DeepN-JPEG: A Deep Neural Network Favorable JPEG-based Image Compression Framework

Zihao Liu¹, Tao Liu¹, Wujie Wen¹, Lei Jiang², Jie Xu³, Yanzhi Wang⁴, Gang Quan¹ ¹ Flordia International University, ² Indiana University, ³ University of Miami, ⁴ Syracuse University zliu021@fiu.edu, tliu023@fiu.edu, wwen@fiu.edu, jiang60@iu.edu, jiexu@miami.edu, ywang393@syr.edu, gang.quan@fiu.edu

- Human visual based approach like JPEG is not an optimized approach for Deep Neural Networks.
- New compression framework for deep neural net applications DeepN-JPEG
- Expriments on ImageNet dataset shows compression ratios of approx. 3.5 x higher compression rate over JPEG

- DeepN-JPEG preserves important features crucial for DNN classification.
- Neural nets treat all frequency components equally while human visual system (HVS) focuses more on low frequency information.
- Key step of DeepN-JPEG is to redesign HVS inspired quantization table to be DNN favorable.
- Quantization table redesign is a intractable optimization problem because of complexity of parameter search.

JPEG

Figure 1: Briefly overview of JPEG compression technology.

Design flow of DeepN-JPEG

Results

Figure 8: The compress rate and accuracy for different DNN models.