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Chapter 4 – (Introduction to Deep Learning)



Word Embedding for Language Models

• Language model is the probability distribution over all strings.
• Language translation programs need to identify differences in sentence from 

one language to the other.
• Language model helps with the above idea.

• Sentences can be broken into words and probabilities of each word 
following the previous can be counted.
• E.g. “We live in a small world”.

• P(We live in a small world) = P(We)P(live|We)P(in|We live) …



Language Models

P(We live in a small world) = P(We)P(live|We)P(in|We live) .. 
• Each word probability is calculated given all previous words are 

present in a sentence.
• Not a practical approach, as sentences can be very long.

Bigram language model:
• Probability for each word in a sentence is calculated based on just the 

previous word.



Word Embeddings

• Given a word in a vocabulary, a probability distribution of all other 
words following the previous one can be created in a table.
• Using deep network for a word Wi, a reasonable probability 

distribution can be calculated over possible next word.
• As deep network only work with floating numbers, each word can be 

mapped to a vector of float which is called Word Embeddings.
• Each embedding is initialized as a vector of e floats.
• Here, e is the system hyperparameter

• For the number of of words are |V| then an array E is initialized to be 
|V| by e to hold all word embeddings.  



Feed Forward Network for Language Model

• Small square represents the input to the network, the integer index of 
current word ei.

• Output of the network is the probability assignment for possible next 
word. 
• The layer E, converts the word index to the embedding and all 

operations after that point are done on these embeddings.



Cosine similarity

• The cosine similarity of two vectors is a standard measure of how 
close the vectors are.
• For a two dimensional vectors,

• if both vectors are pointing in same direction then the cosine similarity would 
be 1.0.

• If both are pointing in opposite direction then it would be -1.0.
• If both vectors are orthogonal then cosine similarity would be 0.

• For arbitrary dimensions, cosine similarity can be calculated using, 



Feed Forward Language Model

• First input for the NN is the word index. It is used to get the word 
embedding E.

• In the above code, inpt points to the word indices.
• And, answr points to the correct similarity index for each word.
• E is the embedding lookup array of the size |V| by e. 
• All future operations will be done on embed.



Feed Forward Language Model Loss

• In a language model, each training example is a word probability.
• The loss in a language model is calculated per word. 

• Here if the corpus d of total words |d| has loss of xd then f(d)
represents the perplexity of the corpus d.
• As the training moves forward, the perplexity decreases.



Improving Language Model Efficiency

• Moving from a bigram language model to a trigram language model 
can help improve the efficiency.
• The previous model used two words (bigram) to create the model. 

That is each word is assigned probability based on the previous word.
• Trigram model calculates probability based on two previous words 

rather than one.
• Below is the code to support trigram model along with bigram model,
embed2 = tf.nn.embedding_lookup(E, inpt2)

both = tf.concat([embed, embed2], 1)



Overfitting

• An ideal training data set covers all possible test dataset samples.
• Improving the model efficiency on test dataset.

• Training samples do not always include all possible examples for test 
dataset.
• Hence there is a chance of a good performance on training dataset by the 

model
• The same model fails with high loss/perplexity on test dataset.
• This scenario is classified as overfitting of training dataset.

• Mnist dataset can be characterized as very ideal while PTB contains 
the combination of handwritten words which has potential for 
overfitting the training dataset.



Regularization

• Regularization is the modification to fix overfitting.
• Early stopping is a type of regularization.

• The model stops training when the development perplexity is the lowest.
• Not the best technique to fix overfitting.
• Dropout and L2 regularization are much better solutions.



Dropout Regularization

• Here pieces of computation is dropped randomly from one layer of the 
network to the other.
• Next layer sees more zeros in random locations. This makes training data 

different for each epoch.
• Classifier cannot depend on the coincidence of a lot of features of the data

lining up in a particular way so the generalization is better.
• Preferred method of regularization.
keepP = tf.placeholder(tf.float32)
w1Out = tf.nn.dropout(w1Out, keepP)

• KeepP is set to 0.5 for 50% dropout in training phase and 1.0 for testing 
phase.



L2 Regularization

• In many machine learning overfitting problems are accompanied by 
model parameters getting too large or too small. 
• Seeing the same data again and again contributes to probabilities 

being overestimated.
• This overestimate is achieved by large absolute weight values.
• L2 Regularization adds a quantity proportional to the sum of squared

weights to the loss function.
• Following is added to the loss function in Tensorflow for l2 

regularization.
0.1 * tf.nn.loss(W1)



Recurrent Networks

• Recurrent Neural Networks are opposite of Feed forward NNs.
• If feed forward NNs are directed acyclic graphs then recurrent neural 

networks would be directed cyclic graphs.
• A part of the network’s output is feed as its own input.



Recurrent Neural Network – cont’d

• The previous figure can be explained with below equations
S0 = 0
st+1 = relu((et+1 . st) Wr + br)
o = st+1Wo + bo

• S0 represents state vector and its dimension is a hyperparameter.
• By concatenating the next st and feeding it to linear unit. 
• The output is passed through relu activation function.
• Finally output o is obtained by feeding current state through second 

linear unit.
• Loss is calculated on o.



RNN

• Recurrent Neural Networks are used when previous input requires to 
influence arbitrarily far into the future.
• Language models are one of the cases where a word in a sentence 

can have effects on other word choices.
• Current explanation makes the recurrent neural network approach

impractical.
• Not practical to change all words’ weights and biases for the last word in the 

corpus in a backward pass.
• Brute force method can be used to cut off backward pass calculation after 

certain iterations. 



RNN Back propagation and Window size

• The number of iterations used to stop backward pass is called a 
window size.
• It is a system hyperparameter.

• Above figure shows back propagation through time with window size 
set to three.



RNN Batch size and Window size
STOP It is a small world

but I like it that way

STOP It is

but I like

a small world

it that way

• If the corpus is “It is a small world but I like it that way”,
• The batch size of two divides the sentence in half including STOP 

padding.
• Window size 3 divides the batch size so input would be batchSz

by window size.



RNN Tensorflow
rnn = tf.contrib.rnn.BasicRNNCell(rnnSz)

initialState = rnn.zero_state(batchSz, tf.float32)

Outputs, nextState = tf.nn.dynamic_rnn(rnn, embeddings, initial_state = 
initialState)

• First line adds recurrent network to the computation.
• RNN’s weight array is rnnSz.

• The last line calls RNN. It takes in three parameters and outputs two.
• The first parameter is rnn, the second is words divided in batchSz by 

windowSz and the last is the initial state which comes from the previous run.
• When the first call to RNN happens, there is no previous state so initial_state

is set to a dummy value.



RNN Tensorflow – cont’d

• The two outputs represents outputs and nextState.
• In previously shown RNN figure, outputs are represented as O1, O2 

and O3.
• Outputs has a shape of [batch-size, window-size, hidden-size].
• The first dimension represents the batch-size of words.
• The second dimension consists of O1, O2 and O3 for each word.
• The last is the vector of size rnn-size floats.

• nextState consists the last output from the current pass. The next 
pass will have initial_state set to nextState from the current pass.



RNN Tensorflow – cont’d

• The loss calculation can be done with little modification.
• As we know the output of RNN is a three dimensional array of [batch-

size, window-size, hidden-size].
• The output has to be reshaped for the next layer.

output2 = tf.reshape(output, [batchSz*windowSz, rnnSz])
logits = matmul(output2, W)

• The logits can be handed to 
tf.nn.sparse_softmax_cross_entropy_with_logits to get a column vector of 
loss values which then can be passed to tf.reduce_mean to get the loss 
value. This loss value can be exponentiated to get perplexity.



Long Short Term Memory NN

• A type of recurrent neural network which almost always outperforms 
simple recurrent neural network.
• RNN’s goal is to remember things from far back while simple RNN 

forgets things quickly.
• LSTM NN’s goal is to improve RNN’s memory of past by training it to 

remember important things and forget everything else.
tf.contrib.rnn.LSTMCell(runSz)

• LSTM takes longer to train than simple RNN.



LSTM RNN Diagram



LSTM RNN Diagram – cont’d

• On the left, we have information coming from previous word with 
two tensors.
• At bottom left, the next word is coming in and at top right, the 

information about next word probability and loss is coming out.
• Memories are removed at times units in the diagram and added back

at the plus units.
• Current word embedding goes through a layer of linear unit followed 

by sigmoid activation function.



LSTM RNN Diagram – cont’d
h’ = ht . e
f = S(h’Wf + bf)

• Center . presents the concatenation of vectors. Previous word line ht
and current word embedding e are concatenated to create h’ which is 
fed to forgetting unit to produce f.
• The output of the sigmoid function is multiplied element-wise with 

memory line c.
• As sigmoid output varies between 0 and 1, the multiplication must 

reduce the incoming absolute values.



LSTM RNN Diagram – cont’d

• The next stop is the plus unit where the word embedding has gone through 
two linear units prior to reaching here. 
• One is sigmoid function and the second is hyperbolic tangent (tanh) function.

a1 = S(h’Wa1 + ba1)
a2 = tanh ((ht . e)Wa2 + ba2)

• The result of this is added to the + unit.
ct+1 = c’t + (a1 . a2)

• After this, one copy goes out and the other goes to tanh function followed
by linear transformation of the more local history to become h line.

h” = h’Wh + bh
ht+1 = h” + a2


