM) 

2. Long short-term Memory (LSTM) 

3. Linear Regression 
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HMM is used when there is one observable state present and using that observable state 

the states that are hidden could be predicted. [3] and [4] both uses HMM to predict stock market 

analysis for time series data but takes different approaches. [3] uses a higher order HMM with 

dimensionality reduction to predict the next day price for S&P 500 index. In a slightly different 

approach [4] uses a more complex form of first order HMM to predict airline stock prices by 

recognizing pattern and interpolating them to predict a bit farther than just one day. These two 

techniques can be merged together to build an HMM model that could predict housing prices ahead 

in the future. 

LSTM is a more complex machine learning technique where prediction can be made 

even when there are gaps between important events. [5] provides us with an approach where 

this gap can be avoided while predicting a particular event in time. On the other hand, [6] 

describes an enhanced version of LSTM model to predict all types of time series data (TSD). 

According to [6] TSD clustering, classifying and forecasting is the new trend that can solve a 

lot of complex problems including recession forecast. Using the concepts discussed in these 

papers, a model can be developed to predict housing market crisis since there is a time gap 

between one recession to another.  

A linear regression model is a statistical modelling technique that can be used on 

historical data to find the market trend. [10] talks about different linear regression analysis with 

GDP growth to predict economic crisis. It also focuses on short term GDP growth which takes 

into account three previous quarters to predict the growth for the next quarter. This model can be 

extended to be used on housing dataset to predict housing crisis. It can be inferred from this that 

regression analysis can be done even when there is not enough data available. 
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3. EXPERIMENTAL DESIGN 
 

 
The objective of this research is to examine the historical housing prices, mortgage rate 

and, number of houses sold datasets and predict using machine learning techniques and deep 

learning techniques whether we are nearing another housing crisis. For example, the average house 

prices for single-family homes in San Francisco soared to about 1.4 million dollars by the end of 

2017 and it continued rising till 2018. After which the prices fell a bit in early 2019. The goal is to 

analyze the data for house prices and mortgage rates and, use a learning technique that would 

predict whether there is a housing crisis in the near future or if the market is just correcting itself. 

In the next sections we discuss about the dataset and machine learning techniques that we used in 

this project. 

 

3.1   DATASETS 
 

The datasets that will be used in this project are a combination of a few datasets which had 

some federal data like the mortgage rates and state data for the house prices. For the total number 

of houses that were sold, we crawled a website to get data. The dataset that we will be using are: 

1. Mortgage rate [12] 

2. Housing price [11] 

3. Total number of houses sold [13] 

We merged these datasets using Python data analysis library Pandas. The datasets had data 

from 1990 to 2020 and the interval was a month. There were various data formats for each dataset 

so in order to merge them on the date, we converted all the date into the same format. The pictures 

below show the different date formats that were in each dataset. 
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Fig 3: Date format of different datasets that are used 

 

We changed the date format for all the dataset into “yyyy/mm/dd time” added another 

column of the period for easy reading of data. For the price, we took only the aggregated house 

prices in all of CA and not each county as that would have complicated the dataset and the analysis 

would have been homogenous. The interest rate dataset had a lot more data starting from the 1970’s 

but when it joined with the primary dataset of the house price and the resulting dataset had the data 

that fell in the intersecting period. 
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Fig 4:  Pre-processed dataset with changed Date format 

 

3.2 MACHINE LEARNING MODELS 
 

The machine learning models used to do this project range from simple to complex deep 

learning techniques. We would look into each of the techniques and compare each of their results. 

For this project we have used three machine learning algorithms on the preprocessed data that was 

described in the previous section. 

1) Linear Regression 

2) Hidden Markov Model (HMM) 

3) Long Short-Term Memory (LSTM) 

In the next sub sections, we will be describing each method and how we have used them to make 

prediction about the housing prices for another year i.e. 12 months. 
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3.2.1 LINEAR REGRESSION 
 

Linear regression is a supervised learning technique that models linear relationship 

between the dependent or scalar and the independent or explanatory variables. If there is one 

independent variable, then the modelling technique is called simple linear regression. In this case 

the scalar variable is dependent on only one explanatory variable. The form of simple linear 

regression model is  

	𝐲 = 	𝒃𝟎 +	𝒃𝟏. 𝒙𝟏	 

When there is more than one explanatory variable for a scalar then it is called multiple or 

multivariate linear regression. In this model the scalar variable has its value dependent on more 

than one explanatory variable. The form of multiple linear regression model is 

𝐲 = 	𝒃𝟎 +	𝒃𝟏. 𝒙𝟏 	+ 	𝒃𝟐. 𝒙𝟐 	+ 	𝒃𝟑. 𝒙𝟑 +	…+	𝒃𝒏𝒙𝒏 

  

In the above equations, ‘y’ is the dependent variable ‘𝒙𝟏’, ‘𝒙𝟐’, ‘𝒙𝒏’ are the independent 

variables. The error term is the constant 𝒃𝟎, it is also called the y-intercept and ‘𝒃𝟏’, ‘𝒃𝟐’, ‘𝒃𝒏’ are 

the weights of the independent variable. 

In this project we have used both simple and multiple linear regression. For both the model 

the dependent variable is the house price and the independent variable is date for the simple linear 

regression model. We started with simple linear regression to understand the dynamics of the house 

price related to time and the time has affected the housing market and coded the algorithm instead 

of using sci-kit learn (used later for multiple regression). The dataset used for this is the housing 

price dataset where it contains house prices for all counties of California and average of all 

California house price [11]. 

Steps to code Linear Regression Model: 
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 Step 1: For each (𝒙, 𝒚), calculate 𝒙𝟐and (𝒙𝒚) 

Step 2: Sum all &𝒙, 𝒚, 𝒙𝟐		𝒂𝒏𝒅	𝒙𝒚+ which would give us ∑𝒙, ∑𝒚, 

∑𝒙𝟐,and, ∑𝒙𝒚 

Step 3: Calculate slope 𝒃𝟏: 

    𝒃𝟏 = 𝒏∑𝒙𝒚 −	∑𝒙∑𝒚 	𝒏∑𝒙𝟐 −	∑𝒙𝟐    

   where 𝒏 is the number of points 

Step 4: Calculate the y-intercept b: 

   𝒃𝟎 = ∑𝒙 −	𝒃𝟏 ∑𝒙	𝒏    

Step 5: Substitute all the value in the simple linear regression  

   equation	

    𝒚 = 	𝒃𝟎 +	𝒃𝟏 ∗ 𝒙 

The above method of finding linear regression is called the least squares method. This method 

aims at minimizing the sum of squares errors or residuals. The squared sums are calculated for 

each x and y values which are the inputs and the outputs. A training rate is used to scale the factors 

in order to minimize the error values. This is repeated until the least sum squares of errors is 

achieved and there is no more improvement possible. 

 

 

Fig 5: Code snippet for calculation of Slope and Error for Linear Regression 
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Fig 6: Code snippet for calculation of Linear Regression using Least Squares method 

 

The code snippets show the steps involved in finding the Least Squares Regression model for 

housing price. After finding the best fit line we can extrapolate the line to as far we want to make 

prediction. 

For simple linear regression we employed the algorithm on the whole housing price dataset 

[10] to see how the line is for the thirty years of historical data. After that, we extracted data for 

last 2 years to compare the housing inflation from 2018. Along with finding the best fit line we 

have also calculated the Root Means Square Error (RMSE) score which typically lies between 0 

and 1. RMSE measures the difference between the predicted values and the observed values. A 

RMSE score of 1 suggests that the predicted values and the observed are very similar and a score 

of 0 suggests that there is no correlation between the predicted and the observed values. An RMSE 

score of 1 is very unlikely as it means that both the data are same which in reality is never going 

to happen. A model with RMSE of 0 means that the prediction is very different from the observed 

which should never be the case, as this would mean that the model has not been trained well. 

Next we used multiple linear regression to predict the housing prices. In this part the 

dependent values are still the housing prices, but the independent values are date, mortgage rates 
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and the total number of houses that were sold during that period. Multiple linear regression was 

coded using the Python Sci-kit Learn library. In this, the dataset was divided into training and 

testing set, with 20% of the data being in the testing set. Then we fit the data into the model, two 

separate models were created to see the relationship between the actual observed data and the 

predicted data. After the separate models were created, we calculated the RMSE score to see the 

error value in the model and the R2 goodness of fit to see how well the model fits the data. The 

code snippet below shows how the above steps were coded. The result from the model will be 

discussed in Chapter 4. 

 

 

 

Fig 7: Code snippet of using Sci-kit Learn to train and fit model and then make prediction 
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3.2.2 HIDDEN MARKOV MODEL 
 

Linear Regression was built to understand the dynamics of the Housing Market, it is not as 

intelligent as the other modelling techniques. Hidden Markov Model (HMM) is a statistical 

modelling technique that derives its name from Russian mathematician Andrey Markov, who 

invented Markov chains. HMM is a collection of Markov chains which gives us the probability of 

the next sequence depending on the present states. In a Markov model the past and future doesn’t 

have relationship given that the present state is known. HMM is used to predict the probability of 

a hidden state given that there are observed states and probabilities of the transition from one state 

to another. In CS 297 we experimented using these two steps: 

1. Coded the HMM with the example from Prof. Stamps paper on HMM to understand 

the working of HMM [14] 

2. Used HMM from Sci-kit Learn to code and model the data from housing dataset 

[11][12][13] 

 The HMM algorithm would determine the annual temperature (Hot, Cold) given the 

observation of ring size of tree growth (Small, Medium, Large). To start with, we will have the 

state transition matrix which would give us the probability of if the temperature is hot one year 

what is the probability that the temperature would be hot or cold next year. Similarly, if the 

temperature is cold this year the probability of it being cold or hot next year. This is called the state 

transition matrix. We will also have an observation matrix that would give us the probability of 

the temperature being hot or cold given the ring size of the tree whether it is small, medium or 

large. 
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Fig 8: Hidden Markov Model 

 

The transition from the present step to the next step is a Markov chain that follows a Markov 

transition matrix. A Markov transition matrix is an 𝒏 ∗ 𝒏 matrix that has probabilities of 

transitioning from one state to another, for our example it’s from Hot to Cold or vice versa. 

However, the actual state is not known they are hidden as we cannot directly observe the 

temperature whether it is Hot or Cold in the previous state. For this problem the state transition 



 
 
 
HOUSING MARKET CRASH PREDICTION USING ML AND HISTORICAL DATA 
  
   

22 
 

matrix is same as that of Prof Stamp’s paper [14] and it’s also shown in the figure above. 

 

Fig 9: The state transition matrix 

Although we don’t know the hidden states, we have a provision to make prediction through the 

observation emission matrix. An observation matrix is an 𝒏 ∗𝒎 matrix which gives us the 

probability of state happening given that observation. In this case as well we would be referencing 

this from Prof Stamp’s paper [14]. 

 

Fig 10: Observation matrix 

Along with the state transition matrix(A) and observation emission matrix(B) we would also need 

an initial state distribution matrix (𝝅) which would let us start the calculation for the next steps. 

All these matrices are row stochastic meaning that if we add up a row it’s always equal to 1. Next 

we have a sequence of observations from which we predict the temperature. The observations are 

denoted by 𝑶 = 𝑶𝟎, 𝑶𝟏, 𝑶𝟐, … , 𝑶𝑻'𝟏 

To compute the hidden states, we have to solve three questions and these questions are 

discussed by Prof. Stamp paper [14]. The coding for the above problems was done in python. To 

solve the above problems described in the paper we have first prepared the data. After preparing 

the data, we have calculated the alpha pass or the forward algorithm by multiplying the A matrix 
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with the probabilities of occurrence. After calculating the alpha-pass, we calculated the beta-pass 

or the backward algorithm. The backward algorithm is calculated by starting the matrix backwards. 

The calculation is similar to the alpha pass the only difference is the starting point of the matrix. 

After the calculation of these two matrices we would use them to calculate the gamma and di-

gamma. Di-gammas are used to find the best fit values for the model. To calculate di-gammas, we 

get all the values before gamma from alpha matrix and all the values after gamma from the beta 

matrix. Then subtract beta matrix from alpha matrix to get the di-gamma. After the di-gammas are 

found we scale the HMM model and update the original matrix with values that are calculated. 

Therefore, after each calculation there is an updated A, B and Pi values.  We would use these 

updated values in our calculation of next steps. 

 

Fig 11: Result of 30 observations of ring size  
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 After coding the HMM algorithm and getting to know how HMM works we started the 

next part of the problem. We used the HMM from hmmlearn.hmm module Sci-kit learn to apply 

it to the housing dataset [15]. For this we have added a percentage difference in price to the housing 

dataset to build the model. The data used to build this model is a column stack of diff_percentages, 

prices, num_of_houses_sold, rate. After that we used GausianHMM to build the model. 

 

Fig 12: Code snippet of using Sci-kit Learn to train and fit data into HMM model 

 

Sci-kit learn has some attributes we need to pass in to build the model. They are shown below: 

sklearn.hmm.GaussianHMM(n_components=1, covariance_type='diag', startprob=None, 
transmat=None, startprob_prior=None, transmat_prior=None, means_prior=None, 
means_weight=0, covars_prior=0.01, covars_weight=1, n_iter = None, algorithm = ‘viterbi’)  
 
 
For building HMM model for this project we have used the following values for the attributes. We 

have added random_state = False to get repeatable result. 

 
hmm.GaussianHMM(n_components=15, covariance_type='tied', , n_iter = 10000, algorithm = 
‘viterbi’, random_state=False) 
 

After the model was built with the attributes defined, the data was fit into the model and prediction 

was made for the next 12 months. The result from the model will be discussed in the Chapter 4. 
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Table 1: Sci-kit learn HMM model attribute description 

Gaussian HMM attributes Meaning 

n_components = 15 The number of states of the HMM model 

covariance_type = ‘tied’ All components share the same general covariance matrix 

n_iter = 10000 The number of backward and forward run while training the model 

algorithm = ‘viterbi’ The algorithm used inside the HMM model 

random_state = False Whether to used random variable as seed or not 

 
 
 

3.2.3 LONG SHORT-TERM MEMORY 
 

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is 

mostly used in the field of deep learning. Although its architecture is similar to that of RNN, 

LSTMs have feedback connections and not just feed-forward connection. RNNs had a major 

problem of vanishing gradient which led to the popularity of LSTM. The main cause of vanishing 

gradient was that information had to travel sequentially through all cells before getting to the 

present cells. Travelling for long distances easily corrupted data by getting multiplied by garbage 

values (small number < 0). LSTMs also have the ability to learn from long term dependencies, 

which was a problem for traditional RNNs. LSTMs help preserve the error that can be 

backpropagated through time and layers. By maintaining a more constant error, they allow 

recurrent nets to continue to learn over many time steps. Also, not being sensitive to gap-length 

makes LSTM superior than RNNs and Hidden Markov Models. LSTMs are well-suited for 
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classifying, processing and making predictions on time series data, since there can be gaps of 

unknown duration between important events in a time series. 

An LSTM network typically has a cell, an input gate, an output gate and a forget gate. The 

cell remembers values over arbitrary time intervals and the three gates regulate the flow of 

information into and out of the cell. The cell keeps track of the dependencies between all the 

elements of the input sequence. Next the input gate checks the amount of new information flow 

into the cell. Then the forget gate controls how long the information can stay in the cell. Finally, 

the output gate checks the amount to which the values in the cell are used to compute the final 

output to the next cell. There are connections in and out of the LSTM gates. The weights of these 

connections, which need to be learned during training, determine how the gates operate. 

 

Fig 13: An LSTM network 

LSTM working step by step: 

Step 1: LSTM has to decide on what information is going to stay in the cell state and what 

information needs to be dumped. This decision is made by the forget gate or the sigmoid layer. It 
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looks at 	ℎ(') and 	𝑥( of the LSTM, and outputs a number between 0 and 1 for each number in the 

cell state 	𝐶('). 1 represents “keep all the information” while a 0 represents “don't keep any of 

the information” 

 

Fig 14: Forget gate  

Step 2: The next layer of LSTM decides what information is to be stored in the cell state of LSTM 

network. This is done in two parts. First the input gate layer decides what information/values needs 

to be updated. Then the tanh layer creates C2( a candidate vector, that is added to the state.  

 
Fig 15: Input Gate 

 

Step 3: Next the old state of the cell 	𝐶(')is updated to the new cell state 	𝐶(. The previous steps 

gave us all the essential parameters to this. The old state is multiplied by the output of the forget 
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layer and then it is added to the value we get from multiplying the input layer value to the candidate 

vector. The figure below demonstrates that. 

 
Fig 16: Updating old state into new state 

Step 4: Finally, the output layer outputs the value of the current cell state to the next cell. This is 

also done in two steps firstly; the sigmoid layer decides what parts of the cell state is going to the 

output layer. Then, the cell state is sent through the tanh layer (to push the values to be between 

−1 and 1) and is multiplied by the output of the sigmoid layer. 

 
Fig 17: Output gate 

There are many variants of LSTM, but those details are not required for this project as we would 

be using Keras to build and model the LSTM network. Next we will discuss about building an 

LSTM model using the housing dataset for prediction. 

 The LSTM model for this project was build using a neural network library Keras which 

runs on TensorFlow backend. This deep learning library is written in Python and it is useful for 
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our project as the whole coding for this project is done in Python. Keras is new therefore to learn 

the dynamics and working of keras we first used it on a small dataset to do prediction before 

jumping directly to the project data. After we successfully understood to concepts needed for this 

project, we went ahead to use keras on the project dataset. For the project we divided the dataset 

into training data and testing data with testing data being 15% of the whole dataset. Then we 

processed the training and testing data by feeding it to the time series generator of Keras sequence 

generator.  

 

Fig 18: Code snippet showing division of training and testing data and data conversion for LSTM 

 

To build the LSTM network a Sequential model from keras was chosen and to that model LSTM 

network was added with number of hidden nodes being 50 within the LSTM cell and input shape 

of 5𝑋1. The input shape describes what is the input to the first layer of the network. The weights 

that are given to initial Keras network is uniformly divided within each layer which is given by 

init=’uniform’.  
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Fig 19: Code snippet showing the building of LSTM model from Sequential model 

Next we define the size of epoch for the neural network. For this the number of epochs is 1000. 

An epoch is one cycle through the full training data. Just one epoch would lead to underfitting as 

it would not learn much from the training data. Also, too many epochs would cause overfitting as 

it would learn too much from the training data that might not generalize the testing data. Next we 

fit the model to number of epochs and the processed training data. 

 

Fig 20: Code snippet showing the fitting of LSTM model 

After building the model and training the model we use the testing data to see how well the model 

is behaving and then make prediction. After that extend the prediction to the 12 months to see one-

year prediction of the housing market. 

 

 

Fig 21: Code snippet showing prediction for next 12 months 
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After this we do some data processing to plot the graph of model and the prediction. The result of 

the model will be described in Chapter 4. 
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4. RESULTS AND DISCUSSION 
 
  In this chapter we will discuss about all the results that we got from the machine learning 

models and compare their results with each other. First, we will start with few scatter plots to 

understand the dataset and how everything is related to the house prices. 

 

Fig 22: Plot of Price vs Date 

 

The figure above shows how price have increased or decreased over time. We can see that 

the price had increased in 2005-2006 and troughed in 2008-2010. After that the price had increased 

steadily over the years with some seasonal variance. 
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Fig 23: Plot of Date vs Interest Rate 

 

This figure shows that the interest rate has decreased over time. But we can see that there 

was a spike in the interest rate between 2006-2008, which is around the time when giving out sub-

prime mortgages were at it’s highest. After 2008 there has been a sharp decline of mortgage interest 

rates between 2009-2012. This is because of the effort made by the federal government to bring 

back the economy by slashing interest rates. 
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Fig 24: Plot of Date vs Houses Sold 

 

This figure shows the plot between date and total number of houses sold. The number of 

houses sold peaked in 2005 which might be because of easy mortgage policies developed by banks. 

These mortgage policies eventually led to the financial crisis of 2008-2009. Also, we can see from 

the graph the houses sold troughed in 2008-2010 which was the time if the financial crisis.  

From the above graphs we can say that the prices of the houses in 2005-2006 were high 

because the number of houses sold were also high. This also means that the supply of houses during 

that time was low and the demand was high. This supply and demand triangle inverted during and 

after the recession of 2008-2009 where there were more houses available than there were buyers 

as a result prices dropped. This is one of the many reasons that led to the recession. 
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Fig 25: Actual prices vs Predicted prices from Multiple linear regression 

 

The above figure shows the graph between actual prices and the prices predicted by the 

Regression model. The ideal graph would be diagonal line with a slope of 1 and all the points on 

the line. The slope of the line we are getting is about 0.7 and the predicted values fall close to the 

line. This means the model is pretty good at predicting the values, however there is room for 

improvement. 
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Fig 26: Price prediction by the regression model 

 

The prediction made by the linear regression model does not shows any fall in prices as the 

prices for the future keeps rising which can be seen by the overall positive slope. So, this model 

does not predict any recession in the housing market. The model also shows that the houses prices 

during 2004-2007 was way above than the ideal slope of the line therefore the ideal situation to 

avoid a crisis should be that the prices stay near the regression line. 
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Fig 27: House Prices actual vs predicted by HMM 

 

The next model prediction we are looking at is by Hidden Markov Model (HMM). The 

graph above is showing a drop in the house prices for the next coming year. The drop in the price 

is oscillating back and forth but is definitely lower than the current prices of the housing market. 

The prices in the prediction for a year is between $425,000 and $500000 which is $100000 drop 

from the average house price in currently in California. The next plot shows the zoomed in version 

of the plot above to show the price prediction by the model. 
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Fig 28: Zoomed in graph to show the prediction 

 

Fig 29: Graph of training, testing, and prediction using LSTM 
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The graph above shows the plot of the training data (represented by solid red line), testing 

data (represented by dashed red line) and, prediction made after training and testing (represented 

by solid blue line). From the graph we can see that the prediction made is very close to the testing 

data which is what we aim for. By far the prediction by our LSTM was the closest to that of the 

testing data. 

 

Fig 30: Graph show extended Prediction by LSTM 

 

In the above graph we extend the prediction by for the next twelve months (represented by 

dashed green line). The prediction for the next one year shows that there will be a fall in the house 

prices. The fall is not as steep as that of 2008. In the next graph we will look into the zoomed in 

part of the prediction to see prediction prices.  
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Fig 31: Zoomed in graph showing extended Prediction by LSTM 

 

From the zoomed in graph we can see that the price lingers around $570,000 – $600,000 

which is not a lot reduction from the current price of housing market of California. But if we look 

into the seasonal variation then we can see that during the summer the prices normally rises. 

Therefore, we can say according to the model the prices are going to fall.  

Table 2: Model Comparison 

Model Name Prediction Time to train Efficiency R-Square Score 

Linear 

Regression 

House prices will eventually rise Low Medium 0.76 

HMM House prices will fall  Low Medium-Low 0.706 

LSTM House prices will fall slightly High High 0.92 
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5. CONCLUSION AND FUTURE WORK 
 

Market recession and housing market crisis are closely tied together and have a huge  

impact on economy. The techniques discussed can help to forecast the housing prices for the future. 

From all the graphs and prediction model, we can foresee that there will be a fall in the house 

prices for the next year. Also, with everything going on now with coronavirus and stock market 

behaving in an unpredicted manner it’s very unlikely to say how long will the price go on diving 

low. But it won’t be as bad as that of 2008 because the banks this time around are taking every 

precaution to prevent a crisis like that of 2008. In this project we have built models using intelligent 

techniques these models can be extended to do more intelligent prediction with more data sets. \  

We can use these models along with coronavirus data to make more knowledgeable 

prediction about how the coronavirus would affect the housing market in the future when the 

coronavirus data is available to us. 
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