

AI Assisted User Interface Development

CS297 Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By

Siddharth Kulkarni

December, 2018

TABLE OF CONTENTS

I. Introduction...1

II. Deliverable 1: Tensorflow implementation of Drawing Classification................2

III. Deliverable 2: Hand drawn shape classification using Doodle Classifier............3

IV. Deliverable 3: UI Component Classification using Doodle Classifier.................4

V. Deliverable 4: Web Server to convert and render Component Detections...........4

VI. Conclusion...5

References..6

 AI ASSISTED USER INTERFACE DEVELOPMENT

1

Abstract

Converting a visual user interface design created by a designer into computer code is a typical job
of a user interface engineer in order to develop beautiful web and mobile applications. This
conversion process can often be extremely tedious, slow and prone to human error. In the coming
years technology such as deep learning will enable the design of expressive and intuitive products
while eliminating hurdles from the product development process. This report aims to understand
the various artificial intelligence assistant techniques explored by researchers in this field. It will
help streamline and automate the overall product development routine by generating platform
ready prototypes directly from design sketches.

Index terms – Artificial Intelligence (AI), machine learning (ML), user interface (UI),
Convolutional Neural Networks (CNN)

 AI ASSISTED USER INTERFACE DEVELOPMENT

2

I. Introduction

The User interface design process involves translating project requirements provided by customers
and project managers to creative explorations in the form of mockups. These mockups are tested
and finally converted to working prototypes by a User Interface Engineer. A lot a creativity that
starts on a whiteboard where designers share ideas is translated into working HTML wireframes
by a developer to play within a browser. Each of these steps takes significant domain specific
expertise and effort which delays the design process. My deep learning powered solution aims to
streamline overall user interface development by generating prototypes directly from design
sketches.

Only recently has the field of automatic program synthesis from visual, audio, textual inputs using
machine learning techniques become popular. Though the generation of computer programs is an
active research field, Program Synthesis from visual inputs is still a nearly unexplored research
area. The closest related work is a method developed by Nguyen et al, to reverse-engineer Android
user interfaces from screenshots. A number of research papers and literature have shown that deep
neural networks are able to learn to describe objects in an image and their relationships with textual
descriptions [1]. Most of these methods primarily use a Convolutional Neural Network (CNN) to
map raw images into a learned representation using unsupervised learning. This is usually followed
by the use of a Recurrent Neural Network (RNN) which perform language modeling on the textual
description associated with the input picture using gradient descent for optimization [1].

Airbnb Researcher from the Google Brain team were able to train a machine to produce captions
to describe images. The algorithm actually tied for first place at the Microsoft COCO 2015 image
caption challenge. They even went on to release the source code as a module for Tensorflow for
public use and development. Their system used the inception v2 image classification model with
an accuracy of 98%. Recently an inception v3 has also been released with significant performance
and under the hood improvements.

Pix2code [1] aims to generate from pixel values, variable length strings of text or tokens to form
image captions. Tony Beltramelli [1] divides the problem into three subtasks: a computer visual
problem, a language model and finally combining the results from previous two steps to infer scene
understanding and object position and pose modelling. The author uses CNN’s to solve the
computer vision problem. CNN’s perform well for unsupervised learning and can map feature set
learned from input images into a latent vector space. To solve the language problem the author
uses LSTM instead of RNN to solve the vanishing gradient problem. LSTM are great for
remembering information for a longer period of time unlike RNNs. The language model only
focusses on the user interface layout, various components and finally their relationships. Their
experiment results present an interesting incentive to use deep learning models over traditional AI
and ML techniques due to using unsupervised learning which does not need any human labelled
data.

The objective of this semesters research was directed towards deep learning techniques to improve
interface generative/reconstruction using feature extraction with Artificial Intelligence models.
Deliverable 1 will cover Google’s Tensorflow implementation of Drawing Classification while
Deliverable 2 and 3 explore Shape and component classification using Doodle Classifier.
Deliverable 4 describes a web server to receive component classifications with information about
width and height of bounding boxes and other meta information.

 AI ASSISTED USER INTERFACE DEVELOPMENT

3

II. Deliverable 1: Tensorflow implementation of Drawing Classification

This deliverable consisted of researching and implementing Google’s Tensorflow implementation
of Recurrent Neural Networks for Drawing Classification. The recognition is performed by a
classifier that takes the user input, given as a sequence of strokes of points in x and y, and
recognizes the object category that the user tried to draw.

The model uses a combination of convolutional layers, LSTM layers, and a softmax output layer
as shown below to classify the drawings:

The input is a drawing that is encoded as a sequence of strokes of points in x, y, and n, where n
indicates whether a the point is the first point in a new stroke.Then, a series of 1-dimensional
convolutions is applied. Then LSTM layers are applied and the sum of the outputs of all LSTM
steps is fed into a SoftMax layer to make a classification decision among the classes of drawings
that we know.

Run the code:

1) Install Tensorflow
2) Download the deliverable 1 code
3) Execute the code with the following command to train the RNN-based model.

python train_model.py \
 --training_data=rnn_tutorial_data/training.tfrecord-?????-of-????? \

 --eval_data=rnn_tutorial_data/eval.tfrecord-?????-of-????? \

 --classes_file=rnn_tutorial_data/training.tfrecord.classes

 AI ASSISTED USER INTERFACE DEVELOPMENT

4

III. Deliverable 2: Hand drawn shape classification using Doodle Classifier

DoodleClassifier is an openFrameworks application, part of the ml4a-ofx collection, which lets
you train a classifier to accurately recognize drawings (“doodles”) from a camera. It was first used
in a project called DoodleTunes by Andreas Refsgaard and Gene Kogan, which used the app to
recognize doodles of musical instruments and turn them into music being made in Ableton Live.

In this deliverable, we train doodle Classifier to learn to recognize and classifiy simple hand drawn
shapes such as triangles, circles and stars.

DoodleClassifier is quick and easy to set up. It’s also advised to use thick markers rather than
pencils or pens, because the lines can be more easily distinguished by the software. Take 4 sheets
of paper. On three of these sheets draw circles, triangles and stars. On the 4th sheet draw a mix of
stars, circles and triangles. Before launching the app, review and adjust the settings, which can be
found in the file settings_doodleclassifier.xml. In that file, you must define the classes you’d like
for the app to recognize. By default, they are circle, star, and arrow, but you may change those and
have as many different classes as you’d like.

During training, you are giving the app as many examples of each class as you can. The first slider
at the top of the GUI lets you select one of your defined classes as the active class. On a piece of
paper, draw some instances of that class and put them underneath the camera. You will probably
need to adust the computer vision settings to properly identify and segment them. A screenshot
from drawing some instances of circles, and an explanation of what the CV parameters do is given
below.

The CV parameters are found at the bottom of the GUI. The first slider you should adjust is the
Threshold which determines the brightness threshold by which to separate the foreground from
background content. Here you may have to adjust your physical setup to minimize the influence
of shadows, which may interfere with this process. An overhead light may be helpful. The
Dilations slider dilates (thickens) the discovered lines, and may help reduce fragmentation of found
instances.

Finally, the Min area and Max area sliders control the acceptable range of sizes of drawn instances
to allow. If you set Min area too low, you may have a lot of spurious doodles discovered. The ideal

 AI ASSISTED USER INTERFACE DEVELOPMENT

5

is to have segmented your doodles (inside the green rectangles), but not anything else, which may
corrupt your classifier. The screenshot above is an example of successful segmentation. When you
have achieved this with your first class, click Add samples, and after a moment, during which a
convnet analyzes the features of each doodle and saves the feature vector to memory, the samples
will appear below the camera images. For example:

Now repeat this process with all of your classes, by moving the first slider in the GUI to each class
in order, and drawing instances of that class underneath the camera, and clicking Add samples.
Once you are ready, click Train in the interface, and wait for the training to complete. This may
take anywhere from a few seconds to a few minutes depending on the complexity of your dataset.
Once training has completed, you can classify new images. Draw some instances of your class,
put them under the camera, and click Classify. After a moment, it will segment your doodles as
before, and predict which classes they belong to. It will instantly send each predicted class as an
OSC message to the address given in the settings, where the value of the OSC message is a string
corresponding to the name of the predicted class, and four floats corresponding to the x, y, width,
and height of the bounding box.

 AI ASSISTED USER INTERFACE DEVELOPMENT

6

IV. Deliverable 3: UI Component Classification using Doodle Classifier Conclusion

In this deliverable we continue on the work developed in the previous deliverable. Here we train
doodle classifier against UI components for classification.

We first define a set of components to train the classifier against. I took inspiration from the
Instagram mobile app to define these components which were the ‘top-navigation’, ‘stories’,
‘image card’, ‘bottom-nav’. We draw each of these components on single sheets of paper using
thick black markers. We then proceed to train the doodle classifier against each of the classes and
repeat the process as defined in above deliverable.

 AI ASSISTED USER INTERFACE DEVELOPMENT

7

V. Deliverable 4: Web Server to convert and render Component Detections

In this deliverable, we build a web server to receive information regarding the detections made.
The web server is built using NodeJS which is a JavaScript runtime built on Chrome's V8
JavaScript engine. The web server uses the OSC (open sound control) protocol to receive data
from the doodle classifier. Open Sound Control (OSC) is a protocol for communication among
computers, sound synthesizers, and other multimedia devices that is optimized for modern
networking technology. Bringing the benefits of modern networking technology to the world of
electronic musical instruments, OSC's advantages include interoperability, accuracy, flexibility,
and enhanced organization and documentation.

Once the classifier has been trained, the class and bounding box rectangle are sent over OSC (open
sound control), to the IP address and port specified in the settings file, localhost:5000 by default,
using the address \classification. You may change these accordingly, and will easily send to
another computer over the same network if you change the IP address. The precise order of the
info it sends for each detected object is: class (string), x-position (float), y-position (float), width
of rectangle (float), and height of rectangle (float).

After receiving input from doodle classifier over OSC, the web server renders these detections on
a web page to present to the user.

 AI ASSISTED USER INTERFACE DEVELOPMENT

8

Classifications are rendered on a web page in real time.

 AI ASSISTED USER INTERFACE DEVELOPMENT

9

VI. Conclusion

The CS297 report identifies and talks about how researchers and designers are developing
numerous solutions for improving the user interface design process. Updating the UI design
process has been long overdue and the recent advancements in AI and ML especially with the help
of deep learning have been significant towards the research of this field. [1], [2] and [3] research
about CNN’s and how they can be used to capture visual features from images or videos. [1] goes
on to mention the use of RNN or a combination of CNN and LSTM to work with a sequence of
images instead of a static screenshot. Finally in [5], Vinyals et.al discuss generating text captions
from images and how they can be used to possible generate descriptions of user interface
components to reconstruct entire interfaces.

Generating computer code from a graphical user interface input in the form of an image is a very
new research topic. Advancements in AI and ML will only propel this research more. The only
drawback found was the lack of training data. AI algorithms require data in the order of millions
to be able to reach general accuracy. [1] discusses training these algorithms without the need for
human labelled data which can be researched more since this can help cut down training and
application deployment significantly.

In CS298, I will be working on improving UI component detection by fine tuning various
hyperparameters followed by building up on Deliverable 4 to develop a refined and easy-to-use
end-to-end AI assisted UI development pipeline.

 AI ASSISTED USER INTERFACE DEVELOPMENT

10

References

[1] Beltramelli, T. (2018). “pix2code: Generating Code from a Graphical User Interface
Screenshot.” [online] Arxiv.org. Available at: https://arxiv.org/abs/1705.07962 [Accessed 2 Nov.
2018].

[2] O'Shea, K. and Nash, R. (2018). “An Introduction to Convolutional Neural Networks.“
[online] Arxiv.org. Available at: https://arxiv.org/abs/1511.08458 [Accessed 2 Nov. 2018].

[3] Liu, X., Chen, Q., Wu, X., Liu, Y. and Liu, Y. (2018). CNN based music emotion
classification. [online] Arxiv.org. Available at: https://arxiv.org/abs/1704.05665 [Accessed 2
Nov. 2018].

[4] Donahue, J., Hendricks, L., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K. and
Darrell, T. (2018). “Long-term Recurrent Convolutional Networks for Visual Recognition and
Description.” [online] Arxiv.org. Available at: https://arxiv.org/abs/1411.4389 [Accessed 2 Nov.
2018].

[5] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). “Show and tell: A neural image
caption generator.” 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 3156-3164.

[6] Mankar, Vijay & G Bhele, Sujata. (2012). “A Review Paper on Face Recognition
Techniques.” International Journal of Advanced Research in Computer Engineering &
Technology. 1. 339-346.

[7] S. Shwartz and S. David, “Understanding machine learning from theory to algorithms”,
publication date: February 2014. [online] Available:
http://www.cs.huji.ac.il/~shais/understanding-machine-learning-theory-algorithms.pdf.

[8] A. Tuguai and R.Xing, “Reflections on the limits of artificial intelligence”, in Ubiquity, New
York, NY, USA, article 3, pages 2, publication date: December 2004, DOI:
10.1145/1041062.1041064

[9] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning
to write programs. arXiv preprint arXiv:1611.01989, 2016.

[10] A. L. Gaunt, M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Taylor, and D. Tarlow.
Terpret: A probabilistic programming language for program induction. arXiv preprint
arXiv:1608.04428, 2016.

 AI ASSISTED USER INTERFACE DEVELOPMENT

11

[11] W. Ling, E. Grefenstette, K. M. Hermann, T. Kocisk ˇ y, A. Senior, F. Wang, and P.
Blunsom. ` Latent predictor networks for code generation. arXiv preprint arXiv:1603.06744,
2016.

