
A Question Answering System on SQuAD
Dataset Using End-to-end Neural Network

CS297 Report

Student: Bo Li

Advisor: Dr. Chris Pollett

Date: Dec 2017

TABLE OF CONTENTS

1 Introduction 1

2 Calculation of Back Propagation 2

3 Implementation of Word Embedding 3

4 Understanding Online Evaluation Environment and Setting Up Developing

Environment 5

4.1 Understanding the Online Evaluation Environment 5

4.2 Docker . 5

5 Question Answering System Architecture 7

5.1 Review of Paper [4] . 7

5.2 Implementation Architecture . 10

6 Summary 12

References 13

1 Introduction

Question Answering(QA) is about making a computer program that could answer questions in

natural language automatically. QA techniques are widely used among search engines, personal

assistant applications on smart phones, voice control systems and a lot more other applications.

In recent years, more end-to-end neural network architectures are built to do question answering

tasks. In contrast, traditional solutions use syntactic and semantic analyses and hand made

features. End-to-end neural network approach gives more accurate result. However, traditional

ways are more explainable. The Stanford Question Answering Dataset (SQuAD) is used in this

project. It includes questions asked by human beings on Wikipedia articles. The answer to

each question is a segment of the corresponding Wikipedia article[1]. In total, SQuAD contains

100,000+ question-answer pairs on 500+ articles[1]. The goal of this project is to build a QA

system on SQuAD using an existing end-to-end neural network architecture. If there is still

time left after finishing the QA system, I will review related literatures and try to come up

with an improved architecture.

This report is about my progress in CS297. Section 2 corresponds to deliverable 1, which is a

study on some very basic mathematics of neural network. Section 3 corresponds to Deliverable

2, in which I did word embedding of Chinese classic poems. Please be noted, the project topic

was changed in November 2017 and Section 3 was not aimed at the current topic. Section 4

and Section 5 correspond to Deliverable 3 and 4, which are about the current topic. Section 6

includes my comment on my work in CS297 and my plan for next step.

1

2 Calculation of Back Propagation

The purpose of this deliverable is to understand the mathematic foundations of neural network,

which is the technical approach of this project. I fulfilled this purpose by doing back propagation

on a dummy feed forward neural network example below.

ŷ = softmax(z2)

z2 = h ·W2 + b2

h = sigmoid(z1)

z1 = x ·W1 + b1

Define loss

J(W1, b1,W2, b2, x, y)

= cross entropy(y, ŷ)

= − 1

Dy

Dy∑
i=1

yi × log ŷi

After using chain rules multiple times, I got

dJ

dz2
= ŷ − y

dJ

db2
=
dJ

dz2

dJ

dh
=
dJ

dz2
·W T

2

dJ

dW2

= hT · dJ
dz2

2

3 Implementation of Word Embedding

Figure 1: Neural architecture: f(i, wt−1, ..., wt−n+1) = g(i, C(wt−1), ..., C(wt−n+1)) where g is

the neural network and C(i) is the i-th word feature vector[2]

Word embedding is an important part of applying neural network to natural language pro-

cessing. Although this deliverable is done for the old topic, which is replaced by the current

topic in November 2017, understanding word embedding is also an essential part of the current

topic.

Word embedding is a way to map each word to a feature vector in a continuous space. The

dimension of the continuous space is much lower than the dimension of one-hot vector, which is

comparable to the vocabulary size. Also, the distance between two word feature vectors could

tell how likely the two corresponding words appear in same context.

Word embedding is originally introduced by Bengio et al in [2]. They propose a neural prob-

abilistic language model(NPLM) which is illustrated in Fig.1. The training set is a sequence

of words w1, ..., wT where wt ∈ V and V is the vocabulary. The purpose is to train a model

f such that P̂ (wt|wt−1, ..., wt−n+1) = f(wt, ..., wt−n+1). The computation of f(wt, ..., wt−n+1) is

divided into two parts. First, we map each w to a distributed feature vector by selecting the

corresponding row in C.

3

x = (C(wt−1), ..., C(wt−n+1))

Second, we maps x to f(wt, ..., wt−n+1).

y = b+W · x+ U · tanh(d+H · x)

f(wt, ..., wt−n+1) =
eywt∑
i e

yi

The loss function to minimize is

L = − 1

T

∑
t

log f(wt, ..., wt−n+1)

At the present time, an simplified architecture proposed by Mikolov et al in [3] is widely used.

The main difference between it and NPLM is Skip-gram removes tanh layer.

I implemented in Python both the NPLM model without Noise Contrastive Estimation (NCE)

loss and skip-gram model with NCE loss. I use a collection of 284899 classic Chinese poems as

the corpus.

Here are some information about the skip-gram together with negative sampling implementa-

tion. Training each epoch costs about 8 minutes. After about 5 epochs, the valid loss reaches

the lowest. I selected 200 most common words and calculated cosine similarity between each

two words pair to get 40000 word pair cosine similarity. Table 1 lists top results among the

40000 results . According to my knowledge of Chinese classic poems, in most word pairs in

Table 1, the two characters have high probability to appear in same context. As such, I think

the model is implemented correctly.

4

作后0.999374 当少0.999315 同好0.999307 闻好0.999266

同少0.999261 愁闲0.999212 好少0.999189 红叶0.999121

复少0.999101 当复0.999071 故少0.999031 醉闲0.999025

同闻0.999023 出开0.999002 空入0.999001 起发0.99899

平小0.998955 亦应0.998954 雪叶0.998952 竹叶0.998946

小龙0.998945 发晚0.998937 分歌0.99893 起晚0.998928

寒满0.998914 过向0.998909 当真0.998894 入阴0.99889

愁后0.998882 情言0.998881 尽到0.998878 当故0.998865

到起0.998859 闻少0.998846 旧少0.998841 当犹0.998839

开阴0.998839 复物0.998835 亦还0.998833 言以0.998825

Table 1: Highest Similarities Between 200 Most Common Words

4 Understanding Online Evaluation Environment and

Setting Up Developing Environment

4.1 Understanding the Online Evaluation Environment

To evaluate a model, a prediction Python script should be submitted through Codelab.

As such, training and prediction must be separated. After training the mode, a tensorflow

graph should be saved to disk. Then the prediction script should restore the tensorflow graph

to make prediction on test data. This requires concise names and scopes for important nodes

in the graph.

4.2 Docker

There are two concerns about development infrastructure. First, ascending complexity and

software version dependencies might cause problem. Second, I might need to use cloud GPU

to train the model in the future.

Docker helps solving this problem By using Docker, I can list all software dependencies in

Docker file, build a Docker image using the Docker file, and then run a Docker container using

the Docker image. Docker also supports potability between different devices.

Below is the content of the Docker file I used.

5

FROM tensorflow/tensorflow

RUN pip install joblib

RUN pip install nltk

RUN pip install tqdm

RUN pip install pyprind

RUN python -m nltk.downloader --dir=/usr/local/share/nltk_data perluniprops punkt

WORKDIR /297And8QuestionAnswer

6

5 Question Answering System Architecture

5.1 Review of Paper [4]

Wang and Jiang [4] proposes an end-to-end neural network model on SQuAD dataset. While

predicting, the inputs to the model are test data and pretrained word embeddings, the outputs

are the predicted answers. While training, the inputs are train data and word embeddings, the

outputs are losses to optimise. GloVe is used to do word embedding. The word embedding is

not updated during training.

Model architecture includes three layers-the LSTM preprocessing layer, the match-LSTM layer

and the Answer Pointer(Ans-Ptr) layer.

The LSTM preprossing layer encode each word sequence in passage and question to a sequence

of hidden states using a standard one direction LSTM. The passage and question are processed

separately.

Hp =
−−−−→
LSTM(P)

Hq =
−−−−→
LSTM(Q)

where

P ∈ Rd×p : passage

Q ∈ Rd×q : question

Hp ∈ Rl×p : encoded passage

Hq ∈ Rl×q : encoded question

p : length of passage

q : length of question

l : dimension of LSTM hidden states

d : dimension of word embedding

The match-LSTM layer uses the model in paper [5]. In this layer, a word-by-word attention

mechanism and a LSTM are used together to encode hidden presentations of both passage and

7

question to one sequence of hidden states that indicate the degree of matching between each

token in the passage and each token in the question. To be specific,

−→
G = tahn(W qHq + (W phi

p +W r−−−→hi−1
r + bp)⊗ eq)

−→αi = softmax(wt−→Gi + b⊗ eq)

where

W q,W p,W r ∈ Rl×l

bp, w ∈ Rl

b ∈ R
−−−→
hi−1

r ∈ Rl : one column of Hp

and

−→zi =

 hi
p

Hq−→αi
T

 ∈ R2l

−→
hi

r =
−−−−→
LSTM(−→zi ,

−−−→
hi−1

r)

After iterating between getting attention vector −→αi and getting hidden state h1
i p times, we get

[h1
r, ..., hp

r]. Concatenate them to get

−→
Hr = [h1

r, ..., hp
r] ∈ Rl×p

.

To go over passage from both directions to get context information both before and after each

word, go over Hp from right to left to get
←−
Hr. Then concatenate

−→
Hr and

←−
Hr to get

Hr =

−→Hr

←−
Hr

 ∈ R2l×p

8

The Answer Pointer layer is motivated by the Pointer Net in paper [6]. It has a similar

structure with match-LSTM. However, instead of aiming at a sequence of hidden states, Ans-

Ptr layer aims at the weight vector. Here I only explain the boundary model, which I will

implement.

Fk = tahn(V Hr + (W ahk−1
a + ba)⊗ ep)

−→
βk = softmax(vtFk + c⊗ ep)

where

V ∈ Rl×2l

W a ∈ Rl×l

ba, v ∈ Rl

c ∈ R
−−−→
hk−1

a ∈ Rl : hidden state at positiom i of answer LSTM

and answer LSTM is

−→
hk

a =
−−−−→
LSTM(HrβT

k , h
a
k−1)

By iterating between the attention mechanism and the answer LSTM two times, we could get

β0 and β1. Let as denote start index of the answer, and ae denote the end index, then we

have

p(a|Hr) = p(as|Hr)p(ar|Hr) = β0,as × β1,ae

where

βk,j = jth token of βk

To train the model, the loss function

J(θ) = − 1

N

N∑
i=1

log p(an|Hr)

is minimized.

9

5.2 Implementation Architecture

Figure 2: Implementation Architecture of Paper [4]

As indicated in Fig.2, the training pipeline, validation pipeline and evaluation pipeline are

separated. This not only separates development and deployment, but also make the large

system easier to debug.

Take the training pipeline as example. The preprocess.py reads a json file, splits out passages,

questions and answers, tokenizes them, and outputs each passage, question or data in token

sequence. The midprocess.py reads token sequences and word embedding GloVe, vectorized

token sequences to vector sequences, trims or pads the sequences, makes mask tensor, and

outputs feed-ready data. Here, GloVe word vectors are pre-trained word vectors using GloVe

10

algorithm [7]. GloVe algorithm is an unsupervised learning algorithm to train word vectors. In

addition to a neural network, it also uses co-occurrence statistics from a corpus. The train.py

takes feed-ready data and model.py, iterate through different number of epochs, learning rates,

training optimizer and so on, and store trained models to disk.

Since Tensorflow graphs are shared for the training, validation and evaluation steps, the feed

data in the three steps must be consistent with the graphs. Since a graph is defined using

pass max length, batch size, embed size, and num units, which is called l in theoretical

model, train, valid and evaluate data are vectorized, padded, and divided to mini batches

in same file midprocess.py using same pass max length, all data must be divided to same

batch size. The num unit does not relate to shape of feed data.

To achieve batched training, paragraphs should be padded to a same length. Similarly, questions

are also padded the a same length. As such, the model in implementation has some difference

with the theoretical model explained in 5.1.

In preprocessing layer,

Hp = Hp ◦ passage mask

Hq = Hq ◦ question mask

In match-LSTM layer,

−→αi = softmax((wt−→Gi + b⊗ eq) ◦ question mask)

Hr = Hr ◦ passage mask

In Ans-Ptr layer,
−→
βk = softmax((vtFk + c⊗ ep) ◦ passage mask)

11

6 Summary

I have accomplished several milestones in CS297. First, I have implemented Skip-gram model

on Chinese classic poems data successfully. Second, I have reviewed paper [4] and mastered

feed forward network, RNN, LSTM, and attention mechanism. Third, I have designed a nice

architecture and wrote some coding for the Question Answering system.

What I have done in this semester builds a good foundation for implementing a Question

Answering system. Using the architecture I designed in 5.2, I could code up the Question

Answering system. This is what I will do in CS298.

12

References

[1] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine

comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language

model,” Journal of machine learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representa-

tions in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[4] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer pointer,”

arXiv preprint arXiv:1608.07905, 2016.

[5] ——, “Learning natural language inference with lstm,” arXiv preprint arXiv:1512.08849,

2015.

[6] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances in Neural In-

formation Processing Systems, 2015, pp. 2692–2700.

[7] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word represen-

tation,” in Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP), 2014, pp. 1532–1543.

13

