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ABSTRACT 

 

 

YODA – Your Only Design Assistant 

 

 

By Siddharth Kulkarni 

 

 
Converting user interface designs created by graphic designers into computer code is a typical job 

of a front end engineer in order to develop functional web and mobile applications. This conversion 

process can often be extremely tedious, slow and prone to human error. In this project, deep 

learning based object detection along with optical character recognition is used to generate 

platform ready prototypes directly from design sketches. Also, a new design language is introduced 

to facilitate expressive prototyping and allowing the creation of more expressive and functional 

designs. It is observed that the AI powered application along with modern web technology can 

significantly help streamline and automate the overall product development routine and eliminate 

hurdles from the product development process. 

 

Index terms – Artificial Intelligence (AI), machine learning (ML), user interface (UI), 

Convolutional Neural Networks (CNN) 
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INTRODUCTION 

 

 
The user interface of an application involves the components that a user is presented with and 

interacts with directly on their screen.  It includes the basic components needed for a user to 

navigate across products and complete user tasks. Common UI components include: navigational 

and input controls, information containers, interactive elements such as buttons, toggles, dropdown 

and radio buttons. All successful products share significantly easy to user interfaces and are the 

primary contributor of incoming traffic and product usage. People are surprised by the impact the 

user interface of a product can have on its success or failure. It is the reason why almost all product 

companies today invest heavily in hiring designers and engineers to study, develop and improve 

their product interfaces. 

 

The user interface design process involves translating project requirements provided by customers 

and project managers to creative explorations in the form of mockups. These mockups are tested 

and finally converted to working prototypes by a user interface engineer. A lot a creativity that 

starts on a whiteboard where designers share ideas is translated into working HTML wireframes 

by a developer to play within a browser. Each of these steps takes significant domain specific 

expertise and effort which delays the design process.  

 

Only recently has the field of automatic program synthesis from visual, audio, textual inputs using 

machine learning techniques become popular. Though the generation of computer programs is an 

active research field, program synthesis from visual inputs is still a nearly unexplored research 

area. The closest related work is a method developed by Nguyen et al., to reverse-engineer Android 

user interfaces from screenshots. A number of research papers and literature have shown that deep 



neural networks are able to learn to describe objects in an image and their relationships with textual 

descriptions [1]. Most of these methods primarily use a Convolutional Neural Network (CNN) to 

map raw images into a learned representation using unsupervised learning. This is usually followed 

by the use of a Recurrent Neural Network (RNN) which perform language modeling on the textual 

description associated with the input picture using gradient descent for optimization [1].  

 

Airbnb researchers from the Google Brain team were able to train a machine to produce captions 

to describe images. The algorithm which used the Inception v2 image classification model with an 

accuracy of 98% actually tied for first place at the Microsoft COCO 2015 image caption challenge. 

They even went on to release the source code as a module for Tensorflow for public use and 

development. Recently an Inception v3 has also been released with significant performance and 

under the hood improvements.  

 

Pix2code [1] aims to generate from pixel values, variable length strings of text or tokens to form 

image captions. Tony Beltramelli [1] divides the problem into three subtasks: a computer visual 

problem, a language model and finally combining the results from previous two steps to infer scene 

understanding and object position and pose modelling. The author uses CNN’s to solve the 

computer vision problem. CNN’s perform well for unsupervised learning and can map feature set 

learned from input images into a latent vector space. To solve the language problem, the author 

uses LSTM instead of RNN to solve the vanishing gradient problem. LSTM are great for 

remembering information for a longer period of time unlike RNNs. The language model only 

focusses on the user interface layout, various components and finally their relationships. Their 

experiment results present an interesting incentive to use deep learning models over traditional AI 



and ML techniques due to using unsupervised learning which does not need any human labelled 

data. 

 

The objective of this research project was to develop deep learning techniques to improve interface 

generative/reconstruction using feature extraction with Artificial Intelligence models. Various 

object detection models and techniques were studied and finally the proposed solution consisting 

of a combination of object detection along with optical character recognition was used to achieve 

the artificially intelligent application. The object detector powered by YOLO is able to achieve 

real-time detection at 45 frames per second [16] making it suitable for use in an industry standard 

design assistant application. 

 

This report is organized in five different chapters. The first chapter deals with the problem 

statement, related work and contribution of this research project. The second chapter discusses the 

background needed to understand and implement the proposed solution. The third chapter talks in 

detail about the design and implementation process of the proposed solution followed by the 

Experimental Results in the fourth chapter. Finally, Chapter 5 concludes the report along with 

future work and direction. 

  



BACKGROUND 

 

 
This section discusses the background needed to understand and implement the User Interface 

Design Assistant powered by deep learning. This section has been divided into two sub sections – 

design and engineering. The first sub-section explores the topics of wireframes, prototypes, 

mockups and UI design systems. The engineering sub-section covers Neural Networks, 

convolutional neural networks, and the deep learning library darknet and optical character 

recognition with Tesseract. 

 

DESIGN 

 

 
Wireframes 

A design wireframe is a visual blueprint that represents the skeletal framework of a product. They 

are used to best accomplish a particular purpose of a product by arranging elements with a business 

objective yet remaining creative. The wireframe describes product layout w.r.t user interface 

elements, navigation and how various elements interact with each other. The primary focus of 

wireframes is in product functionality, priority of content and behavior and hence lacks emphasis 

on typography and any higher form of graphics. Wireframes are usually simple pen and paper 

based drawings or sketches. Teams of designers collaborate using designs on whiteboards and 

various commercial software applications available. Wireframes are created and used by many 

users across teams and platforms such as designers, developers, product managers and business 

analysts. 



 

 

Fig.1 Modern Mobile Prototypes 

Prototypes  

Design prototypes have a different set of requirements as compared to wireframes. The primary 

requirements being they must be of high fidelity, be interactive and as close in fit to the final user 

interface as possible. They are usually tested against a set of test user groups and can help save a 

lot of development time and money. Prototypes involve no HTML/CSS/JS and no considerations 

of server and database are made till this stage. Prototypes are often where designers share their 

work with developers for the first time and begin user interface discussions and back-end 



feasibility. There are various software tools which enable prototyping such as Mockplus, iDoc and 

UXPin.  

 

Fig.2 Mockup Example from [13] 

Mockups  

Mockups are used for the overall visual design of a product and can be considered as a "visual 

script". They usually have a far more richer visual and descriptive graphics than wireframes such 

as layout, color and visual presentation. Unlike prototypes, mockups are often static assets with 

focus on the appearance of the product rather than interaction. That often used for getting quick 

feedback and other improvements to the visual design. 



 

Fig.3 Fan made iOS UI Design System [13] 

 

UI design systems  

When companies become big enough where there are multiple design and front end teams across 

the company, UI design systems are used to enforce a common set of components which help 

manage design at scale. UI design system can apply to all digital products used by the company 

such as websites, ads, mobile applications, etc. There are various titles which come under the UI 

design sytem umbrella such as Pattern library, Modular design, Component design, Design 

language, User interface library. UI design systems can also be applied as a brand style and guide. 

There are various advantages to using UI design systems, such as: 

• Consistency 

• Scale 

• Cross Team Collaboration 

• Efficiency 

 



 

Neural Networks 

Neural Networks are a subfield of machine learning where algorithms modelled after the human 

brain are researched and developed. The human brain can be considered as a set of neurons 

interconnected to each other. Neurons are the basic building block and working unit of the nervous 

system. They are designed to transmit data or information received from other neurons to other 

neurons, muscles and glands. Their only function is to receive process and transmit information. 

These neurons receive input from another neuron or layer of neurons, process and forward these 

signals to other neurons. They are designed to recognize patterns by interpreting a combination of 

sensory data as input. They can be considered as models which help cluster and classify data which 

can be in the form of images, text, sound, etc converted or translated into numbers contained in 

vectors.  

 
Fig.4 Neuron – basic unit of a Neural Network[14] 

 

A node similar to a neuron is where some form of computation happens upon encountering 

significant stimuli. A node takes into consideration input data from previous nodes along with a 



set of weights which determine whether that signal needs to be amplified or dampened. As shown 

in Fig.4  input-weight products are summed and an activation function is applied to determine the 

extent to which signal must progress further. As shown in Fig.5 , this neural network has five 

layers and each node in a layer is connected to all nodes in the previous and next layer. 

 

 

 

Fig.5 Example of a Neural Network [14] 

 

Some of the applications of Neural Networks are: 

• Character Recognition 

• Image Compression 

• Stock Market Prediction 

• Traveling Salesman Problem 

• Autonomous Vehicles 

 

 



Object Detection with Convolutional Neural Networks 

The concept of Convolutional Neural Networks (CNN) comes from the field of digital signal 

processing where two signals are convoluted to form a resulting signal. In deep learning, 

convolution operations are used to mix information from multiple sources to get a desired output. 

The convolutional mathematical operation is the fundamental operation by which convolutional 

neural networks work. That is the reason why CNNs are used most popularly for computer vision 

tasks as they are close to how the human brain tries to understand and make sense of our vision 

and perception of our surroundings. Other applications are video analysis, natural language 

processing, health risk assessment, biomarkers of aging discovery and more. 

CNNs use a small window called a kernel or feature map to focus on a certain part of the input at 

a given time. This same window is used across the entire input data to identify various features 

and finally a pooling operation is applied on the convoluted output to get the extract the most 

important features. 

 

Fig.6 Kernel Operation on Input Image [14] 



As shown in Fig. 7 , the kernel is mapped across the input and a dot operation of the imposed 

image and kernel is applied. The same kernel now slides across the entire image and finally pooling 

operation is applied. Pooling layers are used to reduce the dimensionality of the data by combining 

the outputs of neuron clusters in a particular layer as a single neuron for the next layer. 

 

 

Fig.7 Convolutional Operation on sample Image [14] 

 

Optical Character Recognition 

Optical Character Recognition abbreviated as (OCR), is the conversion of images of printed, 

typewritten or handwritten text into digital machine-encoded text. It is often used for converting a 

physical source of truth such as a legal document, receipts, mail into a digital format for storing 

compactly, fast look ups and availability through the internet. OCR involves various fields such 

as computer vision, artificial intelligence and pattern recognition. 

 

Images are first scanned to convert the physical documents into their digital representation. The 

scanned image is then analyzed for dark and light regions. The light regions are identified as 

background elements while darker regions as text to recognized. Further processing is applied onto 

the dark regions to classify them as digits or alphabets. There are various algorithms for identifying 



characters and they can be classified into two either pattern recognition or feature detection. When 

a character is finally identified, it is converted into an ASCII code that is usable by computer 

systems.   

 

There are various applications of OCR such as: scanning printed documents, automated data entry, 

archiving historical information, sorting letters for mail delivery, etc. 

 

 

Fig.8 Example of OCR on Car License Place [15] 

 

 



DESIGN AND IMPLEMENTATION 

 

 
This section describes the new design prototyping language followed by the tools and libraries 

used for the experiments. The implementation can be divided depending on the technology stack 

they use primarily, user interface design language which is implemented on pen and paper, 

openframeworks which is a C++ wrapper for creative programming and finally the web stack 

consisting of HTML, CSS, JS and NodeJS. 

 

Environment and Openframeworks  

Openframeworks is an open source toolkit written in C++ on top of OpenGL with the purpose of 

“creative coding”. It was founded by Zachary Lieberman, Theo Watson and Arturo Castro and is 

maintained by contributions from the openFrameworks public community. Openframeworks was 

built to work as a general purpose tool and wraps around various other open source libraries such 

as GStreamer, OpenCV, Quicktime, Assimp, cairo and more. Openframeworks is massively cross-

platform with support for Linux, OSX, iOS, Windows, Android and the IDEs Visual Studio, 

xCode, Eclipse, Code::blocks and more. 

 

Additionally, developers have made available various plugins, extensions and libraries. An addon 

can be considered as code which extends openFrameworks functionality in some way or the other 

and make a complicated task simple and reusable for other programmers. Addons have been made 

for achieving tasks such as graphics, GUI, algorithms, animation, computer vision, machine 

learning, physics, sound, etc which can be found on ofxaddons.com. 

 

 



Doodle Classifier  

Doodle Classifier is an openFrameworks application which lets users train and classify a model to 

accurately recognize drawings or ‘doodles’ from a camera. It was originally used in a project called 

DoodleTunes by Gene Kogan and Andreas Refsgaard to classify hand draw musical instruments 

and generate music using Ableton Live. It was inspired by the research made by Jonas Jongejan et 

al. at the Google Creative Lab working on the QuickDraw app.  

 

 

Fig.9 Doodle Classifier Setup 

 

The setup is fairly simple and straight forward. A camera device is required, and works best when 

an overhead camera pointing downwards on a preferably white or lighter shade table is used. Also 

preferably a thick black marker should be used for the drawings as it helps distinguish elements 

better for the software. 

 



As the application starts, you can edit and add your own class names which the classifier should 

recognize. After the application has been trained, the classification and bounding box coordinates 

within the image are sent over Open Sound Control (OSC) to the IP address and port of your 

choosing. OSC is a protocol which enables encoding for multimedia applications such as 

communication among sound synthesizers, computers and other multimedia devices. 

 

Once a list of classes have been defined, the classifier now needs to be trained with as many 

examples of each class. More examples ensure higher accuracy rate of the classifier. As input, 

draw a few instances of the class you want to train on a piece of paper and place them under the 

camera. A couple of computer vision settings may need to be changed depending on the light 

settings of the room to ensure proper segmentation and identification. Fig.10 below is a screenshot 

from training the model to learn circles. 

 

 

 

Fig.10 Training classifier to learn Circles  



The various CV parameters that need to be adjusted are: 

• Threshold: this determines the brightness threshold which is used to separate the 

foreground and background  

• Dilations: this helps to dilate(thicken/thin) the discovered lines helping reducing 

fragmentation of shadows.  

• Min and Max area: these values can be adjusted to control the acceptable area for the 

application to allow for training or classification. 

 

After successful segmentation, the convolutional neural network analyzes the features of each 

doodle or drawing and saves the feature vector to memory. The images are displayed as below. 

 

 

Fig.11 Classifier trained on Circles 

 

Now this process will be repeated for all classes that the classifier needs to be trained on. An 

interesting question which rises is how many instances of each class need to be drawn and used 

for training. The answer being it depends heavily on the properties and quality of the image 



instances. Listed below are the characteristics which make classification harder and more 

complicated: 

- Increasing number of distinct classes 

- Variance between image instances in terms of design and aesthetic 

- Similarity index between two images i.e.. more similarity between two classes confuses the 

classifier even more. 

In our experiments, providing 5-10 samples of each class were sufficient to properly train the 

classifier. Now once training has been completed, provide new instances of a classification and let 

the application classify the image. After a while, the doodles will be segmented and class 

prediction made. All of the predictions along with important positional meta data is sent over the 

address in the form of a OSC message using the OSC communication protocol. Each OSC message 

consists of the name of the predicted class and four floats corresponding to the bounding box 

coordinates within the image.  

 

 

Fig.12 Classifier Predicting Circles and Stars 



For the purpose of YODA, a set of UI components need to be used to train the classifier. The UI 

components from the popular photo-sharing app Instagram were used as inspiration to build our 

needed component library. 

 

Fig.13 Instagram Mobile App Screenshots 

The components decided for the YODA are as follows: 

- Top-nav 

- Image-card 

- Bottom-nav 

- Search-bar 

- Profile-about 

- Image-grid 

- Activity 

- Message-list 

 

For each of these components, a simplified wireframe was made using a thick black sketch pen on 

a white piece of paper. It was seen that 4 instances of each component were good enough for 



significantly distinct components. Components such as the top-nav, bottom-nav, search-bar, etc 

needed more than 8 instances to properly train the classifier. 

 

 

 

 

Fig.14 Screenshot of sample UI Components 

 

 

 



Proposed Design Language 

Now that a simple UI component detection system has been setup, we are restricted with a set of 

components with inflexible properties. These components have pre-defined properties such as 

style, interactive user actions and can only be altered by manually making changes to the 

component code.  

 

A new prototyping design system is proposed which allows users to attach properties and build 

more complex components. Users can use predefined decorator followed by property definition. 

This enables users to still be able to rapidly design prototypes while abstracting away the technical 

complexity of user interfaces and focus more on the creative aspect of prototyping.  

 

Before the types of properties are described, it is important to mention how these properties can 

be added to existing UI wireframes. Designs usually contain simple shapes such as boxes, circles, 

simple lines and sometimes text to denote components. Each component can be assigned different 

properties; this means that a designer needs to embed these properties within the design inside 

each of these components. In this way, the detector knows which component to assign what 

properties to. For this prototyping system, we have decided that the top-right space inside a 

component is reserved for component level properties. The space right outside the main parent 

component is for parent/global level properties. 

 



 

Fig.15 Global vs Component Level Properties 

 

There are various possible properties that can be attached. Each of these properties can have a pre-

defined decorator which is a special symbol denoting property type followed by property value. 

Multiple property values for the same decorator can be separated by a comma. They are listed 

below: 

• Style ($): stylistic properties which affect border, text, background, margin, padding, etc. 

We can further pre-define sub-property decorators for each stylistic property value. Eg: BO 

for border, BA for background, C for color 

• Actions (#): event driven properties such as trigger a function, browser alert, interface 

navigation, etc. Example usecase is button press on page @1 which navigates to page @2. 



• Page definition (@): A subset of actions but more important for UI prototyping, page 

definitions can denote a reference to a component state. 

• User defined custom properties: Users can make their own decorators with meaning for 

their purposes. Eg: Annotation for component library stack used like react, angular or 

jquery. 

 

 

Fig.16 Example usage of property decorators 

 

 

 

 



Tesseract 

Tesseract is an open source project sponsored by Google for accomplishing simple Optical 

Character Recognition tasks with a significant success rate. Its OCR engine has support for over 

100 languages out of the box and can be trained to recognize other languages as well. Google uses 

the Tesseract OCR engine in its Gmail image spam detection algorithm, text-detection on mobile 

devices and video applications.  

 

For the purpose of YODA, a openFrameworks based wrapper ofxTesseract3 written by Wataru 

Kani is used for the Tesseract OCR engine. The installation steps and procedures can be found on 

my blog [12]. Tesseract OCR is applied on each detection sub-image and string result is attached 

to the meta-data in the OSC message and send to the web stack discussed ahead for further 

processing and rendering.  

 

#include "ofxTesseract.h" 

... 

ofxTesseract ocr; 

ofImage img; 

... 

ocr.setup(); 

ocr.setWhitelist("0123456789"); 

tess.setAccuracy(ofxTesseract::ACCURATE); 

img.loadImage("text.png"); 

string result = ocr.findText(img); 

cout << result << endl; 

 



Web Stack 

Once the classifier and Tesseract OCR engine have completed their task, all of component 

detections along with the required meta data is sent to the web stack of the project for live 

processing and rendering. 

 

A simple NodeJS web server is setup which listens and captures OSC messages sent from the 

openFrameworks application. Here the basic templates of components are read from the database 

to create simple skeleton structures of the components. Next, component nesting is determined 

based on the bounding box coordinates sent as meta-data. In modern UI design, usually 

components are built from a set of smaller components and this way nested components can be 

determined. Finally, the OCR detected text is captured and first scanned for decorators. These 

decorators are useful for categorizing properties such as styling, event handling and more. Once 

these decorators have been identified, the various properties are applied to the component. Also 

these templates can be stored on a database such as MongoDB for later review.  

 

Now that the properties have been applied and code has been formed for these components, they 

can be rendered live so that users can see what the results and what they are uploading.  

 

For the purpose of live rendering, web sockets are used to communicate with a simple JavaScript 

front end application. Here users can accept or reject the rendered UI design.  Additionally, users 

can see posts made by other users and add comments, likes and more similar to common photo-

sharing apps like Instagram and Facebook. 

 



 
 

 
Fig.17 Live rendering design to web page 

 



EXPERIMENTAL RESULTS 

 

 
The experiments were conducted with a set of around 10 UI components. A black sketch-pen was 

used on white pieces of paper and there was an even distribution of similar and distinct looking 

components. The Computer Vision settings were fixed as follows: 

- Min Area – 20.699 

- Max Area – 126.132 

- Threshold – 68.9541 

- Dilations – 2 

Experiments with Simple Components: 

A search bar component is selected since this has a very simple structure consisting of a large 

rectangle, a line and search icon. As show in Fig.18, the classifier was able to classify all instances 

of the component successfully. 

 

Fig.18 Predicting Search-Bar component 



Experiments with Complex Components: 

A profile bar component is selected for this example. As show in Fig.19, though the component 

looks very similar to the search-bar component, it has more complex features embedded such as a 

rectangle within a rectangle, a circle with a line and three more distinct lines. Again here, the 

classifier is able to successfully detect and recognize each instances of the drawing and provide 

the bounding box coordinates for each detection. 

 

 

Fig.19 Predicting Profile-bar component  

 

Note: the computer vision settings have been untouched and are the same used throughout all 

experiments.  

 

 

 

 



Experiments with Similar Components: 

In these experiments, similar looking components are showed to the classifier. The search-bar and 

profile-bar experiments are shown in Fig.20. The classifier is able to successfully predict 

component class and bounding box coordinates.  

 

 
 

Fig.20 Predicting similar looking components 

 

 

Note how the basic container or reactangle in this case is of near similar size. Apart from the 

profile-bar having a circle component and distinct search icon both contain rectangles and dashes. 

 

 

 

 

 



Experiments with Distinct Components: 

For these experiments components with significant distinct features were used. As shown in 

Fig.21, the image-grid component along with search-bar component are chosen due to difference 

in size, structure and basic component complexity. 

 

 

Fig.21 Predicting distinct components 

 

Both components have dashes and rectangles. The search-bar consists of a district search icon. The 

classifier is able to successfully detect and predict component class and provide meta-data about 

coordinates about position on bounding box.  

 

 

 

 



  

Tesseract OCR Experiments: 

 

For these experiments, a variation of tests were conducted. Both global and local properties were 

tested. Also the size of the handwritten text was varied to measure performance.  

Single Component: 

Here a single component was selected and only a single instance of properties was written on the 

designs.  

 

Fig.22 Single Component - Large and Small Text Example  

The image-grid component was selected and large text was used to describe component properties. 

The Tesseract OCR Engine was able to successfully detect and recognize the text written in the 

large example but failed for the smaller text. Also, examples where the handwritten text deviated 

from Printed style text, the detections were sometimes incorrect and classified as nearest similar 

looking character. 



Multiple Component: 

Here, text is written on more than one component. For the Fig.23, the top-nav and image-card 

components are used with properties written on the top-right side. 

 

 

Fig.23 Testing OCR with Multiple Components  

   

 
The OCR results were poor with complex symbols such as $ and @ unable to be recognized. Also 

characters spaced close to each other were often misclassified. The output for above Fig.23, were 

QAEOD and SI334 respectively from top to bottom. 



CONCLUSION AND FUTURE WORK 

 
The goal of this project was to develop an end-to-end design assistance tool (YODA) which would 

help generated code directly from user interface design sketches. Various state-of-the-art object 

detection and optical character recognition algorithms were researched and finally YOLO along 

with the Tesseract OCR Engine were used. Also a new design prototyping language compatible 

with YODA has been presented and implemented. 

 

The UI component classification task powered by YOLO was able to successfully distinguish 

between components of various size, complexity and shape. The Optical Character Recognition 

powered by Tesseract OCR Engine showed promising results but is still not mature enough to be 

integrated into a successful design assistant. Future research for using Tesseract would be applying 

more image pre-processing and using the deep learning LSTM implementation of the OCR Engine. 

This way, the OCR can be trained to recognize a user’s handwriting instead of trying to compare 

to printed block letters. The web stack of YODA can be improved to be made more user friendly 

and usable with the goal of it being used for designers to maintain history of UI designs, facilitate 

collaboration and add other features similar to popular modern photo-sharing socials applications. 

 

YODA has been demoed to various UI and AI Engineers at Google, Facebook and Airbnb with 

positive feedback and suggestions. Surprisingly, Airbnb actually have a similar internal tool 

powered by YOLO suggesting that the direction of YODA and its implementation is near state-of-

the-art and has a lot of potential.  
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