A Question Answering System Using Encoder-decoder Sequence-to-sequence Recurrent Neural Networks

Bo Li

San José State University

May 11, 2018
1. Introduction
2. Background
3. Design
4. Experiments
5. Conclusion
Question answering is the study of writing computer programs that can answer natural language questions.

In this project, we focused on a scenario where a specific passage is already assigned to a question and the answer is a segment of the passage.

Stanford Question Answering Dataset (SQuAD) is suitable for such scenario. It is used in this project.

- It includes questions asked by human beings on Wikipedia articles.
- The answer to each question is a segment of the corresponding Wikipedia passage.
- It contains more than 100,000 question-answer pairs on more than 500 articles.
Passage: The city had a population of 1,307,402 according to the 2010 census, distributed over a land area of 372.1 square miles (963.7 km²). The urban area of San Diego extends beyond the administrative city limits and had a total population of 2,956,746, making it the third-largest urban area in the state, after that of the Los Angeles metropolitan area and San Francisco metropolitan area. They, along with the Riverside-San Bernardino, form those metropolitan areas in California larger than the San Diego metropolitan area, with a total population of 3,095,313 at the 2010 census.

Question: How many square miles does San Diego cover?

Answer: 372.1
The encoder-decoder sequence-to-sequence recurrent neural networks were used in this project.

- **Encoder-decoder**: encode an input to some vectors and then decode those vectors to an output.
- **Sequence-to-sequence**: Input is a sequence; output is also a sequence
 - For question answering, the input sequence includes a passage and a question and the output sequence is the answer
- **Recurrent Neural Networks**: Networks used for modeling sequential data
We successfully built a question answering system using an existing model and four models that were designed by making changes to the existing model.

By comparing the results of five different models, we got two interesting observations. We will give details in Experiments part.
Word Feature Vector

Examples

An example from the GloVe word feature vectors.

- **Word**: the
- **Word feature vector**: [0.418 0.24968 -0.41242 0.1217 0.34527 -0.044457 -0.49688 -0.17862 -0.00066023 -0.6566 0.27843 -0.14767 -0.55677 0.14658 -0.0095095 0.011658 0.10204 -0.12792 -0.8443 -0.12181 -0.016801 -0.33279 -0.1552 -0.23131 -0.19181 -1.8823 -0.76746 0.099051 -0.42125 -0.19526 4.0071 -0.18594 -0.52287 -0.31681 0.00059213 0.0074449 0.17778 -0.15897 0.012041 -0.054223 -0.29871 -0.15749 -0.34758 -0.045637 -0.44251 0.18785 0.0027849 -0.18411 -0.11514 -0.78581]
A word feature vector represents a word according to its relationship with other words in a vocabulary.

The word feature vectors for the vocabulary of a given text are learned by training a neural probabilistic language model on the text.

In practice, in neural network models for natural language processing, word feature vectors are used to represent words. This is how we use word feature vector in this project.
Recurrent Neural Networks (RNNs) are used for modeling sequential data.

In practice, due to vanishing problem, more complex learning unit such as Long Short Term Memory (LSTM) cell or Gated Recurrent Unit (GRU) are used. In this project, we used LSTM and GRU equally as learning unit.
Examples

A recurrent network with no outputs for encoding process.

- \(x \) is the input. \(h \) is the state. \(\theta \) is the hyperparameter.
- The relation between \(h \) and \(x \) is \(h_t = f(h_{t-1}, x_t; \theta) \).

\[
\begin{align*}
 f & \text{ is } h_t = \text{sigmoid}(W_h h_{t-1} + W_x x_t + b). \\
 \text{An example of input sequence } x_1, \ldots, x_n \text{ is the word feature vector sequence which corresponds to the word sequence “How many square miles does San Diego cover?”}. \\
 \text{An example of what we want after operating this RNN is } h_1, \ldots, h_n.
\end{align*}
\]
Bidirectional Recurrent Neural Networks

- Problem of RNNs: h_t only contains context information from x_1 to x_t
- Solution given by Bidirectional RNNs:
 - one cell operates from left to right, and another cell operates from right to left
 - using both h_t and g_t can get context information of the whole sequence
In this project, we used bidirectional RNNs in encoding part. But for simplicity in presentation, I might talk about RNNs instead of Bidirectional RNNs in some parts.
The process of understanding the input sequence is considered as encoding the input sequence to some vectors *Crypto*.

The process of generating output is considered as decoding the *Crypto*.
Examples

x is the input, h is the state in encoding process, y is the output, and g is the state of decoding process.
In this project, each input sequence actually includes two sequences - a question and a passage.

- Attention mechanism is required to make each passage aware of the corresponding question.

In this project, each output sequence is an answer which is represented by two indices for the input passage sequence.

- The pointer network is used to make sure the output sequence comes from input sequence.
Attention Mechanism

- Intuitively, attention mechanism is one way to pay attention to a sequence of vectors.
- The key to understand attention mechanism is to understand how to get attention weight vector α.
- Using the attention weight vector α, we can get a weighted average of the sequence of vectors. This weighted average is called attention vector.

Examples

How attention mechanism was used in neural machine translation. In this scenario, the sequence of vectors to pay attention to is the encoding states.

- y is the output, g is the state, and c is the attention vector.

\[g_i = f(g_{i-1}, y_{i-1}, c_i). \]
Attention Mechanism, cont.

Examples
The attention vector c_i is produced by using g_{i-1} to “query” the encoding states $h_1, \ldots h_n$ through

$$c_i = \sum_j \alpha_{i,j} h_j$$

$$\alpha_{i,j} = \exp e_{i,j} / \sum_j \exp e_{i,j}$$

$$e_{i,j} = \tanh(W_h h_j + W_g g_{i-1} + b).$$
Attention Mechanism, cont.

- In this project, the attention mechanism is used in both encoding and decoding part.
- In the encoding part, each word feature vector in passage pays attention to the corresponding question word feature vector sequence.
- In the decoding part, each decoding state pays attention to the sequence encoding states.
Using the pointer network enables the decoder to output tokens from input sequence.

In this project, the pointer network was used in the decoding part which generates the answer.

The attention weight vector α is considered as a probability distribution which indicates how likely each token in the input sequence is the current output token.
A Question Answering System Using Encoder-decoder Sequence-to-sequence Recurrent Neural Networks

Bo Li

Introduction

Background

Design

Experiments

Conclusion

Examples

\[y_i = x_k \text{ where } k = \arg\max_j (\alpha_{i,j}). \]
Model 1 is the Match LSTM & Answer Pointer model designed by Wang and Jiang.

Model 2, 3, 4 and 5 are designed by us through making changes to Model 1.
Model 1
Overview

- Model 1 has an encoder-decoder sequence-to-sequence architecture.
- Model 1 is trained on SQuAD dataset.
 - Each instance of training data includes one passage, one question and one answer.
 - The passage is a sequence of tokens.
 - The question is a sequence of tokens.
 - The answer is a sequence of two indices indicating the start and end positions in passage.
- Before feeding training data into the model, tokens are converted to word feature vectors.
Model 1, cont.
Structure

- Encoder
 - the preprocessing layer
 - the bidirectional match LSTM layer

- Decoder
 - the answer pointer layer
Model 1, cont.

Structure
Model 1, cont.
Structure
Let a_s denote the ground truth start index of the answer and a_e denote the ground truth end index, we have

$$p(a|H^r) = p(a_s|H_r)p(a_e|H_r) = \beta_{0,a_s} \times \beta_{1,a_e}$$

where

$$\beta_{k,j} = j\text{th token of } \beta_k$$

To train the model, the loss function

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log p(a^n|H^r)$$

is minimized.
The difference from Model 2 and Model 1 is in the decoding process.
Model 2, cont.
Model 3

The difference between Model 3 and Model 2 is in the bidirectional match LSTM layer.
Model 3, cont.
Model 4

The difference between Model 4 and Model 2 is that in Model 4 the preprocessing layer is removed. This modification aims at checking whether the preprocessing layer carries some redundant context information.
A Question Answering System Using Encoder-decoder Sequence-to-sequence Recurrent Neural Networks

Bo Li

Introduction

Background

Design

Experiments

Conclusion

Model 4, cont.

```
passage word feature vector sequence

question word feature vector sequence

input to LSTM

concatenating two vectors

attention vector of question

calculating average

question word feature vector sequence

calculating attention weight vector

each vector in passage word feature vector sequence

LSTM state

iterate LSTM once

Attention weight vector

Crypto: a passage state sequence which is aware of the corresponding question
```
The difference between Model 5 and Model 2 is that Model 5 combines the changes of Model 3 and Model 4.
Model 5, cont.

- passage word feature vector sequence
- question word feature vector sequence
- input to LSTM
- iterate LSTM once
- LSTM state
- concatenating two vectors
- attention vector of question
- calculating average
- question word feature vector sequence
- calculating attention weight vector
- each vector in passage word feature vector sequence
- Crypto: a passage state sequence which is aware of the corresponding question
The Stanford Question Answering Dataset (SQuAD) is used to do experiments.

<table>
<thead>
<tr>
<th>Set Name</th>
<th>Number of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>78,839</td>
</tr>
<tr>
<td>Validation</td>
<td>8,760</td>
</tr>
<tr>
<td>Test</td>
<td>10,570</td>
</tr>
</tbody>
</table>

The pre-trained GloVe word feature vectors are used to initialize words.
Data
• 400 is set as `passage_padding_length`
30 is set as `question_padding_length`
The learning rate is set at 0.002 through experiments.
Settings

<table>
<thead>
<tr>
<th>Hyperparameter Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Feature Vector Dimension (d)</td>
<td>100</td>
</tr>
<tr>
<td>Hidden State Size (l)</td>
<td>64</td>
</tr>
<tr>
<td>L2_regularization Scale</td>
<td>0.001</td>
</tr>
<tr>
<td>Hidden State Size (l)</td>
<td>64</td>
</tr>
<tr>
<td>Batch Size</td>
<td>64</td>
</tr>
<tr>
<td>Passage Length</td>
<td>400</td>
</tr>
<tr>
<td>Question Length</td>
<td>30</td>
</tr>
<tr>
<td>Clip Norm</td>
<td>5</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.002</td>
</tr>
</tbody>
</table>
The F1 score and the exact match score are used to evaluate the performance of each model.

- F1 treats a predicted answer and a ground truth as bag of words and calculate a harmonic average of precision and recall;
- exact match measures the percentage of predictions and ground truths that are exactly the same.

The testing data contains several ground truth answers for one passage-question pair. The best score is chosen as the final score.

A machine that has Tesla K80 12 GB Memory, 61 GB RAM and 100 GB SSD is used to train the models.
Training Process

- One epoch contains roughly 25 * 100 mini batches.
- The training loss and training scores are calculated every 100 mini batches using the 200 sample instances from training set. We do the same for validation loss and validation scores.
- Training one epoch takes roughly 100 minutes. A thorough training of each model requires around 10 epochs and takes around 17 hours.
Testing Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Test Exact Match</th>
<th>Test F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Paper</td>
<td>64.7</td>
<td>73.7</td>
</tr>
<tr>
<td>Model 1</td>
<td>23.4</td>
<td>33.6</td>
</tr>
<tr>
<td>Model 2</td>
<td>33.0</td>
<td>45.8</td>
</tr>
<tr>
<td>Model 3</td>
<td>33.0</td>
<td>46.2</td>
</tr>
<tr>
<td>Model 4</td>
<td>33.0</td>
<td>45.6</td>
</tr>
<tr>
<td>Model 5</td>
<td>24.3</td>
<td>33.9</td>
</tr>
</tbody>
</table>
Model 1 didn’t reproduce the results of the original paper. Model 2 has better score than Model 1. This indicates using attention vector to query attention weight might be better than using the LSTM state.
Analysis

- Model 2, 3 and 4 have similar scores. This indicates either removing the preprocessing layer or not using LSTM state to query attention vector in the bidirectional match LSTM layer does not decrease test results.

- Model 5 performs worse than Model 2, 3 and 4. This means the change in Model 3 encoder and Model 4 encoder cannot be made together. A reasonable guess is the context information provided by these two parts is not provided in other parts of Model 2.
This project presented a thorough implementation of a question answering system.

Five different models were tried and several interesting observations were found.
Further work is required to find out why Model 1 failed to reproduce the testing results of the reference paper.

At the same time, more parameter tuning work is required to make the experiments more precise.

Last but not the least, making novel architectures to bypass the state-of-art results is always a good way to move the question answering research forward.
Thank you! Questions?