

Compare word2vec with hash2vec for Word Sense Disambiguation

A Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements of the Class

CS 297

By

Neha Gaikwad

Dec 2019

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

TABLE OF CONTENTS

I. DELIVERABLE 1…………………………………………..4-7

II. DELIVERABLE 2…………………………………………..8

III. DELIVERABLE 3…………………………………………..9-10

IV. DELIVERABLE 4…………………………………………..11-12

V. DELIVERABLE 5…………………………………………..13-14

VI. CONCLUSION……………………………………………..15

 REFERENCES

1

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

I. INTRODUCTION

There are millions of documents generated every week on the internet. It is

highly impossible to manage them manually and perform complex tasks such as

classification, regression, etc. on the data extracted from these documents. Neural

networks come in picture here, for processing a huge amount of data and applying

different techniques to it in order to get clusters, classifiers and so on. It helps in getting

vectors from words and applying them to different problems to get the solution. It also

helps in getting machines to understand if the entered keyword ‘apple’ is the company

and not a tasty fruit. The answer to the above questions lie in creating a representation

for words that capture their meanings, semantic relationships and the different types of

contexts they are used in. And all of these are implemented by using Word Embeddings

or numerical representations of texts so that computers may handle them.

Our aim for CS297-298 is to build an entity disambiguation system. The

Wikipedia data set has been used as data set in many research projects.In our project,

we use the English Wikipedia dataset as a source of word sense, and word embedding

to determine the sense of word within the given context. Word embeddings were

originally introduced by Bengio, et al, in 2000 [2]. A Word embedding is a parameterized

function mapping words in some language to high- Word Sense Determination from

Wikipedia Data Using a Neural Net 4 dimensional vectors. Methods to generate this

mapping include neural networks, dimensionality reduction on the word co-occurrence

matrix, probabilistic models, and explicit representation in terms of the context in which

words appear. Using a neural network to learn word embedding is one of the most

2

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

exciting areas of research in deep learning now [3]. Unlike previous work, in our project,

we will use neural network to learn word embeddings.

The demonstration of hash to vector method will be carried out where hash is

generated for every word and it gets updated as the window slides over the words. It

then stores hash for every word in dictionary form and get the final hash to vector

results. We would also like to compare the results using hash2vec.

The following are the deliverables I have done in this semester to understand the

essence of neural network, word embedding and the work flow of TensorFlow. In

Deliverable 1, we presented the introduction to word embedding using word to vec and

developed a simple program to convert words into vectors (word2vec) using

TensorFlow and genism. In Deliverable 2, we have applied word2vec approach for a

simple application of calculating the cosine similarity of words. In Deliverable 3, we

presented the introduction to word embedding using hashing features and discussed

the algorithm. In Deliverable 4, we have applied hash2vec to find the nearest word for

the given word. This is also a simple application of hash2vec. In Deliverable 5, we have

demonstrated simple hashing trick which can be used for documentation classification

which shows the power of hashing to distinguish between different words in the area

where large data is available. More details of these deliverables are discussed in the

following sections.

3

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

I. DELIVERABLE 1

Our first deliverable was an example program of wordtovec implemented in TensorFlow

and also using gensim. This program used softmax to convert words into vector. Prior to

implementation, I studied machine learning, neural network and Python.

A word embedding is a parameterized function mapping words in some language to

high-dimensional vectors. Methods to generate this mapping include neural networks,

dimensionality reduction on the word co-occurrence matrix, probabilistic models, and

explicit representation in terms of the context in which words appear.

We will first introduce word embedding in this section and then show the details about

its implementation.

A word embedding is sometimes called a word representation or a word vector. It

maps words to a high dimensional vector of real numbers. The meaningful vector

learned can be used to perform some task. Visualizing the representation of a word in a

two-dimensional projection, we can sometimes see its “intuitive sense”. For example,

looking at Figure 1, digits are close together, and there are linear relationships between

words.

word → Rn

W(“cat”) = [0.3, -0.2, 0.7, …]

W(“dog”) = [0.5, 0.4 -0.6, …]

4

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

Figure 1. Visualising two-dimensional projection[3]

Two different learning models were introduced that can be used as part of the word2vec

approach to learn the word embedding; they are:

● Continuous Bag-of-Words, or CBOW model.

● Continuous Skip-Gram Model.

The CBOW model learns the embedding by predicting the current word based on its

context. The continuous skip-gram model learns by predicting the surrounding words

given a current word.

The continuous skip-gram model learns by predicting the surrounding words given a

current word.

5

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

figure 2. Word2Vec Training Models [6]

Now we will discuss the implementation of word2vec.

1) Using CBOW model :

Using gensim with widow size =5 and dimensions=100.

6

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

Output :

figure. 3. Word2vec implementation output

Now, lets see how the above given word2vec can be applied in real-time

applications.

As a part of research in CS297, I read a paper[4] which focuses on syntactic and

semantic analogies as discussed below in detail. the example is discussed below.

Finding analogies such as “Germany” : “Berlin” :: “France” : ?, which are solved by

finding a vector x such that vec(x) closest to

vec(“Berlin”) - vec(“Germany”) + vec(“France”)

The task has two categories:

-syntactic analogies (such as “quick” : “quickly” :: “slow” : “slowly”)

-semantic analogies, such as the country to capital city relationship.

We can focus more on these relationships in the CS298 project and compare different

results using different word embedding techniques such as negative sampling,

sub-sampling etc.

7

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

II. DELIVERABLE 2

In our deliverable2, we demonstrated the usage of word2vec and experimented if

it really works with simple distance parameter such as cosine similarity. Let's first

introduce cosine similarity and then discuss the implementation details.

Among different distance metrics, cosine similarity is simple and most used in

word2vec. It is normalized dot product of 2 vectors and this ratio defines the angle

between them. Two vectors with the same orientation have a cosine similarity of 1, two

vectors at 90° have a similarity of 0, and two vectors diametrically opposed have a

similarity of -1, independent of their magnitude.

We have applied cosine function to compare the linear relationship between

words. E.g. if I compare words depression and geology those words should be more

similar i.e. the distance between them should be less and hence cosine similarity would

be more for these words. This particular property of word2vec shows its linear

compositionality.

Implementation and output :

The result shows that they are near to each other in the vector space.

8

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

III. DELIVERABLE 3

As we have seen word embeddings using softmax function in neural network, it is

purely based on learning words within layers and then calculating using softmax

function with the given context and dimensions. This is a very time consuming process

and hence Luis, Matias, and Joaquin [1] proposed an idea of hash2vec word

embeddings.

A simple technique for dimensionality reduction is Feature Hashing [5] The idea

is to apply a hashing function to each feature of a high dimensional vector to determine

a new dimension for the feature in a reduced space. Feature hashing has been used

successfully to reduce the dimensionality of the BOW model for texts [5]. [6] used

feature hashing to classify mail as spam or ham. To mitigate the effect of hash collisions

[7] propose the use of a second hash function ξ that determines the sign of a feature.

Therefore if we apply the feature hashing to the word co-occurrence matrix we are able

to obtain an embedding where the inner products between the embedded vectors

accurately represent the inner products between the original vectors in the

co-occurrence matrix.

Let's discuss the algorithm in detail.

9

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

Algorithm :

The below algorithm is referred from [1].

Hash2Vec Parameters:
n the embedding size, k the context size, h hash function,
ξ hash signfunction and f aging function.
1: words ← Dictionary()
2: for every word w in text do
3: if w /∈ keys(words) then words[w] ← Array(n)
4: for every context word cw with distance d do
5: weight ← f(d)
6: sign ← ξ(cw)
7: words[w][h(cw)] ← words[w][h(cw)] + sign × weight

Let's check the hashing function implementation in detail now.

Hash function :

figure 4. Calculate hash

10

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

IV. DELIVERABLE 4

In this deliverable, we tried to test the vectors produced in previous deliverable

i.e. hash2vec vectors to calculate their distance by using euclidean distance formula.

Lets get some insights about euclidean distance first and then see details about its

implementation in this deliverable.

The Euclidean distance between the points p and q is the length of the line

segment connecting them[9].if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points

in Euclidean n-space, then the distance (d) from p to q, or from q to p is given by the

below formula.

Now, we shall see the implementation of this formula to calculate the distance between

two vectors calculated from hash2vec method.

11

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

Output:

Words similar to recession:

12

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

V. DELIVERABLE 5

We have done some experimentation with feature hashing in some areas it is

also called as hashing trick. First lets see what hashing trick is and then we would

discuss its implementation details.

In a typical document classification task, the input to the machine learning

algorithm (both during learning and classification) is text. From this, a bag of words

(BOW) model can be constructed: the individual tokens are extracted and counted, and

each distinct token in the training set defines a feature of each of the documents in both

the training and test sets.

Hashing function can be defined here as [from wikipedia] :

function hashing_vectorizer(features : array of string, N : integer):

 x := new vector[N]

 for f in features:

 h := hash(f)

 x[h mod N] += 1

 return x

13

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

The given below is hashing trick implementation.

14

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

VI. CONCLUSION

During CS297, I started by learning neural networks, TensorFlow, gensim and hashing

techniques. I practiced on programming to solidify my understanding and gain

experience. Literature review on word embedding helped me understand what it is and

how it can be used in my project. The different papers proposed to apply different

techniques while doing word embeddings using word2vec added different approaches

for data preprocessing to do in CS298. Also, learning about hash2vec enhanced my

understanding of application if hashing in various applications. In CS297, I also started

data preprocessing, however, most of the work of data processing will not be done until

I figure out the requirements of the data when I work out how to create the model. In CS

298, I will work on how to use these two models in different ways and compare results

on the performance and accuracy. To do this, I will need to gather a deeper

understanding of how these word2vec vectors and hash2vec vectors can be applied to

find the semantic and syntactic analogies. Data processing will also be an important

part of CS298 as well. Meanwhile, I will research on how to evaluate the outcome of the

model as well.

15

Compare word2vec with hash2vec for Word Sense Disambiguation on Wikipedia corpus

REFERENCES

Last Name, First Name: Article Title. Journal Title, Pages From - To.(Year)

1. Luis Argerich, Matias J. Cano, and Joaquin Torre Zaffaroni: Hash2Vec: Feature

Hashing for Word Embeddings(2016)

2. Hill, F., Cho, K., Korhonen, A., Bengio, Y.: Learning to understand phrases by

embedding the dictionary. arXiv preprint (2014)

3. Mikolov, T., Yih, W. T., Zweig, G.: Linguistic Regularities in Continuous Space Word

Representations. In HLT-NAACL, 746–751 (2013)

4. Pennington, J., Socher, R., Manning, C. D. : Glove: Global Vectors for Word

Representation. In EMNLP,Vol. 14, 1532–1543 (2014)

5. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. : Distributed

representations of words and phrases and their compositionality In Advances in neural

information processing systems,3111–3119 (2013)

6. Shi, Q., Petterson, J., Dror, G., Langford, J., Strehl, A. L., Smola, A. J.,

Vishwanathan, S. V. N.: Hash kernels. In International Conference on Artificial

Intelligence and Statistics, 496–503 (2009)

7. Attenberg, J., Weinberger, K., Dasgupta, A., Smola, A., Zinkevich, M.: Collaborative

Email-Spam Filtering with the Hashing Trick. In Proceedings of the Sixth Conference on

Email and Anti-Spam (2009)

9. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing

for large scale multitask learning. In Proceedings of the 26th Annual International

Conference on Machine Learning, 1113–1120 (2009)

16

