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Introduction

● Objective:  Detecting cars in a parking lot
● Solution:  Convolutional Neural Net (CNN) single-shot detector



Technical Challenges

1. Detection of dozens of objects in an image with variable size, color, pose, 
depth, and occlusion

2. Obtaining thoroughly annotated and accurate training data
3. Effective data compilation and validation tool
4. Implementation and maintenance of a complex detection model
5. Practical application of a parking lot car detector



Car Detection

● Two part problem
○ Classification - there is a car in these pixels
○ Localization - these pixels are significant

● Detection - these pixels within this image = car



Car Detection:  Iconic Example



Other Iconic Detection Examples



Background



CNN Engineering



Building Blocks of the CNN

● Convolution → apply a weighted kernel (i.e., filter) across an input tensor to 
derive feature maps. 

● Convolutional Layer
○ Convolution transformation
○ Non-linear activation function
○ Pooling Layer

● Kernel
● Stride
● Padding



Convolution Layer Breakdown



Intersection over Union (IOU)

● Objectness score.
● Comparison of the predicted box to the ground truth one.

IOU = Area of Intersection / Total Area



Poor IOU



Excellent IOU



Anchor Boxes

● Simplify bounding box regression.
● Compute IOU based on predetermined anchor boxes instead of the ground 

truth boxes.
● Predict multiple classes at the same centroid pixel. 



Anchor Boxes Derivation

● Derived from k-means clustering of ground truth bounding boxes.
● Determines centroids based on the labeled dataset’s height and width 

parameters.
● No association of (x, y) positions in the image are accounted for.



Anchor Boxes Example



Anchor Boxes Example



Non-max Suppression

● Bounding box regression approach.
● Maximize intersection of predicted over ground truth bounding boxes.
● Discard excess bounding boxes of high similarity (IOU).



Non-max Suppression



You Only Look Once (YOLO)

● Fully convolutional net → faster and less memory heavy than a fully 
connected net.

● Performs classification and localization in the same step → faster than 
multi-stage deep learning models.



YOLO v2 - Faster, Better

● Switched to anchor boxes and NMS for detection regression.
● Optimal runtime with Darknet-19 feature extraction CNN.
● Single detection layer for cars



YOLO v3 - Three Layers of Detection

● Much deeper feature extraction → higher accuracy, but slower runtime.
● Three detection layers routing different feature maps from the Darknet-53 

feature extraction portion. 
● Detects cars at different depths.



YOLO v3



Implementation



Vision

● Open CV Docker application for parking lot data compilation, processing, 
and validation.

● Compilation → uniform format for training the CNN models
● Validation → verify accuracy of the ground truth labeling



Vision:  Open CV

● Computer Vision framework with Python bindings.
● Highly optimized in C.
● Installed binaries from the framework → wreak havoc with the host machine’s 

potentially existing versions of those executables or libraries.



Vision:  Docker

● Linux containerization as a service.
● Safely install and execute Open CV within the Docker application. Host 

machine’s existing programs are untouched. 
● Concise syntax and well documented features.



Vision Architecture



Vision:  Bounding Box Annotation



Vision:  Bounding Box Annotation



Research Environment

● Pytorch deep learning application powered by NVIDIA’s CUDA GPU 
integration.

● Models defined in configuration (cfg) files.
● Factory-like Pytorch logic generates a model and its layers.



Research Environment Architecture



Research Environment:  Pytorch

● Pytorch is a Python deep learning framework for research and production. 
● Flexible & concise syntax abstracts away enough lower-level logic involving 

neural nets.
● Imperative execution → easily debug as deep learning scripts are executed.
● Seamless & straightforward integration with NVIDIA CUDA framework.



Research Environment:  Model Configurations

● Standardized file format (cfg) to represent model definitions.
● Blocks contain hyperparameters or layer-specific parameters.
● Used throughout the deep learning community → independent of language 

or framework 



Skynet:  Practical Application

● Docker application to execute statistical analysis on detection results.
● Invokes the Research Environment’s Pytorch Detector, though it is decoupled 

from the core training environment.
● Executable on a device with or without a GPU.



Skynet:  Car Count Time Series

● Car detection across several images over time.
● Plots car counts in the parking lot over time. 



Experiments & Results



Training Data

● CARPK
○ Top-down drone captured parking lot images
○ Cars have different poses but same sizes
○ Minimal occlusion
○ Fully annotated ground truth bounding boxes

● CNR
○ Fixed camera angle covering the parking lot
○ Cars have different poses and depth
○ More occlusions behind trees and other cars
○ Not all cars are labeled with bounding boxes



Input Image Example



Input Image Example



Models

● YOLO v2 (Darknet-19 + one detection layer)
● YOLO v3 (Darknet-53 + three detection layers)
● Modified YOLO v3 (Darknet-53 + four detection layers)



YOLO v2:  One Detection Layer

● Single detection layer with anchor boxes.
● Fastest of the CNN models in this project due to having the fewest layers.
● Least accurate because of single detection layer.



CNN Detection Result:  YOLO v2



CNN Detection Result:  YOLO v2



YOLO v3:  Triple the Detection Layers

● Designed to detect a range of differently sized objects.
● Three detection layers at different levels of upsample.
● Routing layers concatenate a feature map with the “current” tensor.



CNN Detection Result:  YOLO v3



CNN Detection Result:  YOLO v3



Modified YOLO v3:  Fourth Detection Layer

● Same Darknet-53 feature extraction portion.
● Routed a fourth feature map to a corresponding fourth detection layer. 
● Computed additional anchor boxes.



CNN Detection Result:  4th Detection Layer



CNN Detection Result:  4th Detection Layer



CNN Detection Results Evolution



YOLO v2 YOLO v3 YOLO the 4th



YOLO v2 YOLO v3

YOLO the 4th



Skynet Demo

https://www.youtube.com/watch?v=3brf_r1hnr0&t=38s

https://www.youtube.com/watch?v=3brf_r1hnr0&t=38s


Conclusions

● Final results with the fourth detection layer modified YOLO CNN
● Research Environment:  Overall parking lot car detection

○ Top-down detection is near-perfect 
○ Fixed-camera detection progressively improves with more detection layers

● Skynet:  Parking lot capacity monitoring
○ Top-down drone coverage is most ideal in detection accuracy
○ Fixed-angle is effective at parking lot capacity monitoring



Next Steps

● More comprehensively labeled parking lot datasets
● Beyond Darknet-53 → Deeper feature extraction portion
● Skynet video stream support
● Skynet web application
● Beyond parkings lots → inventory management 



Thank You
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Appendix B - Convolution Detailed Overview

● Vertical edge detection example
● Detailed look at padding and stride
● Convolution vs cross-correlation 



Appendix B - Vertical Edge Detection Example



Appendix B - Padding & Stride



Appendix B - Convolution vs Cross-Correlation

● Convolution in mathematics literature refers to a slightly different operation 
than Convolution done in deep learning

● Convolution in deep learning ~ Cross-correlation in mathematics



Appendix B:  Pooling



Appendix C - Hardware Solution Shortcomings


