
Overview 

My thesis is concerned with the Hamiltonians used in quantum simulation. We are 

interested in the computation of the ground state of such Hamiltonians.  Based on the 

type of ground state which is either a tensor product or an entangled state, or have some 

other classifiable characteristics, we devise Hamiltonians that work on these ground 

states.  We have to use perturbation theory and matrix algebra to make our Hamiltonian 

work.  In the end if the ground state energy of the Hamiltonian is lower bounded by 

1/poly(n), we can efficiently simulate the circuit represented by this Hamiltonian.  To 

summarize, at this stage we classify how to solve a problem, not by problem type, but by 

solution type.  There is not a single type of Hamiltonian that can solve all problems, but 

there are several different types of Hamiltonian to target different classes of ground 

states.     

 

The Hamiltonians used to do computation are called local Hamiltonians.  So what are 

local Hamiltonians? If for example our entire computation consists of n qubits.  A local 

Hamiltonian does computation on only a fixed constant subset of them; say 4 qubits.  In 

classical computing, the most common gates of logic are AND, OR and NOT.  In 

quantum computing, the gates of logic operations are Pauli X, Y, Z and CNOT.  The 

Hamiltonian used to model our system need not be exact.  For example it might suit our 

specific purpose to use the Hadamard gate instead of the Z gate.  Obviously the two gates 

are not the same, but for our specific target operation, they are the same.  Furthermore 

our simulation needs to be accurate for a period of time.  We use the Schrodinger 

equation to make sure of this.  At the heart of our research in simulation seems to be the 

degenerate eigenenergies of the Hamiltonian.  We are interested in what are the 

characteristics of a matrix that has degenerate eigenvalues.  We are also interested in the 

ground state.  The ground state is important because it is only intuitive that the correct 

solution should take the lowest energy to access, so that you have to try less hard to 

extract it at the end of your computation, than all the other states.       

 

This semester of research was about why building the quantum computer is currently still 

a challenge.  It is challenging because of there are currently no good error correction 

codes and quantum algorithms.  This semester was also about how to simulate the 

quantum computer on a classical computer.  Now I will discuss what I did during this 

semester.  During the first two weeks of this semester, I researched quantum error 

correction methodologies.  The exponential growth of the error correction circuit size is 

one of the factors that limits what problems we can solve on a quantum computer.  In 

other words, we discovered that with error correction, the circuit size might grow faster 

than polynomial.  Next we downloaded the jQuantum quantum simulator from off the 

world-wide web, to aid us in our study of the Shor’s, Grover’s, and Deutch Josza 

Algorithms.   This quantum simulator represents a case of how to use the classical 

computer to simulate quantum mechanical concepts, for a small number of qubits— 18 

qubits maximum.  Richard Feynman once said that quantum mechanical concepts can not 

be efficiently simulated with classical computer for large qubit numbers, but 18 qubits is 

still a small number.  Looking, at the source code for jQuantum, I got an appreciation of 

how a function that need to be calculated N times on a classical computer through the use 



of a loop, can be done in just one step on a quantum computer.  By the way, the 

jQuantum software can also be used to write error correction codes.  Then next, we 

studied a Quantum Hamiltonian Complexity paper.  On one hand, this paper is about 

models, approximations and ground states.  On the other hand, this paper is about proving 

that the k-local Hamiltonian is QMA-complete, which would mean that it is solvable on a 

quantum computer.  From here we make our happy down-hill slide because k-QSAT is a 

special case of k-local Hamiltonian, and if k-local Hamiltonian is solvable so is k-QSAT.  

Thus we can now solve NP-complete problems.  (To distinguish k-QSAT from other k-

Local Hamiltonian is that in k-QSAT the local Hamiltonians are all projectors, which are 

not versatile but still a good start).  At the end of the semester, we looked at a polynomial 

time algorithm for 2-QSAT.  If successfully implemented, this algorithm is the proof that 

k-QSAT is solvable, at least for k=2.  Next semester we will study the clause to variable 

ratio of a barely solvable problem.  Through exploring models such as the Ising model by 

writing codes in Java to test the satisfiability, we will gain insight into this ratio.    

 

Quantum Error Correction 

A major reason of why Quantum Computing research continues to be an arduous struggle 

is that there is currently no way to achieve error correction in an economical way.  The 

advantage of Quantum Computing is supposed to be that it uses polynomial sized circuits 

to solve exponential sized problems.  However quantum error correction causes 

exponential growth in circuit size.  Currently, we solved the problems of detecting the 

errors but there is still no efficient way for correcting the errors after detecting them.  The 

quantum simulator I used in my research, jQuantum, was invented partly for this purpose.  

I still have not had the time to truly sit down and think if I can come up with a better error 

correction code using jQuantum, but I will as soon as possible.  

 

The problem with the current strategy is that error correction will cause the amount of 

gates to be disproportionately big if we want a small error threshold (for example 10^-5).  

In fact for a 21 qubit circuit, the number of gates would be on the order of 10^19.  As you 

can see this polynomial sized circuit is even bigger than an exponential circuit!  So 

probably what is currently happening in the quantum computing research labs, is that we 

tolerate large error rates (such as 10^-1) so that we don’t waste money on the gates.  In 

the ion trap, the gates are laser pulses, and currently computation that requires more than 

a couple hundred laser pulses at a time is impossible.    

 

In general, we don’t know what noise is afflicting a system, so it would be useful if a 

specific code C and error-correction operation R could be used to protect against an entire 

class of noise processes.  But in many respects quantum error correction codes are quite 

similar to classical codes.  An error is identified by measuring the error syndrome, and 

then correcting it as in the classical case.  So far there is no major setback in how 

quantum computing works in theory.  However in the real world, environment interacts 

with the quantum system and causes decoherence and other error to occur.  Noise models 

were constructed to help us better understand the nature of quantum errors.  Right now, 

each quantum error is modeled as the original gate followed by another quantum gate that 

represents the error.  The most common errors are constructed from X, Y, Z pauli gates.  

The effects of these noises that they cause either a spin-flip error or a phase error, or 



some combination of the two cases.  To monitor spin-flip errors we use the quantum 

state 2/)111000(  , and to monitor phase errors, we use the quantum state 

2/)(  . 

 

 

The Shor code, named after its inventor, protects against arbitrary error on a single qubit.  

Suppose a bit flip occurs on the first qubit, we perform measurement 21ZZ  comparing the 

first two qubits, and find that they are different.  We conclude bit flip occurred for either 

one of them.  Next we perform measurement 32ZZ .  We find they are the same.  We 

conclude the first qubit must have flipped.  When a phase flip occurs on any one the first 

three qubits we find that the signs of the first and second blocks are different.  The second 

and final stage of syndrome measurement is to compare the sign of the second and third 

blocks of qubits.  We find that these are the same, and conclude that the phase must have 

flipped in the first block of three qubits.  The drawback is this only work for a single 

qubit; with entanglement it is not going to work, because two qubits are involved.  

 

As mentioned earlier, many respects quantum error-correction codes are similar to their 

classical counterparts; there is however an interesting class of quantum codes known as 

degenerate codes, that includes a wide variety of codes such as the Shor code and the 

Steane code.  Degenerate codes, pack and store more information than classical code.  

However some of the proof techniques used classically to prove bounds on error-

correction is invalid for degenerate codes.  The quantum Hamming bound is a simple 

bound that gives insight into the properties of quantum codes; it gives the total number of 

errors that may occur on n or fewer qubits.  This bound basically tells us whether or not a 

code with particular characteristics exists or not.  The bad news is Hamming bound only 

applies to non-degenerate codes.  Our first example of a large class of degenerate 

quantum error-correcting codes is the Calderbank-Shor-Steane codes usually known as 

the CSS codes.  The stabilizer codes are a class of codes that is even more general than 

the CSS codes, and allows us to construct a wide variety of quantum codes.   One of the 

features of stabilizer codes is that their structure enables systematic construction of 

procedure for encoding, decoding, and error correction.  Stabilizer codes are analogous to 

classical linear codes.  Stabilizers’ power lies in the clever use of the group theory, and 

they describe state spaces under quantum operations.  A set of generators G generate a 

stabilizer for the code space of, for example, the seven qubit Steane code.  A linear code 

C encoding k bits of information into n bit code is specified by an n by k generator matrix 

G.  Furthermore, error correction for linear codes is more clearly understood by 

introducing the parity check matrices H.  The code is defined to be the nullspace of H, 

and it is subject to corruption by an error E.  To construct H, we pick out n-k linearly 

independent vectors that are orthogonal to the columns of the generator G.  Also, H has n 

columns.  

 

To keep errors constantly in check is inevitably hard to do, especially because of the fact 

that we can not clone a quantum state.  Since we can not get tensor producted states, we 

settle for the second choice of using entangled states.  For example if the state was 



originally 10   , we encoded it as 111000   .   Basically how we achieve this 

is through the use of CNOT gates to create many copies of our qubit—usually a total of 3 

copies would be enough.  If you think about this you will realize why it causes 

exponential growth of circuits: if you originally have 3 qubits, after a layer of gates, you 

will have 3^2 qubits, and after 2 layers of gates, you will have 3^3 qubits.  Why this is 

actually not a problem is you are not going to apply gates to all of these qubits only a 

portion of them, and ideally you want to first fix the error, before applying more gates 

only to your original qubits, so that the number of gates or qubits will not grow 

exponentially.   

 

 

jQuantum 

jQuantum is a quantum simulator.  Quantum simulators allow us to simulate the behavior 

of a quantum computer on a classical computer.  jQuantum was put on the worldwide 

web and open to the public to download for free, because its creators wish to encourage 

writers of new quantum algorithms.  Somehow the current Shor’s and Grover’s 

algorithms are not stable and reliable enough, and there is demand for a better quantum 

algorithm.  jQuantum is a program written in Java.  This is quite a logical choice for 

program language since Java’s Swing library allows us to create a very user friendly and 

attractive looking Gui, or framework in which the program runs.  If it was written in C++, 

it would have been much less inviting and much more difficult to use.  You will have to 

use the command shell, and learn by heart all the commands written for each quantum 

gate. 

 

To help you visualize what is happening to all your quantum states and how likely you 

are to get each one of them if you do a measurement, there is an array of colored squares 

that gives you the complex coefficients of each quantum state in the summation.  From 

the colors of the squares you can infer the probability of the future measurement being in 

that state.  Basically the color represents the phase and the intensity represents the 

amplitude.  In the Grover algorithm simulation that I made, I was able to view the gradual 

intensification of red color in the square I am searching for, as I pass through each Grover 

cycle.   

 

For the Shor simulation—I realized why this algorithm is very unrealiable and can not be 

trusted.  Based on the results of in jQuantum, I learned why the Shor algorithm is 

unrealiable and why we need a new algorithm.  First of all the algorithm can only factor 

numbers with an even integer as period.  Second of all it is more reliable at factoring 

some numbers than others even assuming both could be factored.  For example, I 

discovered that it is better at factor 15 than 21.  This is because for 15 Q/r =128/4=32; 

while for 21 Q/r=512/6=85.333.  Since for 21 the number Q/r is not a whole number, it 

introduces more ambiguity and more fluctuations in the solution.       

 

First I want to affirm that jQuantum definitely have many virtues.  I also like the fact that 

this program has many nice details.  I liked the conceptual clarity of this program.  Each 

quantum state is represented by a square illustrated at the bottom of the panel.  So that 

there is no confusion between the qubit number and the quantum state number.   



It is also true to the fact that you can not reverse a measurement.  Also it calculates the 

number of Grover’s iterations for you, and it rounds down rather than up, so that you will 

not waste gates in your circuit design.  Instead of getting 100% you get 95% instead, but 

you will never get 105% any way, so there is no need to waste the last gate.  Another 

detail I liked was the fact that you can reset the input qubits after you have constructed 

your circuit.  Just think how frustrated you would be if your circuit can not be reused for 

different inputs.   

 

However jQuantum is not a perfect program.  Sometimes it seems more like a toy than 

something you can make scientific progress with.  But I definitely think that it is a good 

start and needs only a few suggestions to make it even better. I didn’t like the fact that it 

is not easy to correct a mistake when you are building a very complicated circuit, that is 

prone to mistakes, this causes huge waste of time.  For example after constructing, layer 

12 you suddenly found a mistake in layer 3.  At this stage, jQuantum only allows you to 

delete all the gates from 3 to 12 to correct your error. I don’t understand, why we can not 

just delete layer 3 and replace it with something else.  I also don’t like the fact that there 

is no mechanism for shifting the circuit if it won’t fit in one screen.  It is not too tiring for 

me to have to scroll by just a small step each time I add another gate that won’t fit on the 

screen.   

 

I looked at the source code folder of the jQuantum.  The file that did all the calculations 

of the quantum gates, is called Register.java.  I noticed that they used two arrays called 

real and imaginary to keep track of the coefficient of all the quantum states.  There was 

extensive use of for-loops to increment through the real and imaginary arrays.  Through 

the use of a Hashset, they were able to keep track of all the terms that will be changed 

when you pass your original quantum state through a quantum gate.  For single qubit 

gates, no entangling action takes place, and you can increment your for loops by large 

chunks, while for entangling gates, you have to increment step by step through the entire 

array.  The math behind the majority of the gates in this program is multiplying a vector 

by a matrix to get the new vector.  But because we want to be as efficient as possible, we 

do not want the entire matrix, we only want a “local” matrix action, that acts on only one 

of the qubits or at most 2 or 3 at a time.  That’s why we use the for-loop to skip over the 

terms that will never be changed.  Also the logic behind what to include in your Hashset 

can be very complicated during computation, and can involve checking whether an 

element is already in the Hashset.  The calculations Inverse Quantum Fourier Transforms 

is more complicated and involves the use of the sine and cosine functions.  I am 

personally in awe of the person who came up with how to implement the bit reversal 

algorithm.  I am also in awe of the rest of the FFT.  But after the FFT the rest of the 

Inverse Quantum Fourier Transform is pretty much self explanatory.  Register.java is the 

file that does all the computations for the quantum gates.  Below I am including an 

analysis of one of the methods in Register.java, for the Hadamard gate.   

 



 
Explanation of the above function Register: hadamard() 

- The function power2(int n), basically calculates the nth power of 2.  Here x is the 

total number of qubits, and the number that is stored in x qubits is less than n2 .  

In other words, the n qubits can represent any number from 0 to 12 n . 

- The argument passed to the Hadamard function is j.  This means we want to 

perform our computation on the jth qubit. Based on the convention in this 

program, so that it is easier to keep track of for further development, the smallest j 

can be is 1 not 0. j=1 is the lowest qubit or the digit that represents 2^0 in our 

number or state that is represented by the n qubits.   

- They used two for-loops in the above code.  Understanding what they are used 

for, takes knowledge of tensor products.  If you write out what a tensor product 

means on paper, it will make more sense.  Basically, Power2(size) is the bound 

based on the size of our circuit; the number of qubits is represented by variable 

‘size’.  l and k are two increments that we have to consider so that we can be sure 

that we only change the elements in the quantum state that actually changed when 

we do operations on the jth qubit. k increments to the starting point of each block 

of elements lower than and including the jth qubit.  l increments through each 

element of the block of elements.  So in the end each element in the quantum state 

is considered, just in a different order than in counting sequence.    

- The indices i0 and i1 are used for doing the Hadamard gate computation.  i0 and 

i1 are separated by an increment that is the size of the block of qubits that are less 

than j.  The relation between i0 and i1 is that they represent the pair of elements 

that the quantum gate somehow modify based on the original values. 

- The rest of this algorithm is where we do a matrix multiplication to find our final 

quantum state. 

-  

 

Deutch Josza Algorithm 

 



The Deutch Josza algorithm is a demonstration of using quantum mechanical concepts to 

achieve information processing.  This algorithm takes an input function and outputs 

whether this function is a constant function or a balanced function; balanced is another 

word for exactly half 0 and half 1.  This algorithm basically takes in two numbers x and 

y; y is interfered with f(x) through )(xfy and generates an output; and then register 1, 

the one representing x is measured.  When we measure, we should get 0 only if the 

function is constant, and something other constant if the function is not constant.   

 

As part of my research leading up to my thesis, I programmed a Deutch Josza algorithm 

in Java.  Through this task, I was able to experience how hard it is to simulate quantum 

systems on the classical computer.  I used a lot of for-loops so that I can calculate f(x,y) 

for each pair of x and y within the range of my register size.  The quantum computer is 

able to do this in one step while on the classical computer you have to do calculation for 

each x, y pair.  What is a loop procedure on the classical computer is a physics 

phenomenon on the quantum computer.  On the classical computer, it takes, 2^n/2+1 

measurements to make sure that the function is constant, while on the quantum computer 

it takes only measurment.  The concept of measurement itself is also difficult to simulate.  

Java has a Math.random() function that simulates randomness; but it does not simulate 

randomness based on a probability distribution other than equal probability for each state.  

In my program, I simply assumed that I will always get as the result the state with the 

highest probability.  There is probably a way to fix this problem and maybe I will try it 

someday.   

 

The Deutch Josza algorithm itself was easier to understand than to program.  The hardest 

part is working with a String input and parsing the function into an array of elements.  

The next hardest part is writing the algorithm for solving the function.  Getting the grand 

concept of recursion is actually simple compared to mechanisms of storing each step as 

you go along.  A lot of things humans do intuitively are very frustrating to tell a computer 

how to do.  I also find that what is difficult about programming in general is staying 

consistent so that all the variables in your program match up in the correct order.  A good 

advice is to use copy and paste when you do your programming so that you will have less 

typos.  But when you use copy and paste, you have to change some parts of the program 

and it is crucial to stay consistent.        

 

Computational Complexity 

Now allow me to explain the complexity of a problem in classical computing theory.  A 

problem is in NP if given the correct input and output pair, you can find a polynomial 

algorithm that verifies the correctness of this pair.  An NP-hard function satisfies the 

following criteria: inputting a polynomial function into the NP-hard function, gives you 

an NP function.  A problem is NP-complete if it is both NP and NP-hard.  We currently 

can not solve NP complete problems on a classical computer.  We are thinking that even 

though the classical computer can not solve NP complete questions, maybe the quantum 

computer can.  We have to first mutate the problem into quantum logic form.  In this 

transformed form, the NP complexity is called the QMA, and the NP-hard is called 

QMA-hard, and equivalently the NP-complete is called the QMA-complete.  From here 



on, we have to use quantum algorithms to solve problems on a quantum computer, 

because the classical algorithms will not apply. 

 

Now I will elucidate how the sets of computational complexity fit together into the big 

picture.  P BPP  BQP  QMA PSPACE. NP contains all of P and some of BPP 

and BQP, and is contained entirely within QMA.  Currently we believe the power of the 

quantum computer is BQP.  Scientists want eventually to be able to solve problems in 

QMA so that all the NP problems will be solved for certain.  That QHC paper covers the 

fact that k-LH is included within QMA.   

 

 

Quantum Hamiltonian Paper 

 

Quantum Hamiltonian Complexity is the study of quantum constraint satisfaction 

problems.  The details of this field involve the establishment of the Cook-Levin Theorem, 

and the modeling of 1D low temperature quantum systems via area laws.  But from a 

farther distance, it is the study of local quantum constraints. Local Hamiltonians are 

Hamiltonians that occur in nature.  We are also interested in the ground state.  Intuitively, 

the ground state can be thought of as the vector  which maximally satisfies all the 

constraints or local Hamiltonians }{ iH .  First of all, based on the Schrodinger equation 

the evolution of quantum states occurs due to local Hamiltonians.  Local Hamiltonians 

only affect a portion of the system out of the entire system of qubits.  Therefore just as 

classical logic clause force its bits to lie in a subspace, quantum clause iH also restrict the 

k qubits to a certain subspace.  QHC asks the questions such as: which quantum systems 

have ground states that have classical representation?  Can we use classical simulations to 

predict when a quantum system will exhibit interesting phenomenon such as phase 

transition?  Can we quantify the hardness of determining certain properties of local 

Hamiltonians?  

 

To describe the joint state of n qubits requires an exponential sized density matrix  , this 

is why quantum computers are much more powerful.  Entanglement is another trait that 

distinguishes the quantum world from the classical world.  Very exotic correlations can 

exist between two systems A and B.  Looking at the density matrix describing system 

AB, on one end of the spectrum, they exist in a tensor product, on the other end of the 

spectrum they exhibit entanglement.  We quantify the amount of entanglement by 

entropy of entanglement.  Like the classical systems, quantum systems are subjected to 

noise.  Their interactions with the environment cause noise to be injected into the system.  

To model this we permit probabilistic mixtures of pure states more generally referred to 

as mixed states.  The probabilities add up to 1.  An open quantum system is one that 

interacts with its environment.  An open quantum system A can be simulated by using a 

closed joint system AB, evolving AB using unitary operators and subsequently tracing 

out part of AB. 

 

 



An interesting problem that QHC is concerned with is finding the ground state energy.  

This problem has many interesting forms and is of QMA-hardness.  Not only do we want 

to find the optimum solution, we want to find the approximation to the optimum solution 

as well, which is talked about in this QHC paper.  Just as we can do everything we want 

with classical Hamiltonians, we also want to be able to do everything we want with 

quantum Hamiltonians.  The paper talks about tensor networks which are used by 

condensed matter physicists, and also discusses the proof that LH problem is QMA-

complete, which were done by computer scientists.  It was easy to find out that the 

general LH problem is QMA-complete.  But there are also special LH problems such as 

the Quantum SAT, Stoquastic LH, commuting LH, which were all proven QMA-

complete too after much greater efforts.  The terms related to QHC include: mean field 

theory, tensor networks, Density Matrix Renormalization Group (DMRG algorithm) and 

Multi-Scale Entanglement Renormalization Ansatz.  How to use these are all related to 

how to classically simulate quantum systems.  

 

To aid us in our exploration of quantum systems, we often use the classical computer.  

The last two decades have seen much effort towards classifying when a ground state can 

be described classically.  Now we move on to describing ground states quantum 

mechanically, and we work with these ground states using quantum algorithms, one 

algorithm discussed in this paper is the DMRG.  The DMRG operates on a type of tensor 

network called the Matrix Product State (MPS).  MPS are used to efficiently classically 

simulate “slightly entangled” quantum computation.  Generalization of MPS to higher 

dimensions are tensor networks called PEPS and MERA.  But these are not easy to work 

with since, even the problem of determining whether a tensor network represent a non-

zero vector is not in Polynomial-Time Hierarchy.  There are other quantum algorithms 

that are not discussed in this paper that I read about in other articles.  (The quantum 

adiabatic computation algorithm operates on balanced Boolean inputs that evolve in time.  

The Solve-Q algorithm is a 2-QSAT algorithm that operates on chain reactions and 

discretised cycles.  During the semester of my research, I worked with k-QSAT 

constraint satisfaction problems.  I had the experience of seeing how the Solve-Q 

algorithm solves a 2-QSAT constraint satisfaction problem.)  As it is we are only 

beginning to understand how to process information using quantum mechanics and how 

to represent them using higher level mathematics; so quantum algorithms are few, and we 

need people to write more of them before we can build a quantum computer. 

 

Computer scientists and Condensed matter physicists approach the problem of finding 

quantum algorithms in two different ways. Computer scientists, use constraint graphs to 

study constraint satisfaction problems.  Condensed matter physicists use simplified 

models to approximate the real world particle interactions, by studying in a laboratory 

how a collection of particles interact with their nearest neighbors, and swapping those 

particles to aid in computation.   

 

The question that is relevant to many condensed matter physicists is that given a quantum 

state, can we compute some local property.  Some local properties are intensive and do 

not scale with system’s size.  Other local properties such as the ground state energy are 

extensive properties and do depend on system size.  In practice there is no way to know 



the actual Hamiltonian that is causing a quantum system to evolve in time—all we can do 

is make an educated guess.  We desire to find a simplified model which ignores certain 

degrees of freedom, but nevertheless captures the local properties of interest.  After we 

have the model, we want to find its ground state energy.  To better understand physical 

systems, condensed matter physicists model them using Hamiltonians, but studying 

Hamiltonians is a very a challenging subject.  They currently want to find efficient 

algorithms for approximating local properties of a Hamiltonian.  Where as to a computer 

scientist, efficient means the algorithm theoretically runs in polynomial time; to a 

condensed matter physicist efficient means that it is fast and actually works well in 

practice.  The variational principle simply means optimization over restricted set to make 

computation easier.  Three types of restricted sets are used to model quantum states: 

Product States, Gaussian States and Tensor Networks.  Products states are for separable 

states.  Guassian states and tensor networks are for entangled states.  A key question is: 

Which quantum systems have ground states that can be well-approximated by a tensor 

network of small bond dimension?  The bond dimension needs to be small so that the 

circuit is polynomial sized. 

 

Unlike computer scientists, condensed matter physicists work on building something 

without proving whether it is mathematically possible because most likely it is possible.  

Physicists have come up with models of particle systems and how they behave.  Both 

classical and quantum simulations have been used to uncover the properties of the 

Hubbard model.  Bosons and fermions are indistinguishable particles.  Swapping bosons 

will not do anything to the wave function, while swapping any pair of fermions will 

induce a global phase of -1 on the wave function.  Boson and fermions have different 

possible statistical distributions governing how a system of indistinguishable and non-

interacting particles populates a set of discrete energy states.  Hubbard proposed the 

Hubbard model to explain the behavior of strongly correlated materials.  In particular, 

this model describes the behavior of electrons in solids, and capture s the transition of a 

system between being a conductor and an insulator.  In the Hubbard model, the tuning 

parameters are the electron density and the repulsion strength, and the 1D model has been 

solved by Lieb and Wu.  Basically when we remove electrons, it causes the insulator to 

become a conductor.  Beyond 1D, the Hubbard model is very difficult to solve. 

 

After coming up with classical models, condensed matter physicists have upgraded them 

to quantum versions.  For example there is now both a classical and a quantum version of 

the Ising model.  Each model is described by a many-body Hamiltonian.  An interaction 

graph illustrates which sets of particles are constrained by a common local Hamiltonian.  

Solving the model means determining some property of system evolving due to the 

Hamiltonian.   The commonly studied models are: Ising, Heisenberg, and AKLT models.  

The mean field theory is a variational methold over the set of product states to 

qualitatively extract properties of a many-body system.  A many-body Hamiltonian H is 

difficult to solve due to coupling between particles.  To circumvent this, mean-field 

theory constructs the mean field Hamiltonian, which is an approximation of the actual 

Hamiltonian.  Sometimes the Hamiltonian is too symmetrical and so we add a symmetry 

breaking perturbation—for example the linear term you see in the Ising model.  We want 

to get the mean field Hamiltonians so that qubits do not interact, and are therefore easier 



to solve; it is usually given at a specific Temperature.  Physicists have derived clever 

ways of encoding certain classes of entangled quantum states into compact forms called 

tensor networks.  An n- tensor M(i1,i2,….in) for all i={0,1} which stores all 2^n 

amplitudes of the quantum state.   

 

The paper then goes on to discuss the works of the computer scientists.  The computer 

scientist’s approach to coming up with new algorithms is through mathematics rather 

than physics, each quantum gate is represented as nothing more than a matrix, and 

together they form algorithms.  Each algorithm operates on quantum states that can be 

expressed using a certain type of mathematics.  For example the DMRG is an algorithm 

over a set of tensor networks called MPS; it is used for studying 1D quantum many-body 

systems, to extraordinary precision.  Matrix Product state (MPS) associates each qudit 

with a series of matrices A each acting on one element of the qudit of dimension D. Now 

that we have both algorithm and quantum state, we can do quantum simulation.  

However, large values of qudit dimension D are not computationally feasible due to large 

circuit size. So we are restricted to small qudit size.  Physics often restrict math in 

practical situations.  Other types of tensor networks used to represent quantum states are 

PEPS and MERA.  An efficient representation of a quantum system would not be useful 

without the ability to compute properties of the system from this format.  Which is why 

the strength of the MERA is that the expectation values of local observables of a quantum 

state can be efficiently computed.   

 

Computer scientists studied the area law.  Area laws are a way of formulating the fact 

that entanglement in natural quantum systems occur roughly on the boundary. The open 

question in this field is whether area law holds in dimensions larger than 1D.  Commuting 

LH seem to be closer in complexity to classical world of constraint satisfaction problems.  

Commuting 2-LH, 3-LH, 4-LH are in NP.  SAT is historically the first problem to be 

proven NP-complete.  Now we want to define a quantum generalization of k-SAT and 

answer whether this generalization also lie in P when k=2.  The Approximate Ground-

Space Projection (AGSP) is used to prove Hasting’s 1D area law for gapped systems.  

When the state is entangled, we can not do a simple projection onto the ground space 

because we can not bound the amount of entanglement.  However an approximate 

projection will work fine; this is called the AGSP.  Repeated applications of AGSP to 

product state allow us to approximate the ground state.  It so happens that to prove the 

area law, it suffices to have a good AGSP along with a product state with constant 

overlap with the ground state.  The first criteria imply the second 

 

First I have described what condense matter physicists are doing, then I described what 

computer scientists are doing, now I will describe how the two fields interact.  They 

interact because it takes actually building a circuit, which is physics, to prove that a 

problem, a k-LH problem, is solvable on a quantum computer, which is a question only 

interesting to a computer scientist.  Kitaev showed that 5-local Hamiltonian problem is 

QMA complete.  In the proof, a YES instance of k-LH is proof sent to the verifier circuit 

as the ground state of the local Hamiltonian in question.  The verifier then runs a simple 

local version of phase estimation to roughly determine the energy penalty incurred by the 

given proof.  It is first assumed that we have a k-local Hamiltonian as a sum of r local 



Hamiltonians.  When we apply the quantum verification circuit V to the proof  , and 

measure the answer register, the thresholds probability of a and b are separated inverse 

polynomial in size of data.  So it decreases very fast as number of local Hamiltonians 

increases.  Namely the probability of a flip is inverse polynomial to number of local 

Hamiltonians, another word for circuit size.  Thus proving the k-LH is within QMA 

 

We prove that the probability of flipping the answer register of the proof is very high 

when we have a large number of local Hamiltonians (same as number of terms in index 

register.)  Let P be a promise problem in QMA.  The proof register contains the proof that 

V verifies.  Using verifier circuit V, our goal is to define a 5-local Hamiltonian H that has 

a small eigenvalue if and only if there exist a proof causing V to accept with high 

probability.  In the case where H has no such proof we want to prove that there are no 

small eigenvalues, so in the YES case the eigenvalue is upper bounded where as in the 

NO case, the eigenvalue is lower bounded.  Both of these bonds turns out to be inverse 

polynomial circuit size and thus suffice to show that 5-LH is QMA-hard. 

 

After proving that 5-LH is QMA hard, we want to prove 2-LH is QMA hard.  Kitaev, 

Kempe, and Regev use perturbation theory prove that 2-local Hamiltonian is QMA hard.  

This proof is quite complicated and has many pieces that fit together.  The beginning is 

Kempe and Regev’s result that 3-LH is also QMA complete.  This is obtained via a 

circuit to Hamiltonian construction similar to Kitaev’s except that one first uses only a 

single qubit to refer to the clock in the propagation Hamiltonian—this reduces the 

Hamiltonian’s locality from 5 to 3.  To Prove that 2-LH is QMA hard, the approach is to 

show that a Karp or mapping reduction from an arbitrary instance of 3-LH to 2-LH.  Thus 

we have just reduced from 5 to 2.   Once we define the 2-local Hamiltonian H-tilde, the 

spectral analysis we have just performed follows the chain of relationships: H -> Heff-

>sum(z)->H-tilde.  This illustrates the concept that we can approximate one circuit with 

another, besides proving that 2-LH is QMA-hard.   
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