
Overview

My thesis is concerned with the Hamiltonians used in quantum simulation. We are

interested in the computation of the ground state of such Hamiltonians. Based on the

type of ground state which is either a tensor product or an entangled state, or have some

other classifiable characteristics, we devise Hamiltonians that work on these ground

states. We have to use perturbation theory and matrix algebra to make our Hamiltonian

work. In the end if the ground state energy of the Hamiltonian is lower bounded by

1/poly(n), we can efficiently simulate the circuit represented by this Hamiltonian. To

summarize, at this stage we classify how to solve a problem, not by problem type, but by

solution type. There is not a single type of Hamiltonian that can solve all problems, but

there are several different types of Hamiltonian to target different classes of ground

states.

The Hamiltonians used to do computation are called local Hamiltonians. So what are

local Hamiltonians? If for example our entire computation consists of n qubits. A local

Hamiltonian does computation on only a fixed constant subset of them; say 4 qubits. In

classical computing, the most common gates of logic are AND, OR and NOT. In

quantum computing, the gates of logic operations are Pauli X, Y, Z and CNOT. The

Hamiltonian used to model our system need not be exact. For example it might suit our

specific purpose to use the Hadamard gate instead of the Z gate. Obviously the two gates

are not the same, but for our specific target operation, they are the same. Furthermore

our simulation needs to be accurate for a period of time. We use the Schrodinger

equation to make sure of this. At the heart of our research in simulation seems to be the

degenerate eigenenergies of the Hamiltonian. We are interested in what are the

characteristics of a matrix that has degenerate eigenvalues. We are also interested in the

ground state. The ground state is important because it is only intuitive that the correct

solution should take the lowest energy to access, so that you have to try less hard to

extract it at the end of your computation, than all the other states.

This semester of research was about why building the quantum computer is currently still

a challenge. It is challenging because of there are currently no good error correction

codes and quantum algorithms. This semester was also about how to simulate the

quantum computer on a classical computer. Now I will discuss what I did during this

semester. During the first two weeks of this semester, I researched quantum error

correction methodologies. The exponential growth of the error correction circuit size is

one of the factors that limits what problems we can solve on a quantum computer. In

other words, we discovered that with error correction, the circuit size might grow faster

than polynomial. Next we downloaded the jQuantum quantum simulator from off the

world-wide web, to aid us in our study of the Shor’s, Grover’s, and Deutch Josza

Algorithms. This quantum simulator represents a case of how to use the classical

computer to simulate quantum mechanical concepts, for a small number of qubits— 18

qubits maximum. Richard Feynman once said that quantum mechanical concepts can not

be efficiently simulated with classical computer for large qubit numbers, but 18 qubits is

still a small number. Looking, at the source code for jQuantum, I got an appreciation of

how a function that need to be calculated N times on a classical computer through the use

of a loop, can be done in just one step on a quantum computer. By the way, the

jQuantum software can also be used to write error correction codes. Then next, we

studied a Quantum Hamiltonian Complexity paper. On one hand, this paper is about

models, approximations and ground states. On the other hand, this paper is about proving

that the k-local Hamiltonian is QMA-complete, which would mean that it is solvable on a

quantum computer. From here we make our happy down-hill slide because k-QSAT is a

special case of k-local Hamiltonian, and if k-local Hamiltonian is solvable so is k-QSAT.

Thus we can now solve NP-complete problems. (To distinguish k-QSAT from other k-

Local Hamiltonian is that in k-QSAT the local Hamiltonians are all projectors, which are

not versatile but still a good start). At the end of the semester, we looked at a polynomial

time algorithm for 2-QSAT. If successfully implemented, this algorithm is the proof that

k-QSAT is solvable, at least for k=2. Next semester we will study the clause to variable

ratio of a barely solvable problem. Through exploring models such as the Ising model by

writing codes in Java to test the satisfiability, we will gain insight into this ratio.

Quantum Error Correction

A major reason of why Quantum Computing research continues to be an arduous struggle

is that there is currently no way to achieve error correction in an economical way. The

advantage of Quantum Computing is supposed to be that it uses polynomial sized circuits

to solve exponential sized problems. However quantum error correction causes

exponential growth in circuit size. Currently, we solved the problems of detecting the

errors but there is still no efficient way for correcting the errors after detecting them. The

quantum simulator I used in my research, jQuantum, was invented partly for this purpose.

I still have not had the time to truly sit down and think if I can come up with a better error

correction code using jQuantum, but I will as soon as possible.

The problem with the current strategy is that error correction will cause the amount of

gates to be disproportionately big if we want a small error threshold (for example 10^-5).

In fact for a 21 qubit circuit, the number of gates would be on the order of 10^19. As you

can see this polynomial sized circuit is even bigger than an exponential circuit! So

probably what is currently happening in the quantum computing research labs, is that we

tolerate large error rates (such as 10^-1) so that we don’t waste money on the gates. In

the ion trap, the gates are laser pulses, and currently computation that requires more than

a couple hundred laser pulses at a time is impossible.

In general, we don’t know what noise is afflicting a system, so it would be useful if a

specific code C and error-correction operation R could be used to protect against an entire

class of noise processes. But in many respects quantum error correction codes are quite

similar to classical codes. An error is identified by measuring the error syndrome, and

then correcting it as in the classical case. So far there is no major setback in how

quantum computing works in theory. However in the real world, environment interacts

with the quantum system and causes decoherence and other error to occur. Noise models

were constructed to help us better understand the nature of quantum errors. Right now,

each quantum error is modeled as the original gate followed by another quantum gate that

represents the error. The most common errors are constructed from X, Y, Z pauli gates.

The effects of these noises that they cause either a spin-flip error or a phase error, or

some combination of the two cases. To monitor spin-flip errors we use the quantum

state 2/)111000(, and to monitor phase errors, we use the quantum state

2/)(.

The Shor code, named after its inventor, protects against arbitrary error on a single qubit.

Suppose a bit flip occurs on the first qubit, we perform measurement 21ZZ comparing the

first two qubits, and find that they are different. We conclude bit flip occurred for either

one of them. Next we perform measurement 32ZZ . We find they are the same. We

conclude the first qubit must have flipped. When a phase flip occurs on any one the first

three qubits we find that the signs of the first and second blocks are different. The second

and final stage of syndrome measurement is to compare the sign of the second and third

blocks of qubits. We find that these are the same, and conclude that the phase must have

flipped in the first block of three qubits. The drawback is this only work for a single

qubit; with entanglement it is not going to work, because two qubits are involved.

As mentioned earlier, many respects quantum error-correction codes are similar to their

classical counterparts; there is however an interesting class of quantum codes known as

degenerate codes, that includes a wide variety of codes such as the Shor code and the

Steane code. Degenerate codes, pack and store more information than classical code.

However some of the proof techniques used classically to prove bounds on error-

correction is invalid for degenerate codes. The quantum Hamming bound is a simple

bound that gives insight into the properties of quantum codes; it gives the total number of

errors that may occur on n or fewer qubits. This bound basically tells us whether or not a

code with particular characteristics exists or not. The bad news is Hamming bound only

applies to non-degenerate codes. Our first example of a large class of degenerate

quantum error-correcting codes is the Calderbank-Shor-Steane codes usually known as

the CSS codes. The stabilizer codes are a class of codes that is even more general than

the CSS codes, and allows us to construct a wide variety of quantum codes. One of the

features of stabilizer codes is that their structure enables systematic construction of

procedure for encoding, decoding, and error correction. Stabilizer codes are analogous to

classical linear codes. Stabilizers’ power lies in the clever use of the group theory, and

they describe state spaces under quantum operations. A set of generators G generate a

stabilizer for the code space of, for example, the seven qubit Steane code. A linear code

C encoding k bits of information into n bit code is specified by an n by k generator matrix

G. Furthermore, error correction for linear codes is more clearly understood by

introducing the parity check matrices H. The code is defined to be the nullspace of H,

and it is subject to corruption by an error E. To construct H, we pick out n-k linearly

independent vectors that are orthogonal to the columns of the generator G. Also, H has n

columns.

To keep errors constantly in check is inevitably hard to do, especially because of the fact

that we can not clone a quantum state. Since we can not get tensor producted states, we

settle for the second choice of using entangled states. For example if the state was

originally 10 , we encoded it as 111000 . Basically how we achieve this

is through the use of CNOT gates to create many copies of our qubit—usually a total of 3

copies would be enough. If you think about this you will realize why it causes

exponential growth of circuits: if you originally have 3 qubits, after a layer of gates, you

will have 3^2 qubits, and after 2 layers of gates, you will have 3^3 qubits. Why this is

actually not a problem is you are not going to apply gates to all of these qubits only a

portion of them, and ideally you want to first fix the error, before applying more gates

only to your original qubits, so that the number of gates or qubits will not grow

exponentially.

jQuantum

jQuantum is a quantum simulator. Quantum simulators allow us to simulate the behavior

of a quantum computer on a classical computer. jQuantum was put on the worldwide

web and open to the public to download for free, because its creators wish to encourage

writers of new quantum algorithms. Somehow the current Shor’s and Grover’s

algorithms are not stable and reliable enough, and there is demand for a better quantum

algorithm. jQuantum is a program written in Java. This is quite a logical choice for

program language since Java’s Swing library allows us to create a very user friendly and

attractive looking Gui, or framework in which the program runs. If it was written in C++,

it would have been much less inviting and much more difficult to use. You will have to

use the command shell, and learn by heart all the commands written for each quantum

gate.

To help you visualize what is happening to all your quantum states and how likely you

are to get each one of them if you do a measurement, there is an array of colored squares

that gives you the complex coefficients of each quantum state in the summation. From

the colors of the squares you can infer the probability of the future measurement being in

that state. Basically the color represents the phase and the intensity represents the

amplitude. In the Grover algorithm simulation that I made, I was able to view the gradual

intensification of red color in the square I am searching for, as I pass through each Grover

cycle.

For the Shor simulation—I realized why this algorithm is very unrealiable and can not be

trusted. Based on the results of in jQuantum, I learned why the Shor algorithm is

unrealiable and why we need a new algorithm. First of all the algorithm can only factor

numbers with an even integer as period. Second of all it is more reliable at factoring

some numbers than others even assuming both could be factored. For example, I

discovered that it is better at factor 15 than 21. This is because for 15 Q/r =128/4=32;

while for 21 Q/r=512/6=85.333. Since for 21 the number Q/r is not a whole number, it

introduces more ambiguity and more fluctuations in the solution.

First I want to affirm that jQuantum definitely have many virtues. I also like the fact that

this program has many nice details. I liked the conceptual clarity of this program. Each

quantum state is represented by a square illustrated at the bottom of the panel. So that

there is no confusion between the qubit number and the quantum state number.

It is also true to the fact that you can not reverse a measurement. Also it calculates the

number of Grover’s iterations for you, and it rounds down rather than up, so that you will

not waste gates in your circuit design. Instead of getting 100% you get 95% instead, but

you will never get 105% any way, so there is no need to waste the last gate. Another

detail I liked was the fact that you can reset the input qubits after you have constructed

your circuit. Just think how frustrated you would be if your circuit can not be reused for

different inputs.

However jQuantum is not a perfect program. Sometimes it seems more like a toy than

something you can make scientific progress with. But I definitely think that it is a good

start and needs only a few suggestions to make it even better. I didn’t like the fact that it

is not easy to correct a mistake when you are building a very complicated circuit, that is

prone to mistakes, this causes huge waste of time. For example after constructing, layer

12 you suddenly found a mistake in layer 3. At this stage, jQuantum only allows you to

delete all the gates from 3 to 12 to correct your error. I don’t understand, why we can not

just delete layer 3 and replace it with something else. I also don’t like the fact that there

is no mechanism for shifting the circuit if it won’t fit in one screen. It is not too tiring for

me to have to scroll by just a small step each time I add another gate that won’t fit on the

screen.

I looked at the source code folder of the jQuantum. The file that did all the calculations

of the quantum gates, is called Register.java. I noticed that they used two arrays called

real and imaginary to keep track of the coefficient of all the quantum states. There was

extensive use of for-loops to increment through the real and imaginary arrays. Through

the use of a Hashset, they were able to keep track of all the terms that will be changed

when you pass your original quantum state through a quantum gate. For single qubit

gates, no entangling action takes place, and you can increment your for loops by large

chunks, while for entangling gates, you have to increment step by step through the entire

array. The math behind the majority of the gates in this program is multiplying a vector

by a matrix to get the new vector. But because we want to be as efficient as possible, we

do not want the entire matrix, we only want a “local” matrix action, that acts on only one

of the qubits or at most 2 or 3 at a time. That’s why we use the for-loop to skip over the

terms that will never be changed. Also the logic behind what to include in your Hashset

can be very complicated during computation, and can involve checking whether an

element is already in the Hashset. The calculations Inverse Quantum Fourier Transforms

is more complicated and involves the use of the sine and cosine functions. I am

personally in awe of the person who came up with how to implement the bit reversal

algorithm. I am also in awe of the rest of the FFT. But after the FFT the rest of the

Inverse Quantum Fourier Transform is pretty much self explanatory. Register.java is the

file that does all the computations for the quantum gates. Below I am including an

analysis of one of the methods in Register.java, for the Hadamard gate.

Explanation of the above function Register: hadamard()

- The function power2(int n), basically calculates the nth power of 2. Here x is the

total number of qubits, and the number that is stored in x qubits is less than n2 .

In other words, the n qubits can represent any number from 0 to 12 n .

- The argument passed to the Hadamard function is j. This means we want to

perform our computation on the jth qubit. Based on the convention in this

program, so that it is easier to keep track of for further development, the smallest j

can be is 1 not 0. j=1 is the lowest qubit or the digit that represents 2^0 in our

number or state that is represented by the n qubits.

- They used two for-loops in the above code. Understanding what they are used

for, takes knowledge of tensor products. If you write out what a tensor product

means on paper, it will make more sense. Basically, Power2(size) is the bound

based on the size of our circuit; the number of qubits is represented by variable

‘size’. l and k are two increments that we have to consider so that we can be sure

that we only change the elements in the quantum state that actually changed when

we do operations on the jth qubit. k increments to the starting point of each block

of elements lower than and including the jth qubit. l increments through each

element of the block of elements. So in the end each element in the quantum state

is considered, just in a different order than in counting sequence.

- The indices i0 and i1 are used for doing the Hadamard gate computation. i0 and

i1 are separated by an increment that is the size of the block of qubits that are less

than j. The relation between i0 and i1 is that they represent the pair of elements

that the quantum gate somehow modify based on the original values.

- The rest of this algorithm is where we do a matrix multiplication to find our final

quantum state.

-

Deutch Josza Algorithm

The Deutch Josza algorithm is a demonstration of using quantum mechanical concepts to

achieve information processing. This algorithm takes an input function and outputs

whether this function is a constant function or a balanced function; balanced is another

word for exactly half 0 and half 1. This algorithm basically takes in two numbers x and

y; y is interfered with f(x) through)(xfy and generates an output; and then register 1,

the one representing x is measured. When we measure, we should get 0 only if the

function is constant, and something other constant if the function is not constant.

As part of my research leading up to my thesis, I programmed a Deutch Josza algorithm

in Java. Through this task, I was able to experience how hard it is to simulate quantum

systems on the classical computer. I used a lot of for-loops so that I can calculate f(x,y)

for each pair of x and y within the range of my register size. The quantum computer is

able to do this in one step while on the classical computer you have to do calculation for

each x, y pair. What is a loop procedure on the classical computer is a physics

phenomenon on the quantum computer. On the classical computer, it takes, 2^n/2+1

measurements to make sure that the function is constant, while on the quantum computer

it takes only measurment. The concept of measurement itself is also difficult to simulate.

Java has a Math.random() function that simulates randomness; but it does not simulate

randomness based on a probability distribution other than equal probability for each state.

In my program, I simply assumed that I will always get as the result the state with the

highest probability. There is probably a way to fix this problem and maybe I will try it

someday.

The Deutch Josza algorithm itself was easier to understand than to program. The hardest

part is working with a String input and parsing the function into an array of elements.

The next hardest part is writing the algorithm for solving the function. Getting the grand

concept of recursion is actually simple compared to mechanisms of storing each step as

you go along. A lot of things humans do intuitively are very frustrating to tell a computer

how to do. I also find that what is difficult about programming in general is staying

consistent so that all the variables in your program match up in the correct order. A good

advice is to use copy and paste when you do your programming so that you will have less

typos. But when you use copy and paste, you have to change some parts of the program

and it is crucial to stay consistent.

Computational Complexity

Now allow me to explain the complexity of a problem in classical computing theory. A

problem is in NP if given the correct input and output pair, you can find a polynomial

algorithm that verifies the correctness of this pair. An NP-hard function satisfies the

following criteria: inputting a polynomial function into the NP-hard function, gives you

an NP function. A problem is NP-complete if it is both NP and NP-hard. We currently

can not solve NP complete problems on a classical computer. We are thinking that even

though the classical computer can not solve NP complete questions, maybe the quantum

computer can. We have to first mutate the problem into quantum logic form. In this

transformed form, the NP complexity is called the QMA, and the NP-hard is called

QMA-hard, and equivalently the NP-complete is called the QMA-complete. From here

on, we have to use quantum algorithms to solve problems on a quantum computer,

because the classical algorithms will not apply.

Now I will elucidate how the sets of computational complexity fit together into the big

picture. P BPP BQP QMA PSPACE. NP contains all of P and some of BPP

and BQP, and is contained entirely within QMA. Currently we believe the power of the

quantum computer is BQP. Scientists want eventually to be able to solve problems in

QMA so that all the NP problems will be solved for certain. That QHC paper covers the

fact that k-LH is included within QMA.

Quantum Hamiltonian Paper

Quantum Hamiltonian Complexity is the study of quantum constraint satisfaction

problems. The details of this field involve the establishment of the Cook-Levin Theorem,

and the modeling of 1D low temperature quantum systems via area laws. But from a

farther distance, it is the study of local quantum constraints. Local Hamiltonians are

Hamiltonians that occur in nature. We are also interested in the ground state. Intuitively,

the ground state can be thought of as the vector which maximally satisfies all the

constraints or local Hamiltonians }{ iH . First of all, based on the Schrodinger equation

the evolution of quantum states occurs due to local Hamiltonians. Local Hamiltonians

only affect a portion of the system out of the entire system of qubits. Therefore just as

classical logic clause force its bits to lie in a subspace, quantum clause iH also restrict the

k qubits to a certain subspace. QHC asks the questions such as: which quantum systems

have ground states that have classical representation? Can we use classical simulations to

predict when a quantum system will exhibit interesting phenomenon such as phase

transition? Can we quantify the hardness of determining certain properties of local

Hamiltonians?

To describe the joint state of n qubits requires an exponential sized density matrix , this

is why quantum computers are much more powerful. Entanglement is another trait that

distinguishes the quantum world from the classical world. Very exotic correlations can

exist between two systems A and B. Looking at the density matrix describing system

AB, on one end of the spectrum, they exist in a tensor product, on the other end of the

spectrum they exhibit entanglement. We quantify the amount of entanglement by

entropy of entanglement. Like the classical systems, quantum systems are subjected to

noise. Their interactions with the environment cause noise to be injected into the system.

To model this we permit probabilistic mixtures of pure states more generally referred to

as mixed states. The probabilities add up to 1. An open quantum system is one that

interacts with its environment. An open quantum system A can be simulated by using a

closed joint system AB, evolving AB using unitary operators and subsequently tracing

out part of AB.

An interesting problem that QHC is concerned with is finding the ground state energy.

This problem has many interesting forms and is of QMA-hardness. Not only do we want

to find the optimum solution, we want to find the approximation to the optimum solution

as well, which is talked about in this QHC paper. Just as we can do everything we want

with classical Hamiltonians, we also want to be able to do everything we want with

quantum Hamiltonians. The paper talks about tensor networks which are used by

condensed matter physicists, and also discusses the proof that LH problem is QMA-

complete, which were done by computer scientists. It was easy to find out that the

general LH problem is QMA-complete. But there are also special LH problems such as

the Quantum SAT, Stoquastic LH, commuting LH, which were all proven QMA-

complete too after much greater efforts. The terms related to QHC include: mean field

theory, tensor networks, Density Matrix Renormalization Group (DMRG algorithm) and

Multi-Scale Entanglement Renormalization Ansatz. How to use these are all related to

how to classically simulate quantum systems.

To aid us in our exploration of quantum systems, we often use the classical computer.

The last two decades have seen much effort towards classifying when a ground state can

be described classically. Now we move on to describing ground states quantum

mechanically, and we work with these ground states using quantum algorithms, one

algorithm discussed in this paper is the DMRG. The DMRG operates on a type of tensor

network called the Matrix Product State (MPS). MPS are used to efficiently classically

simulate “slightly entangled” quantum computation. Generalization of MPS to higher

dimensions are tensor networks called PEPS and MERA. But these are not easy to work

with since, even the problem of determining whether a tensor network represent a non-

zero vector is not in Polynomial-Time Hierarchy. There are other quantum algorithms

that are not discussed in this paper that I read about in other articles. (The quantum

adiabatic computation algorithm operates on balanced Boolean inputs that evolve in time.

The Solve-Q algorithm is a 2-QSAT algorithm that operates on chain reactions and

discretised cycles. During the semester of my research, I worked with k-QSAT

constraint satisfaction problems. I had the experience of seeing how the Solve-Q

algorithm solves a 2-QSAT constraint satisfaction problem.) As it is we are only

beginning to understand how to process information using quantum mechanics and how

to represent them using higher level mathematics; so quantum algorithms are few, and we

need people to write more of them before we can build a quantum computer.

Computer scientists and Condensed matter physicists approach the problem of finding

quantum algorithms in two different ways. Computer scientists, use constraint graphs to

study constraint satisfaction problems. Condensed matter physicists use simplified

models to approximate the real world particle interactions, by studying in a laboratory

how a collection of particles interact with their nearest neighbors, and swapping those

particles to aid in computation.

The question that is relevant to many condensed matter physicists is that given a quantum

state, can we compute some local property. Some local properties are intensive and do

not scale with system’s size. Other local properties such as the ground state energy are

extensive properties and do depend on system size. In practice there is no way to know

the actual Hamiltonian that is causing a quantum system to evolve in time—all we can do

is make an educated guess. We desire to find a simplified model which ignores certain

degrees of freedom, but nevertheless captures the local properties of interest. After we

have the model, we want to find its ground state energy. To better understand physical

systems, condensed matter physicists model them using Hamiltonians, but studying

Hamiltonians is a very a challenging subject. They currently want to find efficient

algorithms for approximating local properties of a Hamiltonian. Where as to a computer

scientist, efficient means the algorithm theoretically runs in polynomial time; to a

condensed matter physicist efficient means that it is fast and actually works well in

practice. The variational principle simply means optimization over restricted set to make

computation easier. Three types of restricted sets are used to model quantum states:

Product States, Gaussian States and Tensor Networks. Products states are for separable

states. Guassian states and tensor networks are for entangled states. A key question is:

Which quantum systems have ground states that can be well-approximated by a tensor

network of small bond dimension? The bond dimension needs to be small so that the

circuit is polynomial sized.

Unlike computer scientists, condensed matter physicists work on building something

without proving whether it is mathematically possible because most likely it is possible.

Physicists have come up with models of particle systems and how they behave. Both

classical and quantum simulations have been used to uncover the properties of the

Hubbard model. Bosons and fermions are indistinguishable particles. Swapping bosons

will not do anything to the wave function, while swapping any pair of fermions will

induce a global phase of -1 on the wave function. Boson and fermions have different

possible statistical distributions governing how a system of indistinguishable and non-

interacting particles populates a set of discrete energy states. Hubbard proposed the

Hubbard model to explain the behavior of strongly correlated materials. In particular,

this model describes the behavior of electrons in solids, and capture s the transition of a

system between being a conductor and an insulator. In the Hubbard model, the tuning

parameters are the electron density and the repulsion strength, and the 1D model has been

solved by Lieb and Wu. Basically when we remove electrons, it causes the insulator to

become a conductor. Beyond 1D, the Hubbard model is very difficult to solve.

After coming up with classical models, condensed matter physicists have upgraded them

to quantum versions. For example there is now both a classical and a quantum version of

the Ising model. Each model is described by a many-body Hamiltonian. An interaction

graph illustrates which sets of particles are constrained by a common local Hamiltonian.

Solving the model means determining some property of system evolving due to the

Hamiltonian. The commonly studied models are: Ising, Heisenberg, and AKLT models.

The mean field theory is a variational methold over the set of product states to

qualitatively extract properties of a many-body system. A many-body Hamiltonian H is

difficult to solve due to coupling between particles. To circumvent this, mean-field

theory constructs the mean field Hamiltonian, which is an approximation of the actual

Hamiltonian. Sometimes the Hamiltonian is too symmetrical and so we add a symmetry

breaking perturbation—for example the linear term you see in the Ising model. We want

to get the mean field Hamiltonians so that qubits do not interact, and are therefore easier

to solve; it is usually given at a specific Temperature. Physicists have derived clever

ways of encoding certain classes of entangled quantum states into compact forms called

tensor networks. An n- tensor M(i1,i2,….in) for all i={0,1} which stores all 2^n

amplitudes of the quantum state.

The paper then goes on to discuss the works of the computer scientists. The computer

scientist’s approach to coming up with new algorithms is through mathematics rather

than physics, each quantum gate is represented as nothing more than a matrix, and

together they form algorithms. Each algorithm operates on quantum states that can be

expressed using a certain type of mathematics. For example the DMRG is an algorithm

over a set of tensor networks called MPS; it is used for studying 1D quantum many-body

systems, to extraordinary precision. Matrix Product state (MPS) associates each qudit

with a series of matrices A each acting on one element of the qudit of dimension D. Now

that we have both algorithm and quantum state, we can do quantum simulation.

However, large values of qudit dimension D are not computationally feasible due to large

circuit size. So we are restricted to small qudit size. Physics often restrict math in

practical situations. Other types of tensor networks used to represent quantum states are

PEPS and MERA. An efficient representation of a quantum system would not be useful

without the ability to compute properties of the system from this format. Which is why

the strength of the MERA is that the expectation values of local observables of a quantum

state can be efficiently computed.

Computer scientists studied the area law. Area laws are a way of formulating the fact

that entanglement in natural quantum systems occur roughly on the boundary. The open

question in this field is whether area law holds in dimensions larger than 1D. Commuting

LH seem to be closer in complexity to classical world of constraint satisfaction problems.

Commuting 2-LH, 3-LH, 4-LH are in NP. SAT is historically the first problem to be

proven NP-complete. Now we want to define a quantum generalization of k-SAT and

answer whether this generalization also lie in P when k=2. The Approximate Ground-

Space Projection (AGSP) is used to prove Hasting’s 1D area law for gapped systems.

When the state is entangled, we can not do a simple projection onto the ground space

because we can not bound the amount of entanglement. However an approximate

projection will work fine; this is called the AGSP. Repeated applications of AGSP to

product state allow us to approximate the ground state. It so happens that to prove the

area law, it suffices to have a good AGSP along with a product state with constant

overlap with the ground state. The first criteria imply the second

First I have described what condense matter physicists are doing, then I described what

computer scientists are doing, now I will describe how the two fields interact. They

interact because it takes actually building a circuit, which is physics, to prove that a

problem, a k-LH problem, is solvable on a quantum computer, which is a question only

interesting to a computer scientist. Kitaev showed that 5-local Hamiltonian problem is

QMA complete. In the proof, a YES instance of k-LH is proof sent to the verifier circuit

as the ground state of the local Hamiltonian in question. The verifier then runs a simple

local version of phase estimation to roughly determine the energy penalty incurred by the

given proof. It is first assumed that we have a k-local Hamiltonian as a sum of r local

Hamiltonians. When we apply the quantum verification circuit V to the proof , and

measure the answer register, the thresholds probability of a and b are separated inverse

polynomial in size of data. So it decreases very fast as number of local Hamiltonians

increases. Namely the probability of a flip is inverse polynomial to number of local

Hamiltonians, another word for circuit size. Thus proving the k-LH is within QMA

We prove that the probability of flipping the answer register of the proof is very high

when we have a large number of local Hamiltonians (same as number of terms in index

register.) Let P be a promise problem in QMA. The proof register contains the proof that

V verifies. Using verifier circuit V, our goal is to define a 5-local Hamiltonian H that has

a small eigenvalue if and only if there exist a proof causing V to accept with high

probability. In the case where H has no such proof we want to prove that there are no

small eigenvalues, so in the YES case the eigenvalue is upper bounded where as in the

NO case, the eigenvalue is lower bounded. Both of these bonds turns out to be inverse

polynomial circuit size and thus suffice to show that 5-LH is QMA-hard.

After proving that 5-LH is QMA hard, we want to prove 2-LH is QMA hard. Kitaev,

Kempe, and Regev use perturbation theory prove that 2-local Hamiltonian is QMA hard.

This proof is quite complicated and has many pieces that fit together. The beginning is

Kempe and Regev’s result that 3-LH is also QMA complete. This is obtained via a

circuit to Hamiltonian construction similar to Kitaev’s except that one first uses only a

single qubit to refer to the clock in the propagation Hamiltonian—this reduces the

Hamiltonian’s locality from 5 to 3. To Prove that 2-LH is QMA hard, the approach is to

show that a Karp or mapping reduction from an arbitrary instance of 3-LH to 2-LH. Thus

we have just reduced from 5 to 2. Once we define the 2-local Hamiltonian H-tilde, the

spectral analysis we have just performed follows the chain of relationships: H -> Heff-

>sum(z)->H-tilde. This illustrates the concept that we can approximate one circuit with

another, besides proving that 2-LH is QMA-hard.

.

