Full Resolution Image Compression with Recurrent Neural Networks

George Toderici Damien Vincent Nick Johnston Sung Jin Hwang
(}oogjeliesearch damienv@google.com nickjl@google.com s Jjhwanglgoogle.com

gtodericilgoogle.com

David Minnen Joel Shor Michele Covell

dminnen@google.com joelshor@google.com covell@google.com

A brief review of similar attempts ..

* In the paper “Using very deep autoencoders for content-based image
retrieval” A. Krizhevsky and Geoffrey Hinton proposed autoencoder
can be used to map images to binary codes.

* The paper “Extracting and Composing Robust Features with Denoising
Autoencoders” proposes use of initial unsupervised step in denoising
autoencoder.

* In march 2016, a team at google proposed LSTMs for autoencoder.
The paper “Variable rate image compression with recurrent neural
networks” describes how thumbnails generation can be
accomplished.

http://www.cs.toronto.edu/~fritz/absps/esann-deep-final.pdf
http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
https://arxiv.org/pdf/1511.06085.pdf

Introduction

* Proposed neural network consists of RNN based encoder and decoder and
a binarizer.

* This framework provides competitive compression rates on images of
arbitrary size.

* Binarizer is a neural network used for entropy coding.
* The network is evaluated using : PSNR-HVS and MS-SSIM metrics.

* This architecture outperforms JPEG on kodak image dataset.

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html

Network architecture

* There are two ways in which an image can be reconstructed. - one shot
reconstruction and additive reconstruction.

 Single iteration of network can be represented as :

by = B(Et(rt—l))' Ty = Dt(bt) T ’7"’-@t—1~
rr =x—Iy, ro=2x, To=20

Here y = 0. represents one-shot reconstruction while y = 1 represents additive
reconstruction.
bt — {_1’1}m

m is number of bits produced after each iteration.

Network Architecture

Original Reconstructed

_ — Encoder Binarizer Decoder — .
image Image

A 4

Residual image
(to be minimized)

Unrolled model

Source image
(32x32x3)

’

v
. . R tructed .
» Encoder »| Binarizer | <+ * Decoder | —* Irﬁ:‘g’zs ructe > Residue
Uiy) i) |
\ 4 v
. . Predicted . ,
» Encoder »| Binarizer +—» Decoder | > resid'ue ~——6—» Residue
|kh1) |) ‘
l l v
. . Predicted . ,
> Encoder »| Binarizer +—» Decoder > esidue’ o> Residue
) ;) @
v
. . v
Output compressed signal, 128xM bits. Final

M being the number of steps.

This method could produce compressed
files with an increment of 128 bits.

This forms a progressive method in terms
of bit rate (unit: bpp, bit per pixel)

reconstruction

Single iteration of architecture

Encoder Binarizer
E-Conv E-RNN#1 | |E-RNN#2 || E-RNN#3 B-Conv
Input (floats) Conv RNN Conv | | RNN Conv | | RNN Conv Encoded (floats) | | Conv
Size HxWx3 ||3x3x64 3x3x256 | |3x3x512 |[3x3x512 (H/16)x (W/16)x512 | |1x1x32
Stride: 2x2 | | Stride: 2x2 | | Stride: 2x2 | | Stride: 2x2 Stride: 1x1
Binary Code (bits), Size (H/16)x (W/16)x32 - —
Decoder
D-Conv#1 || D-RNN#1 D-RNN#2 D-RNN#3 D-RNN#4 D-Conv#2
Depth Depth Depth Depth
Conv RNN Conv toep RNN Conv tOCP RNN Conv toep RNN Conv tOCP Conv I; (floats) .
Ix1x512 2x2x512 3x3x512 3x3x256 3x3x128 Ix1x3 Size HxWx3
S S S S
Stride: 11| | Stride: 1x1 || “P*° | |stride: 1x1 || “P*C | |stride: 1x1 || “P*C ||stride: 1x1|| “P*° || Stride: 1x1

Figure 1. A single iteration of our shared RNN architecture.

How conv + RNN cell works?

LSTM state :

* Convolution followed by LSTM cell. et {E OTEERI T

: 1x3 Conv Update :

LSTM Logic C‘ ! C‘ !
cl0[0]0
0/0[0/0][0|0]0 c, i
. . . 0(0/0/0]0]0]0 /e; 1x2 Conv
* Divide tensor in small chunks. o/ofoloolo]o Naas mmanl el

Input to state

* Apply LSTM on individual chunks.

e Return value of hidden state and c.

100 100

095 095
090 090
= -
i 085 A 085
080 0.80
— JPEG420 - JPEG420
075 =&~ GRU (One Shot) 075 =&~ GRU (One Shot)
=—#— GRU (One Shot) Entropy Coded =#— GRU (One Shot) Entropy Coded
-~ LSTM (Residual Rescaling) =~ Residual GRU (One Shot)
~#~ LSTM (Residual Rescaling) Entropy Coded ~#~ Residual GRU (One Shot) Entropy Coded
070 0.70
00 05 10 15 20 00 05 10 15 20
bits per pixel bits per pixel

Figure 5. Rate distortion curve on the Kodak dataset given as MS-SSIM vs. bit per pixel (bpp). Dotted lines: before entropy coding, Plain

lines: after entropy coding. Left: Two top performing models trained on the 32x32 dataset. Right: Two top performing models trained on the
High Entropy dataset.

