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A brief review of similar attempts ..

* In the paper “Using very deep autoencoders for content-based image
retrieval” A. Krizhevsky and Geoffrey Hinton proposed autoencoder
can be used to map images to binary codes.

* The paper “Extracting and Composing Robust Features with Denoising
Autoencoders” proposes use of initial unsupervised step in denoising
autoencoder.

* In march 2016, a team at google proposed LSTMs for autoencoder.
The paper “Variable rate image compression with recurrent neural
networks” describes how thumbnails generation can be
accomplished.



http://www.cs.toronto.edu/~fritz/absps/esann-deep-final.pdf
http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
https://arxiv.org/pdf/1511.06085.pdf

Introduction

* Proposed neural network consists of RNN based encoder and decoder and
a binarizer.

* This framework provides competitive compression rates on images of
arbitrary size.

* Binarizer is a neural network used for entropy coding.
* The network is evaluated using : PSNR-HVS and MS-SSIM metrics.

* This architecture outperforms JPEG on kodak image dataset.



http://www.cs.albany.edu/~xypan/research/snr/Kodak.html

Network architecture

* There are two ways in which an image can be reconstructed. - one shot
reconstruction and additive reconstruction.

 Single iteration of network can be represented as :

by = B(Et(rt—l))' Ty = Dt(bt) T ’7"’-@t—1~
rr =x—Iy, ro=2x, To=20

Here y = 0. represents one-shot reconstruction while y = 1 represents additive
reconstruction.
bt — {_1’1}m

m is number of bits produced after each iteration.



Network Architecture
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Output compressed signal, 128xM bits. Final

M being the number of steps.

This method could produce compressed
files with an increment of 128 bits.

This forms a progressive method in terms
of bit rate (unit: bpp, bit per pixel)

reconstruction



Single iteration of architecture
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Figure 1. A single iteration of our shared RNN architecture.



How conv + RNN cell works?

LSTM state :

* Convolution followed by LSTM cell. et {E OTEERI T

: 1x3 Conv Update :

LSTM Logic C‘ ! C‘ !
cl0[0]0
0/0[0/0][0|0]0 c, i
. . . 0(0/0/0]0]0]0 /e; 1x2 Conv
* Divide tensor in small chunks. o/ofoloolo]o Naas mmanl el

Input to state

* Apply LSTM on individual chunks.

e Return value of hidden state and c.
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Figure 5. Rate distortion curve on the Kodak dataset given as MS-SSIM vs. bit per pixel (bpp). Dotted lines: before entropy coding, Plain

lines: after entropy coding. Left: Two top performing models trained on the 32x32 dataset. Right: Two top performing models trained on the
High Entropy dataset.



