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ABSTRACT 

 

Sensitive documents are usually shredded into strips before discarding them. Shredders 

are used to cut the pages of a document into thin strips of uniform thickness. Each 

shredded piece in the collection bin could belong to any of the pages in a document. 

The task of document reconstruction involves two steps: Identifying the page to which 

each shred belongs and rearranging the shreds within the page to their original position. 

The difficulty of the reconstruction process depends on the thickness of the shred and 

type of cut (horizontal or vertical). The thickness of the shred is directly proportional to 

the ease of reconstruction. Horizontal cuts are easier to reconstruct because sentences 

in a page are intact and not broken. Vertical cuts are harder because there is very little 

information to glean from each shred. In this project, an Android app is developed to 

reconstruct the pages of a shredded document by using a photograph of the shreds as 

input. However, no prior knowledge of the page to which each shred belongs is 

assumed. The thickness of each shred should conform to the measurements of a 

standard strip shredder. The type of shredder cut is vertical. This work is an 

enhancement of an existing work of puzzle reconstruction developed by Hammoudeh 

and Pollett. Through the experiments conducted on both the existing model and the 

proposed model, it was found that the proposed pixel correlation metric model 

performed with 80 to 90% better accuracy than the existing RGB metric model on 

grayscale document images. However, the performance on high contrast images 

remained almost the same at 90% accuracy for both the RGB model and pixel 

correlation metric model.  
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1.  INTRODUCTION 

The use of shredders to cut sensitive documents into pieces has a very interesting 

history dating back to 1909 when Abbot Augustus Low patented a basic prototype of a 

shredder. Although intuitive, his patent was never manufactured on an industrial scale 

until 1935 when a German inventor used a pasta maker to shred some of his sensitive 

ideological fliers. The principles of a shredder are essentially the same as a pasta 

maker and a hand crank shredder was more than sufficient to shred a few papers.  

 

The appeal of shredders was restricted to government agencies until the 1980s when 

civilians started using shredders amid growing awareness about privacy and concerns 

about the breach of it. Standard shredders cut a document into thin strips of specified 

width. During the infamous U.S embassy takeover in Iran, many of the shredded 

documents belonging to American interests were successfully de-shredded. This led to 

the Defense department’s interest in de-shredding algorithms to explore vulnerabilities 

in existing system to develop more sophisticated shredders.  

 

The principles of de-shredding are like jigsaw puzzle solvers. The guiding principle is all 

about identifying the neighboring piece for each selected piece and the final output is 

expected to reproduce the original image. The similarity ends there. There are 

additional challenges associated with shredded documents. In most of the existing 

literature, the jigsaw problem focuses on color gradient information along the edges to 
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calculate the neighboring piece. This system works when there is a lot of contrast color 

information to work on. Most of the existing algorithms produce best results when the 

image has clear divisions of regions delineated with contrasting colors. However, a 

document is predominantly text with almost uniform contrast in grayscale. Hence, the 

information extracted from a particular piece will almost always look similar to the 

information extracted from all the other pieces making it difficult to identify the best 

match. 

 

Some of the existing literature relies on natural language processing to identify an 

alphabet along the connecting edge and matching it with prediction of the alphabet on 

every other piece’s complementary edge [1]. For instance, if the page is shredded 

cutting the alphabet ‘a’, a prediction on the alphabet is made on the right edge and 

matched with the prediction on the left edge of the other strips. If a strip identifies its left 

edge alphabet as ‘a’, then it is identified as the correct neighbor. The biggest problem 

with this approach is with scalability and limited utility. The main use of de-shredding 

technology is in defense department. Most of the confiscated documents from enemy 

lines are expected to be written in non-English languages. This would drastically limit 

the utility of the above-mentioned model. 

 

Another proposed solution involves classifying the strips into categories and using 

existing algorithms for piece assembly [2]. The focus of the algorithms is on identifying 

the first piece to be used for placement. This piece is also called seed piece [3] which 

determines the efficacy of the algorithm in solving a given puzzle. This solution, 
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although much better than using existing jigsaw algorithms, suffers from the problem of 

identifying appropriate metrics for matching piece identification. This approach would 

work best for placement of pieces once appropriate metrics are identified. 

 

The proposed algorithm for de-shredding documents takes into consideration the nature 

of the images which is grayscale documents and not in the LAB color space with 

contrast information. A new metric for determining the best buddy shred has been 

proposed and it is used as the core metric around which the shreds are reassembled. 

 

Chapter 2 gives information about the current metrics being used for best buddy piece 

identification. Chapter 3 discusses the setup that was done for this project including the 

methodologies adopted for setting up the android application. Chapter 4 explains the 

design constraints and how they were overcome in this project. Chapter 5 presents the 

core implementation details of the project. Chapter 6 shows some of the test runs and 

accuracy graphs for various piece counts. Finally, Chapter 7 has the conclusion. 
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2.  BACKGROUND 

 

Most of the de-shredding tasks currently being performed require the use of some 

amount of manual intervention. They do not completely automate the process of de-

shredding. The inspiration for fully automated de-shredder comes from the use of fully 

automated algorithms for jigsaw puzzle solvers. Two of the most relevant works which 

form the core of the proposed de-shredder will be discussed here before moving on to 

existing work.  

 

The concept of using a seed piece around which all other pieces in a jigsaw puzzle are 

placed was pioneered by Cho et al. in 2010. The concept of best buddy neighbor was 

first introduced by Cho et al. This means that when two pieces Px and Py were to be 

matched on their complementary sides Sx and Sy, and they were determined to be best 

buddies, there is no other piece Pz with better compatibility on Sz with Sx than Sy on 

Py.  

 

This idea that was introduced by Cho et al. was further expanded by Tal and Paikin 

whose work is considered as pioneering in the field of mixed bag puzzles [4]. This is the 

case where the number of total puzzles are known to be greater than one and there are 

many missing pieces too. This approach relies on a kernel growth approach where a 

threshold score is maintained and once the threshold falls below a certain value, a new 
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puzzle is created. This approach is going to form the basis of the work to be done in de-

shredding documents. Even though this approach is suitable for images, the best buddy 

metric used in Tal and Paikin solver does not work well on documents.  

 

 

Figure 1. Tal Paikin Placer Algorithm 

 

The proposed pixel correlation metric algorithm calculates pixel correlation between any 

two complementary edges of two shreds instead of predicting adjacent edge based on 

color gradient change. This approach is more effective for processing grayscale 

documents because RGB information does not give sufficient information for predicting 

adjacent edges when the contrast information remains the same. 
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3.  DEVELOPING THE APPLICATION 

 

The first step to building an Android app is to learn the Android architecture and Android 

model of message passing. The following terms are necessary to understand the basic 

architecture of our Android app: 

Activity: As the name indicates, an “Activity” is what a user does with the app. Every 

“Activity” is displayed to the user in a window. These can be full-screen windows, 

floating windows or windows nested inside another window.  

Intent: It represents the action to be performed. It acts as a bridge between activities. 

An “Intent” holds information about the action that needs to be performed by an 

“Activity”. 

The goal was to capture image using the camera and pass the “Intent” to a new activity 

to handle the de-shredding operation. The structural elements of the final android app 

are established through this process. Figure 2 shows the user interface (UI) of the app. 
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Figure 2. App interface for de-shredding documents 

 

The application works as follows: The user is initially shown a screen with the “Capture 

Image” button which when clicked, creates a camera intent which is passed to the 

camera app to aid in capturing the image. The way the intent is passed is illustrated in 

Figure 3. 
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Figure 3. IMAGE_CAPTURE intent passing to camera app 

 

Once the image is captured, it is saved to a location and this information is passed to 

the shred image activity. This is the crux of inter-activity communication. The split image 

activity picks up the information about the file location from the capture image activity 

and performs the necessary operations. The message passing portion of the app is 

shown in Figure 3. 

 

 

Figure 4. Communication between ImageCaptureActivity and SplitImageActivity 
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The Android manifest file had to be modified to grant permissions for camera and 

external storage because the final assembled image is stored in the internal or SD card 

storage portion of the Android phone.  

 

In addition to modifying the Android manifest file, it is also important to modify the 

permissions within the application screen of the app.  Figure 4 displays exactly how it is 

done after going into App info section. 

 

 

Figure 5. Granting permissions to the camera and storage 

 

The proposed de-shredding algorithm within our app has been implemented primarily 

using openCV library for Android. This requires the download of a specific application 

called “openCV manager” into the Android phone prior to performing any openCV 
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related activity. It is also important to download the openCV library into the Android 

studio during the creation of the project.  

 

OpenCV libraries are extensively used by our app in extracting the pixel values from 

each shred to perform comparison operations as well as to calculate the metrics on 

which the best neighboring buddy is calculated. The steps to include openCV library in 

Android studio are explained below: 

 

 

Figure 6. Structure of the project 
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Figure 7. Import openCV module into Android studio 
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4.  DESIGN 

 

Segmentation of shreds into portions 

Assembling shreds into whole pages involves identifying how the initial shreds are going 

to be processed. In order to aid in that, an approach needs to be framed to determine 

how to extract individual shreds. There are two possible approaches: In one of the 

approaches, a whole document could be photographed and programmatically divided 

into shreds and jumbled before performing an assembly. This approach does not give 

the user the freedom to arrange the shreds according to their wish and instead performs 

the jumble programmatically. 

 

The other approach could be to place the shreds on a neutral background with constant 

spacing between the individual shreds and taking photograph of the arranged shreds. 

The application determines the boundary of the shred and collects the pieces into 

independent Matrix objects. One advantage of this approach is that it gives sufficient 

freedom to the user for arranging the shreds instead of taking control programmatically. 

However, it is crucial that the shreds are identified and separated from the neutral 

backgrounds to accurately get the background pixel information.  
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In this project, the first approach was used to test the accuracy of the proposed metric 

for determining best possible matching shred. The second approach was tested after 

making sure that the existing metric works on documents with words instead of images. 

 

De-shredding documents versus RGB images 

The difference between the problem statement taken up in this project and the prior 

work is that, the prior work was focussed on images with red, green and blue color 

components to them. These are images with RGB pixels whose color gradient changes 

are calculated, and the color gradient change is used to predict the next set of pixels 

and the predicted values are compared to actual pixel values along the complementary 

border edge of actual shred pieces and the piece with most similarity to the predicted 

gradient value is chosen as the best neighbor piece. 

 

However, this application is mainly aimed at assembling de-shredded documents which 

have uniform pixel distribution and hence the existing metrics will not yield the required 

results. The weak spot with respect to the existing algorithm for re-assembling puzzle 

pieces is in the mechanism for determining best neighbors. Figure 7 shows the run of 

the existing algorithm developed by Hammoudeh and Pollett  on a document image. 

The prior work was tested extensively on RGB images [3] but this experiment was 

conducted in this project to test on grayscale document images. 
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Figure 8. Efficacy of existing algorithms on document image 

 

The hierarchical clustering of the document images is given by the following Fig 8. 

 

 

Figure 9. Weak hierarchical clustering of document images 
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Computational cost of adjacency matrix calculation 

In the existing work on jigsaw puzzle solver, each piece has four sides s1, s2, s3 and s4 

and each side of piece Pi is matched with all four sides of piece Pj. This would mean 

that the adjacency matrix for each piece Pi is an enormous three dimensional matrix of 

the dimensions Adj[total_nunber_of_pieces-1][number_of_sides][number_of_sides] 

which is stored for each piece. A puzzle board with sixteen pieces will have sixteen 

adjacency matrices with the dimension of [15][4][4]. The extent of computation intensity 

of this operation is given by the snapshot shown in Fig. 9. 

 

 

 

Figure 10. Computational complexity in practice 
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The computational intensity of these operations can be mitigated by parallel processing 

of adjacency matrix calculations. This might not help with the speedup on a significant 

level. The proposed document de-shredder algorithm addresses this issue by assigning 

either 1s or 0s on the matrix corresponding to when a pixel value is either present or 

absent. It is illustrated as shown below. 

 

[Matching degree11  Matching degree12  Matching degree13] 

[Matching degree21  Matching degree22  Matching degree23] 

[Matching degree31  Matching degree32  Matching degree33] 

. 

. 

.[Matching degree n1. . . . . Matching degree nn] 

 

where, 

Matching degree ni = similarity metric of left side of piece n with right side of piece i 
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5.  IMPLEMENTATION 

 

The implementation portions can be divided into the three aspects as shown in the 

following figure. 

 

 

Figure 11. Implementation focus areas 

 

 

Algorithm 

The algorithm that is used in this project is based on the Paikin and Tal solver for jigsaw 

puzzles. The Tal and Paikin algorithm used the following metrics for calculating the best 

neighboring piece and it can be seen below. 

 

(2 ∗ 𝑃𝑖𝑘 − 𝑃𝑖𝑘−1 −  𝑃𝑗−1)  + (𝑃𝑗1 + 𝑃𝑗2 − 𝑃𝑖𝑘) 

 

Due to the issues mentioned in the prior sections of the document, the proposed metric 

we use is: 
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Matching degreeij= (a+b)/(a+b+c+d) 

 

where,  

a = AND operation on corresponding pixels on piece i and piece j 

b = AND operation on the complementary pixels on piece i and piece j 

c = AND operation between pixel on piece i with the corresponding pixel’s 

complementary value on piece j 

d = AND operation between pixel on piece j with corresponding pixel’s complementary 

value on piece i 

 

For example, 

If rightmost edge of piece Pi is, [0,0,1,1,1,0,1,1], 

Leftmost edge of piece Pj is,     [1,1,0,0,1,1,0,1] 

 

Matching degreeij = (a+b)/(a+b+c+d) 

a = (0.1)+(0.1)+(1.0)+(1.0)+(1.1)+(0.1)+(1.0)+(1.1) 

a = 1+1 = 2 

b = (1.0)+(1.0)+(0.1)+(0.1)+(0.0)+(1.0)+(0.1)+(0.0) 

b = 0 

c = (0.0)+(0.0)+(1.1)+(1.1)+(1.0)+(0.0)+(1.1)+(1.0) 

c = 1+1+1 = 3 

d = (1.1)+(1.1)+(0.0)+(0.0)+(0.1)+(1.1)+(0.0)+(0.1) 

d = 1+1+1 = 3 
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Matching degreeij = (2+0)/(2+0+3+3) = 2/8 = ¼ = 0.25 

 

 

Events API 

 

The Android platform for the application is entirely event-driven. This means that, from 

the time the photographs of the shreds is taken to the time the re-assembled output is 

delivered, the operations to be performed are based on events that are performed by 

the user. The APIs used in this project fall under the Camera section of Android APIs. 

The following are some of the main APIs used in this project. 

 

onCreate(): This API helps initialize the activity screen with a view which is a window 

where most of the UI operations are performed. Hence, it is very common to find the 

setContentView() method inside the definition of this API.  

 

onCameraViewStarted(int width, int height): This API is used to begin processing the 

camera frames. In this project, this API is used to initialize the puzzle board size and 

then the onCameraFrame API is called to begin processing the image frames from the 

camera. It is imperative to set the board size in this method because it is what 

determined what needs to be captured and sent for further processing. 

 

onTouch(View view, MotionEvent event): This API determined what needs to be 

done if any area covered by the previously determined puzzle board is touched. In the 
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case of this project, this is used to determine if the touch event is performed inside the 

game board. If so, the de-shredding algorithm is performed. If the touch event happens 

outside the puzzle game board, no action is taken. 

 

onCameraFrame(Mat inputFrame): This method is used to take in the image frames 

that are sent from the camera to the view. In the case of this project, the input image is 

taken and divided into sub-regions using the sub-mat function of the matrix Mat object 

and the sub-mats are jumbled in a random order to simulate the concept of shreds. In 

this method, the re-assembled shreds are stored into the disk by getting converted to 

bitmap format. The code snippet in the following figure illustrates this. 

 

Figure 12. Code snippet to illustrate onCameraFrame method usage 

 

 

Storage and Permissions 
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This project involves storing the results onto the external storage device of Android. 

This involves external storage permissions to be granted to the application. The 

AndroidManifest.xml file is used to explicitly add permissions to the storage device. The 

following figure illustrates how the manifest file looks when external storage permissions 

are requested. 

 

Figure 13. Manifest file with external storage permissions added to it 
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6.  RESULTS 

 

The initial algorithm was run with the metrics for RGB colors and it produced the 

following result: 

 

 

Figure 14. With color images varied distances 
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Figure 15. With black and white images the distances are almost the same 

 

 

 

It can be seen that when the initial algorithm is run with black and white images, it gave 

results very similar to each other in terms of distance and it resulted in a tie situation 

with the same piece vying for the minimum distance position. This leads to inaccuracy. 

 

 

However, running with the modified algorithm resulted in better accuracy and the 

following figure shows a shredded document being assembled. 
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Figure 16. Jumbled shreds 

 

The shreds are jumbled up programmatically when the picture of whole document is 

taken as shown above. The shreds have been numbered to figure identify errors if there 

is any. 

Figure 17 shows the re-assembled shreds when any region within the camera frame is 

clicked. Ideally, when there are zero errors, the shreds will be arranged sequentially 

after final assembly. 

 

 



 
 

33 

 

Figure 17. Rearranged shreds 

 

The following Figure 18 shows the plot of values between number of shreds and the 

number of errors. It can be seen that the number of errors have stayed at a reasonable 

value and even though the number of errors increase with increase in number of 

shreds, the error difference has stayed pretty close. 
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Figure 18. Number of shreds vs. Number of errors 

 

Some experiments were also conducted where the current algorithm is compared with 

the prior work for document images and the following chart illustrates the difference in 

performance. The performance difference is very huge because the currently existing 

solution is tailored to RGB images. 
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Figure 19. Comparing RGB similarity and pixel correlation metric 

 

7.  CONCLUSION 

 

This project focused on implementing an app that would assemble de-shredded 

documents into whole documents with reasonable accuracy. This problem is similar in 

nature to the problem of assembling puzzle pieces in a jigsaw. Hence, existing solutions 

for jigsaw puzzle assembly were used as base models upon which this solution was 

built. De-shredding varies in many aspects from the jigsaw puzzle solvers. So, it was 

imperative that some fundamental changes had to be made on the existing models 

which led to the proposal of new metric for best neighboring piece match. 

 

Jigsaw puzzle solvers worked by selecting a seed piece which was initially placed on 

the puzzle board and corresponding best neighbors were identified for each of the four 
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sides on the seed piece. In turn, each of those neighbors identified their best neighbors 

on each of their sides resulting in a cluster of sixteen pieces. This pattern was repeated 

with a different seed piece and its corresponding sixteen neighbors. Several such 

clusters were created and stitched using hierarchical clustering.  

 

However, the above method had a key problem of identifying the best metric for picking 

the best possible neighboring piece. The existing metrics were heavily reliant on color 

schemes and color gradient change. This was not working on document images. 

Hence, a new metric was proposed in this project where presence or absence of pixels 

along the border was determined and it was used as a metric for the identification of 

neighboring pixels. 

 

This algorithm was incorporated into an Android app which would take as input a picture 

of the shreds or take a whole document and programmatically shred it to pieces, 

process the shreds using openCV library and assemble the shreds into a bitmap image. 

This bitmap image is then internally stored into the Android storage. Permissions for 

accessing the storage are obtained using the Android manifest file. 

 

Several experiments were conducted to compare the prior work RGB metric algorithm 

with the pixel correlation metric algorithm proposed in this project. It was seen that the 

proposed algorithm performed with consistent accuracy rate of 90% and above for 

grayscale document images using the modified correlation metrics. However, the 

existing RGB metric algorithm performed with accuracy of only 10% with grayscale 
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documents. It returned several tied shreds as candidates for neighbors. The 

performance of both the RGB metric and the proposed pixel correlation metric remained 

almost the same at 90% and the new algorithm did not show any significant 

improvement on high contrast images with rich RGB value variations. 

 

There are various techniques to identify the best possible metrics. We explored many 

such methods including curve fitting, natural language processing. The problem with 

natural language processing methods was that they restricted the language of the 

document which makes this solution non-generic. Moreover, the primary use of de-

shredding is in the defense department which requires the ability to process shreds in 

several foreign languages.  

 

Curve fitting algorithms made the solution more complicated for a fast Android 

application. Hence, a simpler and more effective metric was utilized for the purpose of 

fast processing of shredded strips. 
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