Word Embeddings and
Recurrent NNs

Chapter 4 — (Introduction to Deep Learning)

Word Embedding for Language Models

* Language model is the probability distribution over all strings.

e Language translation programs need to identify differences in sentence from
one language to the other.

* Language model helps with the above idea.

* Sentences can be broken into words and probabilities of each word
following the previous can be counted.

e E.g. “We live in a small world”.
* P(We live in a small world) = P(We)P(live| We)P(in| We live) ...

Language Models

P(We live in a small world) = P(We)P(live| We)P(in|We live) ..

e Each word probability is calculated given all previous words are
present in a sentence.

* Not a practical approach, as sentences can be very long.

Bigram language model:

* Probability for each word in a sentence is calculated based on just the
previous word.

Word Embeddings

* Given a word in a vocabulary, a probability distribution of all other
words following the previous one can be created in a table.

* Using deep network for a word Wi, a reasonable probability
distribution can be calculated over possible next word.

* As deep network only work with floating numbers, each word can be
mapped to a vector of float which is called Word Embeddings.
* Each embedding is initialized as a vector of e floats.
* Here, e is the system hyperparameter

* For the number of of words are |V| then an array E is initialized to be
|V| by e to hold all word embeddings.

Feed Forward Network for Language Model

v

W.,b » O >

M

* Small square represents the input to the network, the integer index of
current word ei.

e Output of the network is the probability assignment for possible next
word.

* The layer E, converts the word index to the embedding and all
operations after that point are done on these embeddings.

Cosine similarity

* The cosine similarity of two vectors is a standard measure of how
close the vectors are.

* For a two dimensional vectors,

* if both vectors are pointing in same direction then the cosine similarity would
be 1.0.

* If both are pointing in opposite direction then it would be -1.0.
* If both vectors are orthogonal then cosine similarity would be 0.

* For arbitrary dimensions, cosine similarity can be calculated using,

X -

cos(x,y) = F— Y =2y
(\/(Zz 1:17 \/Zz lyz

Feed Forward Language Model

* First input for the NN is the word index. It is used to get the word
embedding E.

inpt=tf.placeholder(tf,int32, shape=[batchSz])
answr=tf.placeholder(tf.int32, shape=[batchSz])
E = tf.Variable(tf.random_normal ([vocabSz, embedSz],

std_dev = 0.1))
embed = tf.nn.embedding_lookup(E, inpt)

* In the above code, inpt points to the word indices.
* And, answr points to the correct similarity index for each word.

* E is the embedding lookup array of the size |V| by e.
* All future operations will be done on embed.

Feed Forward Language Model Loss

* In a language model, each training example is a word probability.
* The loss in a language model is calculated per word.

fld) =e

* Here if the corpus d of total words |d| has loss of xd then f(d)
represents the perplexity of the corpus d.

* As the training moves forward, the perplexity decreases.

5

(=8

|d|

Improving Language Model Efficiency

* Moving from a bigram language model to a trigram language model
can help improve the efficiency.

* The previous model used two words (bigram) to create the model.
That is each word is assigned probability based on the previous word.

* Trigram model calculates probability based on two previous words
rather than one.

* Below is the code to support trigram model along with bigram model,

embed2 = tf.nn.embedding lookup (E, inpt2)
both = tf.concat([embed, embed2], 1)

Overfitting

* An ideal training data set covers all possible test dataset samples.
* Improving the model efficiency on test dataset.

* Training samples do not always include all possible examples for test
dataset.

* Hence there is a chance of a good performance on training dataset by the
model

* The same model fails with high loss/perplexity on test dataset.
* This scenario is classified as overfitting of training dataset.

* Mnist dataset can be characterized as very ideal while PTB contains
the combination of handwritten words which has potential for
overfitting the training dataset.

Regularization

* Regularization is the modification to fix overfitting.

* Early stopping is a type of regularization.
* The model stops training when the development perplexity is the lowest.
* Not the best technique to fix overfitting.
* Dropout and L2 regularization are much better solutions.

Dropout Regularization

* Here pieces of computation is dropped randomly from one layer of the
network to the other.

* Next layer sees more zeros in random locations. This makes training data
different for each epoch.

* Classifier cannot depend on the coincidence of a lot of features of the data
lining up in a particular way so the generalization is better.

* Preferred method of regularization.

keepP = tf.placeholder (tf.float32)
wlOut = tf.nn.dropout (wlOut, keepP)

* KeepP is set to 0.5 for 50% dropout in training phase and 1.0 for testing
phase.

L2 Regularization

* In many machine learning overfitting problems are accompanied by
model parameters getting too large or too small.

* Seeing the same data again and again contributes to probabilities
being overestimated.

* This overestimate is achieved by large absolute weight values.

L2 Regularization adds a quantity proportional to the sum of squared
weights to the loss function.
* Following is added to the loss function in Tensorflow for [2

regularization.
0.1 * tf.nn.loss(W1l)

Recurrent Networks

* Recurrent Neural Networks are opposite of Feed forward NNs.

* |f feed forward NNs are directed acyclic graphs then recurrent neural
networks would be directed cyclic graphs.

* A part of the network’s output is feed as its own input.

Embedding

Recurrent Neural Network — cont’d

* The previous figure can be explained with below equations
So =0

st+1 = relu((et+1 . st) Wr + br)

O = st+1lWo + bo

* So represents state vector and its dimension is a hyperparameter.
* By concatenating the next st and feeding it to linear unit.
* The output is passed through relu activation function.

* Finally output o is obtained by feeding current state through second
linear unit.

e Loss is calculated on o.

RNN

* Recurrent Neural Networks are used when previous input requires to
influence arbitrarily far into the future.

* Language models are one of the cases where a word in a sentence
can have effects on other word choices.

* Current explanation makes the recurrent neural network approach
impractical.
* Not practical to change all words’ weights and biases for the last word in the
corpus in a backward pass.
* Brute force method can be used to cut off backward pass calculation after
certain iterations.

RNN Back propagation and Window size

* The number of iterations used to stop backward pass is called a
window size.

* It is a system hyperparameter.

E3:but

Et:small E2:world
f t

Ll Al

1 x r

llllllllll

* Above figure shows back propagation through time with window size
set to three.

RNN Batch size and Window size

STOP It is a small world
but I like it that way
STOP It is
but I like
a small world
it that way

e |f the corpus is “It is a small world but | like it that way”,

The batch size of two divides the sentence in half including STOP
padding.

Window size 3 divides the batch size so input would be batchSz
by window size.

RNN Tensorflow

rnn = tf.contrib.rnn.BasicRNNCell (rnnSz)

initialState = rnn.zero_state(batchSz, tf.float32)

Outputs, nextState
initialState)

* First line adds recurrent network to the computation.
* RNN’s weight array is rnnSz.

tf.nn.dynamic_rnn(rnn, embeddings, initial state =

* The last line calls RNN. It takes in three parameters and outputs two.

* The first parameter is rnn, the second is words divided in batchSz by
windowSz and the last is the initial state which comes from the previous run.

* When the first call to RNN happens, there is no previous state so initial_state
is set to a dummy value.

RNN Tensorflow — cont’d

* The two outputs represents outputs and nextState.

* In previously shown RNN figure, outputs are represented as 01, 02
and O3.
e Outputs has a shape of [batch-size, window-size, hidden-size].
* The first dimension represents the batch-size of words.
* The second dimension consists of 01, 02 and O3 for each word.
* The last is the vector of size rnn-size floats.

* nextState consists the last output from the current pass. The next
pass will have initial_state set to nextState from the current pass.

RNN Tensorflow — cont’d

* The loss calculation can be done with little modification.

* As we know the output of RNN is a three dimensional array of [batch-

size, window-size, hidden-size].
* The output has to be reshaped for the next layer.

output2 = tf.reshape (output, [batchSz*windowSz, rnnSz])

logits = matmul (output2, W)

* The logits can be handed to
tf.nn.sparse softmax cross entropy with logits 1O get a column vector of
loss values which then can be passed to t£.reduce mean to get the loss
value. This loss value can be exponentiated to get perplexity.

Long Short Term Memory NN

* A type of recurrent neural network which almost always outperforms
simple recurrent neural network.

* RNN’s goal is to remember things from far back while simple RNN
forgets things quickly.

* LSTM NN’s goal is to improve RNN’s memory of past by training it to
remember important things and forget everything else.

tf.contrib.rnn.LSTMCell (runSz)

* LSTM takes longer to train than simple RNN.

LSTM RNN Diagram

Wb
A
X + 1 R
g A T
‘ tanh
. {_' X
i ,
W,b,
W,b,S W,b,S tanh W,b,S X
%) % % A ¢ -

Word

LSTM RNN Diagram — cont’d

* On the left, we have information coming from previous word with
two tensors.

* At bottom left, the next word is coming in and at top right, the
information about next word probability and loss is coming out.

 Memories are removed at times units in the diagram and added back
at the plus units.

* Current word embedding goes through a layer of linear unit followed
by sigmoid activation function.

LSTM RNN Diagram — cont’d

h! = ht . e
f = S(h'Ws + bs)

* Center . presents the concatenation of vectors. Previous word line ht

and current word embedding e are concatenated to create h” which is
fed to forgetting unit to produce f.

* The output of the sigmoid function is multiplied element-wise with
memory line c.

* As sigmoid output varies between 0 and 1, the multiplication must
reduce the incoming absolute values.

LSTM RNN Diagram — cont’d

* The next stop is the plus unit where the word embedding has gone through
two linear units prior to reaching here.
* One is sigmoid function and the second is hyperbolic tangent (tanh) function.
air = S(h’'Wa1 + bai1)
az = tanh ((ht . e)Waz + ba2)

* The result of this is added to the + unit.

Ctt1 = ¢’'t + (a1 . az)

» After this, one copy goes out and the other goes to tanh function followed
by linear transformation of the more local history to become h line.

h” = h’Wn + bn

ht+1 = h” + a2

