

Android de-Shredder App

A Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of

the Requirements for the Degree

Master of Science

By

Vasudha Venkatesh

May 2018

©2018

Vasudha Venkatesh

ALL RIGHTS RESERVED

3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

Android de-Shredder App

By

Vasudha Venkatesh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science 05/07/2018

__

Dr. Melody Moh, Department of Computer Science 05/07/2018

__

Dr. Shruti Patil, Google LLC 05/07/2018

4

ABSTRACT

Sensitive documents are usually shredded into strips before discarding them. Shredders

are used to cut the pages of a document into thin strips of uniform thickness. Each

shredded piece in the collection bin could belong to any of the pages in a document.

The task of document reconstruction involves two steps: Identifying the page to which

each shred belongs and rearranging the shreds within the page to their original position.

The difficulty of the reconstruction process depends on the thickness of the shred and

type of cut (horizontal or vertical). The thickness of the shred is directly proportional to

the ease of reconstruction. Horizontal cuts are easier to reconstruct because sentences

in a page are intact and not broken. Vertical cuts are harder because there is very little

information to glean from each shred. In this project, an Android app is developed to

reconstruct the pages of a shredded document by using a photograph of the shreds as

input. However, no prior knowledge of the page to which each shred belongs is

assumed. The thickness of each shred should conform to the measurements of a

standard strip shredder. The type of shredder cut is vertical. This work is an

enhancement of an existing work of puzzle reconstruction developed by Hammoudeh

and Pollett. Through the experiments conducted on both the existing model and the

proposed model, it was found that the proposed pixel correlation metric model

performed with 80 to 90% better accuracy than the existing RGB metric model on

grayscale document images. However, the performance on high contrast images

remained almost the same at 90% accuracy for both the RGB model and pixel

correlation metric model.

5

ACKNOWLEDGMENT

I would like to thank my project advisor Dr. Chris Pollett for his excellent guidance which

helped steer this project in the correct direction.

I am also thankful to my committee members Dr. Melody Moh and Dr. Shruti Patil for

their valuable time and input which enriched the outcome of this project.

I would like to thank the Department of Computer Science for providing the necessary

resources to conduct this project defense in a smooth manner.

Special thanks to my husband for never giving up on me and standing like a pillar of

moral support. Special love to my kid who adapted to my schedule and remained

flexible.

Finally, but in no way lesser, I thank my wonderful friends and sister for always having

my back and making my journey every bit memorable.

6

TABLE OF CONTENTS

1. INTRODUCTION .. 9

2. BACKGROUND ...12

3. DEVELOPING THE APPLICATION ...14

4. DESIGN ...20

5. IMPLEMENTATION ...25

6. RESULTS ..30

7. CONCLUSION ...35

REFERENCES ...38

7

TABLE OF FIGURES

Figure 1. Tal Paikin Placer Algorithm ..13

Figure 2. App interface for de-shredding documents ...15

Figure 3. IMAGE_CAPTURE intent passing to camera app ..16

Figure 4. Communication between ImageCaptureActivity and SplitImageActivity16

Figure 5. Granting permissions to the camera and storage ...17

Figure 6. Structure of the project ...18

Figure 7. Import openCV module into Android studio ..19

Figure 8. Efficacy of existing algorithms on document image ..22

Figure 9. Weak hierarchical clustering of document images ..22

Figure 10. Computational complexity in practice ...23

Figure 11. Implementation focus areas ...25

Figure 12. Code snippet to illustrate onCameraFrame method usage28

Figure 13. Manifest file with external storage permissions added to it29

Figure 14. With color images varied distances ..30

Figure 15. With black and white images the distances are almost the same31

Figure 16. Jumbled shreds ..32

Figure 17. Rearranged shreds ..33

8

LIST OF ABBREVIATIONS

LAB - Lightness, Color components a and b

RGB - Red, Green, Blue

UI - User Interface

API - Application Programming Interface

9

1. INTRODUCTION

The use of shredders to cut sensitive documents into pieces has a very interesting

history dating back to 1909 when Abbot Augustus Low patented a basic prototype of a

shredder. Although intuitive, his patent was never manufactured on an industrial scale

until 1935 when a German inventor used a pasta maker to shred some of his sensitive

ideological fliers. The principles of a shredder are essentially the same as a pasta

maker and a hand crank shredder was more than sufficient to shred a few papers.

The appeal of shredders was restricted to government agencies until the 1980s when

civilians started using shredders amid growing awareness about privacy and concerns

about the breach of it. Standard shredders cut a document into thin strips of specified

width. During the infamous U.S embassy takeover in Iran, many of the shredded

documents belonging to American interests were successfully de-shredded. This led to

the Defense department’s interest in de-shredding algorithms to explore vulnerabilities

in existing system to develop more sophisticated shredders.

The principles of de-shredding are like jigsaw puzzle solvers. The guiding principle is all

about identifying the neighboring piece for each selected piece and the final output is

expected to reproduce the original image. The similarity ends there. There are

additional challenges associated with shredded documents. In most of the existing

literature, the jigsaw problem focuses on color gradient information along the edges to

10

calculate the neighboring piece. This system works when there is a lot of contrast color

information to work on. Most of the existing algorithms produce best results when the

image has clear divisions of regions delineated with contrasting colors. However, a

document is predominantly text with almost uniform contrast in grayscale. Hence, the

information extracted from a particular piece will almost always look similar to the

information extracted from all the other pieces making it difficult to identify the best

match.

Some of the existing literature relies on natural language processing to identify an

alphabet along the connecting edge and matching it with prediction of the alphabet on

every other piece’s complementary edge [1]. For instance, if the page is shredded

cutting the alphabet ‘a’, a prediction on the alphabet is made on the right edge and

matched with the prediction on the left edge of the other strips. If a strip identifies its left

edge alphabet as ‘a’, then it is identified as the correct neighbor. The biggest problem

with this approach is with scalability and limited utility. The main use of de-shredding

technology is in defense department. Most of the confiscated documents from enemy

lines are expected to be written in non-English languages. This would drastically limit

the utility of the above-mentioned model.

Another proposed solution involves classifying the strips into categories and using

existing algorithms for piece assembly [2]. The focus of the algorithms is on identifying

the first piece to be used for placement. This piece is also called seed piece [3] which

determines the efficacy of the algorithm in solving a given puzzle. This solution,

11

although much better than using existing jigsaw algorithms, suffers from the problem of

identifying appropriate metrics for matching piece identification. This approach would

work best for placement of pieces once appropriate metrics are identified.

The proposed algorithm for de-shredding documents takes into consideration the nature

of the images which is grayscale documents and not in the LAB color space with

contrast information. A new metric for determining the best buddy shred has been

proposed and it is used as the core metric around which the shreds are reassembled.

Chapter 2 gives information about the current metrics being used for best buddy piece

identification. Chapter 3 discusses the setup that was done for this project including the

methodologies adopted for setting up the android application. Chapter 4 explains the

design constraints and how they were overcome in this project. Chapter 5 presents the

core implementation details of the project. Chapter 6 shows some of the test runs and

accuracy graphs for various piece counts. Finally, Chapter 7 has the conclusion.

12

2. BACKGROUND

Most of the de-shredding tasks currently being performed require the use of some

amount of manual intervention. They do not completely automate the process of de-

shredding. The inspiration for fully automated de-shredder comes from the use of fully

automated algorithms for jigsaw puzzle solvers. Two of the most relevant works which

form the core of the proposed de-shredder will be discussed here before moving on to

existing work.

The concept of using a seed piece around which all other pieces in a jigsaw puzzle are

placed was pioneered by Cho et al. in 2010. The concept of best buddy neighbor was

first introduced by Cho et al. This means that when two pieces Px and Py were to be

matched on their complementary sides Sx and Sy, and they were determined to be best

buddies, there is no other piece Pz with better compatibility on Sz with Sx than Sy on

Py.

This idea that was introduced by Cho et al. was further expanded by Tal and Paikin

whose work is considered as pioneering in the field of mixed bag puzzles [4]. This is the

case where the number of total puzzles are known to be greater than one and there are

many missing pieces too. This approach relies on a kernel growth approach where a

threshold score is maintained and once the threshold falls below a certain value, a new

13

puzzle is created. This approach is going to form the basis of the work to be done in de-

shredding documents. Even though this approach is suitable for images, the best buddy

metric used in Tal and Paikin solver does not work well on documents.

Figure 1. Tal Paikin Placer Algorithm

The proposed pixel correlation metric algorithm calculates pixel correlation between any

two complementary edges of two shreds instead of predicting adjacent edge based on

color gradient change. This approach is more effective for processing grayscale

documents because RGB information does not give sufficient information for predicting

adjacent edges when the contrast information remains the same.

14

3. DEVELOPING THE APPLICATION

The first step to building an Android app is to learn the Android architecture and Android

model of message passing. The following terms are necessary to understand the basic

architecture of our Android app:

Activity: As the name indicates, an “Activity” is what a user does with the app. Every

“Activity” is displayed to the user in a window. These can be full-screen windows,

floating windows or windows nested inside another window.

Intent: It represents the action to be performed. It acts as a bridge between activities.

An “Intent” holds information about the action that needs to be performed by an

“Activity”.

The goal was to capture image using the camera and pass the “Intent” to a new activity

to handle the de-shredding operation. The structural elements of the final android app

are established through this process. Figure 2 shows the user interface (UI) of the app.

15

Figure 2. App interface for de-shredding documents

The application works as follows: The user is initially shown a screen with the “Capture

Image” button which when clicked, creates a camera intent which is passed to the

camera app to aid in capturing the image. The way the intent is passed is illustrated in

Figure 3.

16

Figure 3. IMAGE_CAPTURE intent passing to camera app

Once the image is captured, it is saved to a location and this information is passed to

the shred image activity. This is the crux of inter-activity communication. The split image

activity picks up the information about the file location from the capture image activity

and performs the necessary operations. The message passing portion of the app is

shown in Figure 3.

Figure 4. Communication between ImageCaptureActivity and SplitImageActivity

17

The Android manifest file had to be modified to grant permissions for camera and

external storage because the final assembled image is stored in the internal or SD card

storage portion of the Android phone.

In addition to modifying the Android manifest file, it is also important to modify the

permissions within the application screen of the app. Figure 4 displays exactly how it is

done after going into App info section.

Figure 5. Granting permissions to the camera and storage

The proposed de-shredding algorithm within our app has been implemented primarily

using openCV library for Android. This requires the download of a specific application

called “openCV manager” into the Android phone prior to performing any openCV

18

related activity. It is also important to download the openCV library into the Android

studio during the creation of the project.

OpenCV libraries are extensively used by our app in extracting the pixel values from

each shred to perform comparison operations as well as to calculate the metrics on

which the best neighboring buddy is calculated. The steps to include openCV library in

Android studio are explained below:

Figure 6. Structure of the project

19

Figure 7. Import openCV module into Android studio

20

4. DESIGN

Segmentation of shreds into portions

Assembling shreds into whole pages involves identifying how the initial shreds are going

to be processed. In order to aid in that, an approach needs to be framed to determine

how to extract individual shreds. There are two possible approaches: In one of the

approaches, a whole document could be photographed and programmatically divided

into shreds and jumbled before performing an assembly. This approach does not give

the user the freedom to arrange the shreds according to their wish and instead performs

the jumble programmatically.

The other approach could be to place the shreds on a neutral background with constant

spacing between the individual shreds and taking photograph of the arranged shreds.

The application determines the boundary of the shred and collects the pieces into

independent Matrix objects. One advantage of this approach is that it gives sufficient

freedom to the user for arranging the shreds instead of taking control programmatically.

However, it is crucial that the shreds are identified and separated from the neutral

backgrounds to accurately get the background pixel information.

21

In this project, the first approach was used to test the accuracy of the proposed metric

for determining best possible matching shred. The second approach was tested after

making sure that the existing metric works on documents with words instead of images.

De-shredding documents versus RGB images

The difference between the problem statement taken up in this project and the prior

work is that, the prior work was focussed on images with red, green and blue color

components to them. These are images with RGB pixels whose color gradient changes

are calculated, and the color gradient change is used to predict the next set of pixels

and the predicted values are compared to actual pixel values along the complementary

border edge of actual shred pieces and the piece with most similarity to the predicted

gradient value is chosen as the best neighbor piece.

However, this application is mainly aimed at assembling de-shredded documents which

have uniform pixel distribution and hence the existing metrics will not yield the required

results. The weak spot with respect to the existing algorithm for re-assembling puzzle

pieces is in the mechanism for determining best neighbors. Figure 7 shows the run of

the existing algorithm developed by Hammoudeh and Pollett on a document image.

The prior work was tested extensively on RGB images [3] but this experiment was

conducted in this project to test on grayscale document images.

22

Figure 8. Efficacy of existing algorithms on document image

The hierarchical clustering of the document images is given by the following Fig 8.

Figure 9. Weak hierarchical clustering of document images

23

Computational cost of adjacency matrix calculation

In the existing work on jigsaw puzzle solver, each piece has four sides s1, s2, s3 and s4

and each side of piece Pi is matched with all four sides of piece Pj. This would mean

that the adjacency matrix for each piece Pi is an enormous three dimensional matrix of

the dimensions Adj[total_nunber_of_pieces-1][number_of_sides][number_of_sides]

which is stored for each piece. A puzzle board with sixteen pieces will have sixteen

adjacency matrices with the dimension of [15][4][4]. The extent of computation intensity

of this operation is given by the snapshot shown in Fig. 9.

Figure 10. Computational complexity in practice

24

The computational intensity of these operations can be mitigated by parallel processing

of adjacency matrix calculations. This might not help with the speedup on a significant

level. The proposed document de-shredder algorithm addresses this issue by assigning

either 1s or 0s on the matrix corresponding to when a pixel value is either present or

absent. It is illustrated as shown below.

[Matching degree11 Matching degree12 Matching degree13]

[Matching degree21 Matching degree22 Matching degree23]

[Matching degree31 Matching degree32 Matching degree33]

.

.

.[Matching degree n1. Matching degree nn]

where,

Matching degree ni = similarity metric of left side of piece n with right side of piece i

25

5. IMPLEMENTATION

The implementation portions can be divided into the three aspects as shown in the

following figure.

Figure 11. Implementation focus areas

Algorithm

The algorithm that is used in this project is based on the Paikin and Tal solver for jigsaw

puzzles. The Tal and Paikin algorithm used the following metrics for calculating the best

neighboring piece and it can be seen below.

(2 ∗ 𝑃𝑖𝑘 − 𝑃𝑖𝑘−1 − 𝑃𝑗−1) + (𝑃𝑗1 + 𝑃𝑗2 − 𝑃𝑖𝑘)

Due to the issues mentioned in the prior sections of the document, the proposed metric

we use is:

26

Matching degreeij= (a+b)/(a+b+c+d)

where,

a = AND operation on corresponding pixels on piece i and piece j

b = AND operation on the complementary pixels on piece i and piece j

c = AND operation between pixel on piece i with the corresponding pixel’s

complementary value on piece j

d = AND operation between pixel on piece j with corresponding pixel’s complementary

value on piece i

For example,

If rightmost edge of piece Pi is, [0,0,1,1,1,0,1,1],

Leftmost edge of piece Pj is, [1,1,0,0,1,1,0,1]

Matching degreeij = (a+b)/(a+b+c+d)

a = (0.1)+(0.1)+(1.0)+(1.0)+(1.1)+(0.1)+(1.0)+(1.1)

a = 1+1 = 2

b = (1.0)+(1.0)+(0.1)+(0.1)+(0.0)+(1.0)+(0.1)+(0.0)

b = 0

c = (0.0)+(0.0)+(1.1)+(1.1)+(1.0)+(0.0)+(1.1)+(1.0)

c = 1+1+1 = 3

d = (1.1)+(1.1)+(0.0)+(0.0)+(0.1)+(1.1)+(0.0)+(0.1)

d = 1+1+1 = 3

27

Matching degreeij = (2+0)/(2+0+3+3) = 2/8 = ¼ = 0.25

Events API

The Android platform for the application is entirely event-driven. This means that, from

the time the photographs of the shreds is taken to the time the re-assembled output is

delivered, the operations to be performed are based on events that are performed by

the user. The APIs used in this project fall under the Camera section of Android APIs.

The following are some of the main APIs used in this project.

onCreate(): This API helps initialize the activity screen with a view which is a window

where most of the UI operations are performed. Hence, it is very common to find the

setContentView() method inside the definition of this API.

onCameraViewStarted(int width, int height): This API is used to begin processing the

camera frames. In this project, this API is used to initialize the puzzle board size and

then the onCameraFrame API is called to begin processing the image frames from the

camera. It is imperative to set the board size in this method because it is what

determined what needs to be captured and sent for further processing.

onTouch(View view, MotionEvent event): This API determined what needs to be

done if any area covered by the previously determined puzzle board is touched. In the

28

case of this project, this is used to determine if the touch event is performed inside the

game board. If so, the de-shredding algorithm is performed. If the touch event happens

outside the puzzle game board, no action is taken.

onCameraFrame(Mat inputFrame): This method is used to take in the image frames

that are sent from the camera to the view. In the case of this project, the input image is

taken and divided into sub-regions using the sub-mat function of the matrix Mat object

and the sub-mats are jumbled in a random order to simulate the concept of shreds. In

this method, the re-assembled shreds are stored into the disk by getting converted to

bitmap format. The code snippet in the following figure illustrates this.

Figure 12. Code snippet to illustrate onCameraFrame method usage

Storage and Permissions

29

This project involves storing the results onto the external storage device of Android.

This involves external storage permissions to be granted to the application. The

AndroidManifest.xml file is used to explicitly add permissions to the storage device. The

following figure illustrates how the manifest file looks when external storage permissions

are requested.

Figure 13. Manifest file with external storage permissions added to it

30

6. RESULTS

The initial algorithm was run with the metrics for RGB colors and it produced the

following result:

Figure 14. With color images varied distances

31

Figure 15. With black and white images the distances are almost the same

It can be seen that when the initial algorithm is run with black and white images, it gave

results very similar to each other in terms of distance and it resulted in a tie situation

with the same piece vying for the minimum distance position. This leads to inaccuracy.

However, running with the modified algorithm resulted in better accuracy and the

following figure shows a shredded document being assembled.

32

Figure 16. Jumbled shreds

The shreds are jumbled up programmatically when the picture of whole document is

taken as shown above. The shreds have been numbered to figure identify errors if there

is any.

Figure 17 shows the re-assembled shreds when any region within the camera frame is

clicked. Ideally, when there are zero errors, the shreds will be arranged sequentially

after final assembly.

33

Figure 17. Rearranged shreds

The following Figure 18 shows the plot of values between number of shreds and the

number of errors. It can be seen that the number of errors have stayed at a reasonable

value and even though the number of errors increase with increase in number of

shreds, the error difference has stayed pretty close.

34

Figure 18. Number of shreds vs. Number of errors

Some experiments were also conducted where the current algorithm is compared with

the prior work for document images and the following chart illustrates the difference in

performance. The performance difference is very huge because the currently existing

solution is tailored to RGB images.

35

Figure 19. Comparing RGB similarity and pixel correlation metric

7. CONCLUSION

This project focused on implementing an app that would assemble de-shredded

documents into whole documents with reasonable accuracy. This problem is similar in

nature to the problem of assembling puzzle pieces in a jigsaw. Hence, existing solutions

for jigsaw puzzle assembly were used as base models upon which this solution was

built. De-shredding varies in many aspects from the jigsaw puzzle solvers. So, it was

imperative that some fundamental changes had to be made on the existing models

which led to the proposal of new metric for best neighboring piece match.

Jigsaw puzzle solvers worked by selecting a seed piece which was initially placed on

the puzzle board and corresponding best neighbors were identified for each of the four

0

2

4

6

8

10

12

14

16

18

2 4 6 8 12 14 16 18

N
u

m
b

er
 o

fm
is

p
la

ce
d

 s
h

re
d

s

Total number of shreds

Shreds Vs. Errors

Series1 Series2

36

sides on the seed piece. In turn, each of those neighbors identified their best neighbors

on each of their sides resulting in a cluster of sixteen pieces. This pattern was repeated

with a different seed piece and its corresponding sixteen neighbors. Several such

clusters were created and stitched using hierarchical clustering.

However, the above method had a key problem of identifying the best metric for picking

the best possible neighboring piece. The existing metrics were heavily reliant on color

schemes and color gradient change. This was not working on document images.

Hence, a new metric was proposed in this project where presence or absence of pixels

along the border was determined and it was used as a metric for the identification of

neighboring pixels.

This algorithm was incorporated into an Android app which would take as input a picture

of the shreds or take a whole document and programmatically shred it to pieces,

process the shreds using openCV library and assemble the shreds into a bitmap image.

This bitmap image is then internally stored into the Android storage. Permissions for

accessing the storage are obtained using the Android manifest file.

Several experiments were conducted to compare the prior work RGB metric algorithm

with the pixel correlation metric algorithm proposed in this project. It was seen that the

proposed algorithm performed with consistent accuracy rate of 90% and above for

grayscale document images using the modified correlation metrics. However, the

existing RGB metric algorithm performed with accuracy of only 10% with grayscale

37

documents. It returned several tied shreds as candidates for neighbors. The

performance of both the RGB metric and the proposed pixel correlation metric remained

almost the same at 90% and the new algorithm did not show any significant

improvement on high contrast images with rich RGB value variations.

There are various techniques to identify the best possible metrics. We explored many

such methods including curve fitting, natural language processing. The problem with

natural language processing methods was that they restricted the language of the

document which makes this solution non-generic. Moreover, the primary use of de-

shredding is in the defense department which requires the ability to process shreds in

several foreign languages.

Curve fitting algorithms made the solution more complicated for a fast Android

application. Hence, a simpler and more effective metric was utilized for the purpose of

fast processing of shredded strips.

38

REFERENCES

[1] Z. Hammoudeh and C. Pollett, "Clustering-Based, Fully Automated Mixed-Bag Jigsaw

Puzzle Solving," in Proceedings of the Conference on Computer Analysis of Images and

Patterns, 2017.

[2] A. T. G. Paikin, "Solving Multiple Square Jigsaw Puzzles with Missing Pieces," in IEEE

Conference on Computer Vision and Pattern Recognition, 2015.

[3] F.-C. W. Lin HY., "Image-Based Techniques for Shredded Document Reconstruction.," in

Advances in Image and Video Technology. PSIVT, Berlin, 2009.

[4] H. Q. a. J. L. Y. Liu, "Shredded Document Reconstruction Based on Intelligent Algorithms,"

in International Conference on Computational Science and Computational Intelligence

(CSCI), 2014.

[5] M. D. F. K. J. Pearl, "Strip shredded document reconstruction using optical character

recognition," in International Conference on Imaging for Crime Detection and Prevention,

2011.

[6] Z. Z. D. H. L. Zhu, "Globally Consistent Reconstruction of Ripped-Up Documents," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 1, 2008.

39

