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Abstract 
 
Converting a visual user interface design created by a designer into computer code is a typical job 
of a user interface engineer in order to develop beautiful web and mobile applications. This 
conversion process can often be extremely tedious, slow and prone to human error. In the coming 
years technology such as deep learning will enable the design of expressive and intuitive products 
while eliminating hurdles from the product development process. This report aims to understand 
the various artificial intelligence assistant techniques explored by researchers in this field. It will 
help streamline and automate the overall product development routine by generating platform 
ready prototypes directly from design sketches. 
 
Index terms – Artificial Intelligence (AI), machine learning (ML), user interface (UI), 
Convolutional Neural Networks (CNN) 
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I. Introduction 
 
The User interface design process involves translating project requirements provided by customers 
and project managers to creative explorations in the form of mockups. These mockups are tested 
and finally converted to working prototypes by a User Interface Engineer. A lot a creativity that 
starts on a whiteboard where designers share ideas is translated into working HTML wireframes 
by a developer to play within a browser. Each of these steps takes significant domain specific 
expertise and effort which delays the design process. My deep learning powered solution aims to 
streamline overall user interface development by generating prototypes directly from design 
sketches. 
 
Only recently has the field of automatic program synthesis from visual, audio, textual inputs using 
machine learning techniques become popular. Though the generation of computer programs is an 
active research field, Program Synthesis from visual inputs is still a nearly unexplored research 
area. The closest related work is a method developed by Nguyen et al, to reverse-engineer Android 
user interfaces from screenshots. A number of research papers and literature have shown that deep 
neural networks are able to learn to describe objects in an image and their relationships with textual 
descriptions [1]. Most of these methods primarily use a Convolutional Neural Network (CNN) to 
map raw images into a learned representation using unsupervised learning. This is usually followed 
by the use of a Recurrent Neural Network (RNN) which perform language modeling on the textual 
description associated with the input picture using gradient descent for optimization [1].  
 
Airbnb Researcher from the Google Brain team were able to train a machine to produce captions 
to describe images. The algorithm actually tied for first place at the Microsoft COCO 2015 image 
caption challenge. They even went on to release the source code as a module for Tensorflow for 
public use and development. Their system used the inception v2 image classification model with 
an accuracy of 98%. Recently an inception v3 has also been released with significant performance 
and under the hood improvements.  
 
Pix2code [1] aims to generate from pixel values, variable length strings of text or tokens to form 
image captions. Tony Beltramelli [1] divides the problem into three subtasks: a computer visual 
problem, a language model and finally combining the results from previous two steps to infer scene 
understanding and object position and pose modelling. The author uses CNN’s to solve the 
computer vision problem. CNN’s perform well for unsupervised learning and can map feature set 
learned from input images into a latent vector space. To solve the language problem the author 
uses LSTM instead of RNN to solve the vanishing gradient problem. LSTM are great for 
remembering information for a longer period of time unlike RNNs. The language model only 
focusses on the user interface layout, various components and finally their relationships. Their 
experiment results present an interesting incentive to use deep learning models over traditional AI 
and ML techniques due to using unsupervised learning which does not need any human labelled 
data. 
 
The objective of this semesters research was directed towards deep learning techniques to improve 
interface generative/reconstruction using feature extraction with Artificial Intelligence models. 
Deliverable 1 will cover Google’s Tensorflow implementation of Drawing Classification while 
Deliverable 2 and 3 explore Shape and component classification using Doodle Classifier. 
Deliverable 4 describes a web server to receive component classifications with information about 
width and height of bounding boxes and other meta information.  
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II. Deliverable 1: Tensorflow implementation of Drawing Classification 
 

This deliverable consisted of researching and implementing Google’s Tensorflow implementation 
of Recurrent Neural Networks for Drawing Classification. The recognition is performed by a 
classifier that takes the user input, given as a sequence of strokes of points in x and y, and 
recognizes the object category that the user tried to draw. 
 
The model uses a combination of convolutional layers, LSTM layers, and a softmax output layer 
as shown below to classify the drawings: 
 

 
 
The input is a drawing that is encoded as a sequence of strokes of points in x, y, and n, where n 
indicates whether a the point is the first point in a new stroke.Then, a series of 1-dimensional 
convolutions is applied. Then LSTM layers are applied and the sum of the outputs of all LSTM 
steps is fed into a SoftMax layer to make a classification decision among the classes of drawings 
that we know. 
 
Run the code: 

1) Install Tensorflow 
2) Download the deliverable 1 code 
3) Execute the code with the following command to train the RNN-based model. 

 

python train_model.py \ 
    --training_data=rnn_tutorial_data/training.tfrecord-?????-of-????? \ 

    --eval_data=rnn_tutorial_data/eval.tfrecord-?????-of-????? \ 

    --classes_file=rnn_tutorial_data/training.tfrecord.classes 
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III. Deliverable 2: Hand drawn shape classification using Doodle Classifier 
 

DoodleClassifier is an openFrameworks application, part of the ml4a-ofx collection, which lets 
you train a classifier to accurately recognize drawings (“doodles”) from a camera. It was first used 
in a project called DoodleTunes by Andreas Refsgaard and Gene Kogan, which used the app to 
recognize doodles of musical instruments and turn them into music being made in Ableton Live.  
 
In this deliverable, we train doodle Classifier to learn to recognize and classifiy simple hand drawn 
shapes such as triangles, circles and stars. 
 
DoodleClassifier is quick and easy to set up. It’s also advised to use thick markers rather than 
pencils or pens, because the lines can be more easily distinguished by the software. Take 4 sheets 
of paper. On three of these sheets draw circles, triangles and stars. On the 4th sheet draw a mix of 
stars, circles and triangles. Before launching the app, review and adjust the settings, which can be 
found in the file settings_doodleclassifier.xml. In that file, you must define the classes you’d like 
for the app to recognize. By default, they are circle, star, and arrow, but you may change those and 
have as many different classes as you’d like. 
 
During training, you are giving the app as many examples of each class as you can. The first slider 
at the top of the GUI lets you select one of your defined classes as the active class. On a piece of 
paper, draw some instances of that class and put them underneath the camera. You will probably 
need to adust the computer vision settings to properly identify and segment them. A screenshot 
from drawing some instances of circles, and an explanation of what the CV parameters do is given 
below. 
 

 
 
The CV parameters are found at the bottom of the GUI. The first slider you should adjust is the 
Threshold which determines the brightness threshold by which to separate the foreground from 
background content. Here you may have to adjust your physical setup to minimize the influence 
of shadows, which may interfere with this process. An overhead light may be helpful. The 
Dilations slider dilates (thickens) the discovered lines, and may help reduce fragmentation of found 
instances. 
 
Finally, the Min area and Max area sliders control the acceptable range of sizes of drawn instances 
to allow. If you set Min area too low, you may have a lot of spurious doodles discovered. The ideal 
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is to have segmented your doodles (inside the green rectangles), but not anything else, which may 
corrupt your classifier. The screenshot above is an example of successful segmentation. When you 
have achieved this with your first class, click Add samples, and after a moment, during which a 
convnet analyzes the features of each doodle and saves the feature vector to memory, the samples 
will appear below the camera images. For example: 
 
 

 
 
 
Now repeat this process with all of your classes, by moving the first slider in the GUI to each class 
in order, and drawing instances of that class underneath the camera, and clicking Add samples. 
Once you are ready, click Train in the interface, and wait for the training to complete. This may 
take anywhere from a few seconds to a few minutes depending on the complexity of your dataset.  
Once training has completed, you can classify new images. Draw some instances of your class, 
put them under the camera, and click Classify. After a moment, it will segment your doodles as 
before, and predict which classes they belong to. It will instantly send each predicted class as an 
OSC message to the address given in the settings, where the value of the OSC message is a string 
corresponding to the name of the predicted class, and four floats corresponding to the x, y, width, 
and height of the bounding box. 
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IV. Deliverable 3: UI Component Classification using Doodle Classifier Conclusion 
 

In this deliverable we continue on the work developed in the previous deliverable. Here we train 
doodle classifier against UI components for classification. 
 
We first define a set of components to train the classifier against. I took inspiration from the 
Instagram mobile app to define these components which were the ‘top-navigation’, ‘stories’, 
‘image card’, ‘bottom-nav’. We draw each of these components on single sheets of paper using 
thick black markers. We then proceed to train the doodle classifier against each of the classes and 
repeat the process as defined in above deliverable. 
 
 

 
 

 



 AI ASSISTED USER INTERFACE DEVELOPMENT 

   
 

7 
 

V. Deliverable 4: Web Server to convert and render Component Detections 
 

In this deliverable, we build a web server to receive information regarding the detections made. 
The web server is built using NodeJS which is a JavaScript runtime built on Chrome's V8 
JavaScript engine. The web server uses the OSC (open sound control) protocol to receive data 
from the doodle classifier. Open Sound Control (OSC) is a protocol for communication among 
computers, sound synthesizers, and other multimedia devices that is optimized for modern 
networking technology. Bringing the benefits of modern networking technology to the world of 
electronic musical instruments, OSC's advantages include interoperability, accuracy, flexibility, 
and enhanced organization and documentation. 
 
Once the classifier has been trained, the class and bounding box rectangle are sent over OSC (open 
sound control), to the IP address and port specified in the settings file, localhost:5000 by default, 
using the address \classification. You may change these accordingly, and will easily send to 
another computer over the same network if you change the IP address. The precise order of the 
info it sends for each detected object is: class (string), x-position (float), y-position (float), width 
of rectangle (float), and height of rectangle (float). 
 
After receiving input from doodle classifier over OSC, the web server renders these detections on 
a web page to present to the user. 
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Classifications are rendered on a web page in real time. 
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VI. Conclusion 

 
The CS297 report identifies and talks about how researchers and designers are developing 
numerous solutions for improving the user interface design process. Updating the UI design 
process has been long overdue and the recent advancements in AI and ML especially with the help 
of deep learning have been significant towards the research of this field. [1], [2] and [3] research 
about CNN’s and how they can be used to capture visual features from images or videos. [1] goes 
on to mention the use of RNN or a combination of CNN and LSTM to work with a sequence of 
images instead of a static screenshot. Finally in [5], Vinyals et.al discuss generating text captions 
from images and how they can be used to possible generate descriptions of user interface 
components to reconstruct entire interfaces. 
 
Generating computer code from a graphical user interface input in the form of an image is a very 
new research topic. Advancements in AI and ML will only propel this research more. The only 
drawback found was the lack of training data. AI algorithms require data in the order of millions 
to be able to reach general accuracy. [1] discusses training these algorithms without the need for 
human labelled data which can be researched more since this can help cut down training and 
application deployment significantly.   
 
In CS298, I will be working on improving UI component detection by fine tuning various 
hyperparameters followed by building up on Deliverable 4 to develop a refined and easy-to-use 
end-to-end AI assisted UI development pipeline.  
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