
Image Compression Using Neural Networks

CS 297 Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By Kunal Deshmukh

December 2018

IMAGE COMPRESSION USING NEURAL NETWORKS

 2

ABSTRACT

Image compression is one of the most studied problem in computer science.

Lossy image compression is being used to compress image size for transmission

of images over the internet as well as their efficient storage. Convolutional

Neural Networks have been used successfully in computer vision and image

processing tasks but it is seldom used in tasks such as image compression.

In this project, we will explore how image compression can be achieved using

Deep Neural Networks which provides equivalent or better performance than

traditional Image Encoding and data compression algorithms. We will show

how Convolutional Neural Networks can be used along with Generative

Adversarial Networks to improve image quality.

Keywords – Image Compression, Lossy image compression, Convolutional Neural

Networks, Neural Networks, Generative Adversarial Networks.

IMAGE COMPRESSION USING NEURAL NETWORKS

 3

TABLE OF CONTENTS
ABSTRACT .. 2
TABLE OF CONTENTS .. 3
I. INTRODUCTION .. 4
II. DELIVERABLE 1: IMPLEMENT END TO END IMAGE COMPRESSION ARCHITECTURE IN PYTORCH 7
III. DELIVERABLE 2: IMPLEMENT SINGLE IMAGE SUPER RESOLUTION USING GAN .. 9
IV. DELIVERABLE 3: MODIFY DELIVERABLE - 1 TO RUN ON IMAGENET DATASET. FIND SSIM, PSNR MATRICES.11
V. DELIVERABLE 4: IMPLEMENT AND RUN FULL RESOLUTION IMAGE COMPRESSION USING RECURRENT
NEURAL NETWORK .. 13
VI. CONCLUSION .. 15
REFERENCES ... 16

IMAGE COMPRESSION USING NEURAL NETWORKS

 4

I. INTRODUCTION

More and more images are being captured in the world today, with the advent of Internet Of

Things (IOT) and automation, even greater number of synthetic images are being generated by

the machines. These tools not-only facilitate image capture, but also contribute to higher

resolution images. These images occupy more space and require greater bandwidth for transfer

as compared to a low-resolution image. Storage and transfer of such images is a challenge before

industry. In this project, I aim to find improved way to compress an image using neural networks.

Even though image compression is an acute problem at present, it is in no-way a new

problem. Study of image compression has led to many groundbreaking discoveries in data

compression field so far such as Run-length Encoding and Discrete Cosine Transform (DCT). With

the advent of neural networks, new neural net-based frameworks are being used for image

compression [1].

In this semester, we read several papers to learn about previous attempts at neural network-

based image compression. In the paper on end-to-end image compression, Feng et al. [2] propose

Fully Convolutional Neural Network (FCNN) based Autoencoder. To do image compression, two

separate networks are trained together for image compression and image decompression.

Residual Learning is used in decompression network for faster learning process. Feng et al. claims

framework delivers twice the image compression over JPEG images. In another approach

employed by a team from twitter [3], Generative Adversarial Networks (GANs) are used to

enhance quality of image. Original image can be simply downgraded by using Image library of

python. The hope is this loss in image quality can be regained using GANs. Owing to the size of

IMAGE COMPRESSION USING NEURAL NETWORKS

 5

network and number of trainable parameters, GANs are difficult to train. However, they are

enormously useful in “retrieving” lost quality of the image.

Toderici et al. [4] attempt to use Recurrent Neural Networks (RNN) for image compression.

This approach is suitable for portable devices where bandwidth may prove a bottleneck for

graphic intensive websites. In this approach quality of images improve when more bits of

information sent to it. This architecture is proven to provide better visual quality than JPEG,

JPEG2000 and WebP formats while size of images is reduced by as much as 10%.

 Convolutional Neural Networks (CNN) are a major component of all the architectures

described above. CNNs are efficient in various Computer Vision tasks such as Image Recognition,

Segmentation as well as compression. Various studies have proposed the way to improve

efficiency of neural networks. Dat Thanh Tran proposed [9] the use of multilinear filters for

convolution. This architecture uses several times less memory than CNN while outperforming

CNNs. Landola et al. introduced SqueezeNet [10] architecture which uses significantly fewer

parameters while achieving Alexnet level accuracy.

In this project, we aim to use these advances made in deep neural network to find image

compression framework which could give best possible performance in image compression while

having minimal overload. The organization of this report is divided into four deliverables that

were accomplished in CS297. Each deliverable is designed to explore these avenues in detail.

Deliverable 1 explores how fully convolutional variational autoencoders can be used for image

compression and retrieval. In this deliverable, fully convolutional autoencoder is used.

Deliverable 2 attempts to use GAN to obtain higher resolution image from lower resolution

counterpart. This deliverable follows a paper on single image super-resolution using GAN.

IMAGE COMPRESSION USING NEURAL NETWORKS

 6

Deliverable 3 examines results of architecture developed in Deliverable 1 on Imagenet pets’

dataset with images resized to 256 x 256 size. This deliverable also involves a development

python code to calculate SSIM, PSNR and MSE error between two images. In Deliverable 4, a

paper on full resolution image compression using recurrent neural networks is implemented.

IMAGE COMPRESSION USING NEURAL NETWORKS

 7

II. DELIVERABLE 1: IMPLEMENT END TO END IMAGE COMPRESSION ARCHITECTURE IN PYTORCH

The Objective of this deliverable was to implement an end-to-end image compression

framework as prescribed by Tao et al. [3]. This framework consists of a compression layer called

comCNN and reconstruction layer called recCNN. Both networks are fully convolutional neural

networks.

This architecture is implemented in PyTorch framework. Google Colaboratory was used for

its execution. The implementation was tested on 2 datasets - CIFAR and STL10. Both datasets

were available in torchvision module.

Since the code is written in a jupyter notebook, it can be executed by selecting ‘run all’.

This code uses GPU if available. The flag ‘cuda’ is set by using a function is_available:

torch.cuda.is_available(). We used the Adam Optimizer. Since there is no high level

function for interpolation in pytorch, a wrapper class is used which encapsulates interpolate

function in nn.functional module. For ease of implementation, bilinear interpolation was

used instead of bicubic interpolation.

The GPU memory is limited on google colab. Hence is it advised to not use batch size more

than 16. Approximately 9GB GPU memory was used for the STL10 dataset.

The results obtained were as follows:

IMAGE COMPRESSION USING NEURAL NETWORKS

 8

IMAGE COMPRESSION USING NEURAL NETWORKS

 9

III. DELIVERABLE 2: IMPLEMENT SINGLE IMAGE SUPER RESOLUTION USING GAN

In this deliverable a single image super resolution algorithm proposed by C. Ledig [4] was

implemented. We used the ready-made VGG network provided by pytorchvision module for

discriminator network. As with any Generative Adversarial Network, the generator network of this

framework is crucial for the task of super resolution.

Our architecture was implemented using pytorch framework and executed using google colab

notebook as well as Google Cloud Platform. Images from the STL10 dataset were used for training

as well as validation. A subset of images which were not used in training were used for inference

purpose.

 As the name suggests, class ‘generator’ and ‘discriminator’ are responsible for generator and

discriminator respectively. ‘Residual_block’ and ‘unsampled_block’ classes are coded as per their

definition in the research paper. Batch size was clapped to 16 due to limited resources.

The inference results obtained are as follows:

High resolution fake images High resolution real images Low resolution images

IMAGE COMPRESSION USING NEURAL NETWORKS

 10

IMAGE COMPRESSION USING NEURAL NETWORKS

 11

IV. DELIVERABLE 3: MODIFY DELIVERABLE - 1 TO RUN ON IMAGENET DATASET. FIND SSIM,
PSNR MATRICES.

The objective of this deliverable was to train and test Deliverable 1 on higher resolution images

and evaluate the results using matrices such as SSIM and PSNR. As a part of this deliverable,

some experiments were performed on deliverable 1 and some changes were made in the

framework. These experiments are as follows:

1. Experiment setup: Deliverable -1 was trained on few random images from ImageNet

dataset. Since this is a huge dataset, only one subset of this dataset – pets’ images were

considered for training as well as inference.

Observation: Since images were 200x200 in size as oppose to 32x32 images trained

earlier, the program took significantly more time to execute each epoch.

Time required for the execution of 1 epoch with 50,000 32x32 images: 53 min

Time required for the execution of 1 epoch with ~9000 200x200 images: 2 hrs 12 min

Inference: Significant improvement in the performance of test and train images could be

achieved if original images are divided in small parts and trained separately.

 Since images were stored on Google drive, read speed might have caused the bottleneck.

2. Experiment setup: Average SSIM and PSNR error was calculated for inference images

obtained from Deliverable -1 and Deliverable -4. When few changes were made in the

architecture of Deliverable – 1. These changes include: Reduction in number of layers in

RecCNN from 20 to 13., convolutional kernel size was changed from 3x3 to 2x2.

Design strategies used in SqueezeNet were adapted for this experiment.

Observation: The values are similar.

Inference: No significant change was observed with these changes.

IMAGE COMPRESSION USING NEURAL NETWORKS

 12

As a part of this deliverable, a script to calculate image quality metrics (PSNR, SSIM etc.) was

written as well. This script requires relative address of two images that needs to be compared and

returns the quality scores as well as bit rates of each image as an output.

IMAGE COMPRESSION USING NEURAL NETWORKS

 13

V. DELIVERABLE 4: IMPLEMENT AND RUN FULL RESOLUTION IMAGE COMPRESSION USING
RECURRENT NEURAL NETWORK

The objective of this deliverable was to implement the architecture suggested in the paper [2]. This

architecture provides variable compression rates. There are two kinds of architectures possible for

reconstruction network — One shot and additive construction. This is a first architecture to

outperform JPEG across most bitrates.

 Even though this architecture uses Mean Square Error to find out loss between an image.

Various image quality measurements such as Structural Similarity Matrix (SSIM) and Peak Signal

to Noise Ratio (PSNR) was also evaluated.

 Because of multiple invocations of recurrent neural networks layers GPU usage in google

colab far exceeded the one required for this network to run. Hence, google cloud platform was

used to run the compression network.

Since RNN and CNN are implemented together, according to the code as below:

 This architecture does not take into account the human vision centric image accuracy

matrices such as PSNR-HVS.

IMAGE COMPRESSION USING NEURAL NETWORKS

 14

Original Image Reconstructed image after

second iteration

Reconstructed image after

forth iteration

IMAGE COMPRESSION USING NEURAL NETWORKS

 15

VI. CONCLUSION

In this semester, I explored various image compression frameworks and existing file

encoding formats. Implementation of various Neural network frameworks helped me understand

to design and train non-standard neural network architectures.

I have written a code for three deep neural network frameworks used in image compression

so far. This has led to development of large cache of tools e.g. code to read images folders /

serialized dataset, a code snippet that can be used to obtain an image from tensor and save it in a

desired format etc. These are fairly general-purpose codes which can be used to perform similar

operations in CS298. E.g, I will be easily able to use serialized dataset provided using TorchVision

module.

In CS298, I will use the concepts I learned in CS297, e.g, use of skip connections to speed

up the training process, use of tanh followed by step function to obtain binary form of a latent

representation etc. The neural networks that I implemented in CS 297 can be partially reusable in

a new architecture. I will also use and compare various image quality matrices learned in this

semester to design loss function.

IMAGE COMPRESSION USING NEURAL NETWORKS

 16

REFERENCES

[1] O. Rippel and L. Bourdev, “Real-Time Adaptive Image Compression,” The 34th Int. Conf.
on Mach. Learn., 2017. doi: arXiv:1705.05823v1.

[2] G. Toderici et al., “Full Resolution Image Compression with Recurrent Neural
Networks,” arXiv e-prints.,2016. doi: arXiv:1608.05148.

[3] W. Tao et al., "An End-to-End Compression Framework Based on Convolutional Neural
Networks," Data Compression Conf. (DCC), Snowbird, UT, 2017, pp. 463-463. doi:
10.1109/DCC.2017.54.

[4] C .Ledig, et al., "Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network.," Conf. on Comp. Vision and Pattern Recog. Vol. 2. No. 3, 2017.
doi: arXiv:1609.04802.

[5] J. Chung et al., "A recurrent latent variable model for sequential data," In Advances in
neural inform. process. syst., pp. 2980-2988. 2015.

[6] D. Minnen et al., “Joint autoregressive and hierarchical priors for learned image
compression”. Advances In Neural Inform. Process. Syst., 2018. doi: arXiv:1809.02736.

[7] R. Pascanu et al., “How to construct deep recurrent neural networks”, In Proc. of the
Second Int. Conf. on Learning Representations (ICLR 2014)., 2014.
doi:arXiv:1312.6026.

[8] P. Cheng, "A New Single Image Super-Resolution Method Based on the Infinite
Mixture Model", Access IEEE, vol. 5, pp. 2228-2240, 2017. doi: 10.1109.

[9] Thanh Tran, Dat & Iosifidis, Alexandros & Gabbouj, Moncef. (2017). “Improving
Efficiency in Convolutional Neural Network with Multilinear Filters. Neural Networks.”
105. 10.1016/j.neunet.2018.05.017.

[10] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, et al. (2016). “SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.”
arXiv:1602.07360.

