
A QUESTION ANSWERING SYSTEM USING ENCODER-DECODER,

SEQUENCE-TO-SEQUENCE, RECURRENT NEURAL NETWORKS

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

BO LI

May 2018

c© 2018

BO LI

ALL RIGHTS RESERVED

The Designated Committee Approves the Project Titled

A QUESTION ANSWERING SYSTEM USING ENCODER-DECODER,
SEQUENCE-TO-SEQUENCE, RECURRENT NEURAL NETWORKS

by

BO LI

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2018

Dr. Chris Pollett Department of Computer Science

Dr. Suneuy Kim Department of Computer Science

Dr. David Taylor Department of Computer Science

ABSTRACT

A QUESTION ANSWERING SYSTEM USING ENCODER-DECODER,
SEQUENCE-TO-SEQUENCE, RECURRENT NEURAL NETWORKS

by BO LI

Question answering is the study of writing computer programs that can

answer natural language questions. It is one of the most challenging tasks in the

field of natural language processing. The present state-of-art question answering

systems use neural network models. In this project, we successfully built a question

answering system using an encoder-decoder, sequence-to-sequence, recurrent neural

network. In total, five different models were tried. The first model we implemented

was a previously studied model called the Match Long Short Term Memory (LSTM)

& Answer Pointer model. Our second, third, fourth and fifth models were designed

by making changes to the first model to try to determine if all the components of

this model were necessary. By comparing the results of these five different models,

we found that two non-trivial weakenings of this model had minimal effect on the

accuracy of the model in determining answers. On the other hand, when these

weakening were both present the accuracy became substantially worse.

TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION 1

2 BACKGROUND 3

2.1 Word Feature Vector . 3

2.2 Recurrent Neural Networks . 4

2.3 Bidirectional Recurrent Neural Networks 5

2.4 Encoder-Decoder Sequence-to-Sequence Architecture 6

2.5 Attention Mechanism . 8

2.6 Pointer Network . 10

3 DESIGN 12

3.1 Model 1 . 12

3.2 Model 2 . 17

3.3 Model 3 . 17

3.4 Model 4 . 19

3.5 Model 5 . 19

4 IMPLEMENTATION 21

4.1 Adjusting Models for Batch Training 21

4.2 Tensorflow Graphs . 22

4.3 Implementation Pipeline . 24

v

5 EXPERIMENTS 26

5.1 Data . 26

5.2 Settings . 27

5.3 Results . 31

5.3.1 Training Process . 31

5.3.2 Testing Results . 32

5.4 Analysis . 32

6 CONCLUSION 39

BIBLIOGRAPHY 40

vi

LIST OF TABLES

Table

5.1 Data sets . 26

5.2 Experimental settings . 29

5.3 Testing results . 32

vii

LIST OF FIGURES

Figure

2.1 A simple recurrent neural network . 5

2.2 A simple bidirectional recurrent neural network 6

2.3 Concept of encoder-decoder sequence-to-sequence architecture 7

2.4 Attention mechanism in machine translation 9

2.5 Concept of pointer network . 11

3.1 Encoder part of Model 1 . 16

3.2 Decoder part of Model 1 . 17

3.3 Decoder part of Model 2 . 18

3.4 Encoder part of Model 3 . 18

3.5 Encoder part of Model 4 . 19

3.6 Encoder part of Model 5 . 20

4.1 Concept of the Tensorflow graphs used in this project 23

4.2 Implementation pipelines . 25

5.1 Data pipelines . 27

5.2 Distribution of passage lengths . 28

5.3 Distribution of question lengths . 29

5.4 Performance of different learning rates 30

5.5 Training process of Model 1 . 33

5.6 Training process of Model 2 . 34

viii

5.7 Training process of Model 3 . 35

5.8 Training process of Model 4 . 36

5.9 Training process of Model 5 . 37

ix

CHAPTER 1

INTRODUCTION

Question answering is the study of writing computer programs that can

answer natural language questions. Question answering systems are widely used

among search engines, personal assistant applications on smart phones, voice control

systems and various other applications. Question answering systems can be

categorized into two types - open domain and close domain. For an open domain

system, the questions can be about almost everything; whereas, for a close domain

system, the questions are about a specific domain. In this project, we focused on

open domain question answering. To simplify the research topic, we focused on a

scenario where a specific passage is assigned to a question and the answer is a

segment of the passage. The Stanford Question Answering Dataset (SQuAD) used

in this project is appropriate for such scenario. SQuAD includes questions asked by

human beings on Wikipedia articles [RZLL16]. The answer to each question is a

segment of the corresponding Wikipedia passage. In total, SQuAD contains more

than 100,000 question-answer pairs on more than 500 articles.

In recent years, more and more state-of-art natural language processing results

are produced by using neural network models. Among various neural network

architectures, the encoder-decoder sequence-to-sequence recurrent neural networks

were chosen for this project. These networks encode an input sequence to some

vectors and then decode them to an output sequence. For question answering, the

input sequence includes a passage and a question and the output sequence is the

answer.

2

We successfully built a question answering system using five different models.

Model 1 is Match-LSTM & Answer Pointer model designed by Wang and

Jiang[WJ16]. This model has a typical encoder-decoder sequence-to-sequence

recurrent network architecture and has a network size which is not too big to train.

Model 2, 3, 4 and 5 are designed by deleting some parts or modifying some parts of

Model 1. By comparing the results of five different models, two interesting

observations that might improve Model 1 were found. The detailed explanation will

be given in Chapter 3 and Section 5.4.

3

CHAPTER 2

BACKGROUND

2.1 Word Feature Vector

The concept of word feature vector was first described by Bengio, Yoshua and

Ducharme in [BDVJ03]. A word feature vector represents a word according to its

relationship with other words in a vocabulary. The distance from one word feature

vector to any other word feature vector tells how likely the two words appear in a

same context.

The word feature vector matrix for the vocabulary of a given text are learned

by training a neural probabilistic language model on the text. Denote V as the

vocabulary, wt as a word from V , and the matrix C as the word feature vectors of

all words in V . Each instance of the training set is a sequence of words w1, ..., wT

which is a segment of the text. The purpose of a neural probabilistic language

model is to learn a model f such that

f(wt, ..., wt−n+1) = P̂ (wt|wt−1, ..., wt−n+1).

The computation of f(wt, ..., wt−n+1) is divided into two parts: First, each w is

mapped to a word feature vector by selecting the corresponding row in C to get

x = (C(wt−1), ..., C(wt−n+1)).

Second, we get f(wt, ..., wt−n+1) through

4

y = b+W · x+ U · tanh(d+H · x)

and

f(wt, ..., wt−n+1) =
eywt∑
i e

yi
.

The loss function to minimize is

L = − 1

T

∑
t

log f(wt, ..., wt−n+1).

Using word feature vectors together with neural network models enables

learning dependencies on long sentences. In the neural probabilistic language model,

the word feature vectors are used to predict the next word after a sequence.

However, the usage of word feature vectors is far beyond this. Using word feature

vectors to represent words is common when applying neural network models on

natural language processing tasks. This is how we used word feature vectors in this

project.

2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) [RHW86] are used for modeling sequential

data. Figure 2.1 shows a simple recurrent network with no outputs. x is the input.

h is the state. θ is the hyperparameter. The relation between h and x is

ht = f(ht−1, xt; θ).

An example of f is

ht = sigmoid(Whht−1 +Wxxt + b).

5

Figure 2.1: A simple recurrent neural network

Despite the suitability of applying RNNs to sequential data, the vanishing

gradient problem exists. Here the vanishing gradient means the gradients become

smaller and smaller as their values are propagated forward in a network. When this

happens, the network learns slowly or even stops learning. The main solution to the

vanishing problem is to use a more complex learning unit. In 1997, Hochreiter

invented Long Short Term Memory (LSTM) cell [HS97] which reduces the vanishing

problem. A LSTM has a memory cell to remember long term context and uses a

forget gate, a input gate and a output gate to control how much information to flow

into and out of the current unit. Aside from LSTM, Cho et al. invented Gated

Recurrent Unit (GRU)[CVMG+14] which has a simplified structure but similar

function with LSTM.

In this project, I used LSTM and GRU equally as learning unit. Among

various RNN structures, I mainly used two types. The first type is a RNN with

recurrent connections between hidden states as shown in Figure 2.1. The sequence

of states are needed. The second type is also a RNN with recurrent connections

between hidden states. However, the last state is needed.

2.3 Bidirectional Recurrent Neural Networks

The RNNs in Section 2.2 operate from left to right. As such, the ht only

contains context information from x1 to xt, but does not contain context

6

information from xt+1 to the end. However, in most sequence-to-sequence tasks, ht

should contain the information of the whole sequence. Bidirectional RNNs make

this possible. In a bidirectional RNN, one cell operates from left to right, and

another cell operates from right to left. As illustrated in Figure 2.2, at time t, using

both ht and gt can get context information of the whole sequence.

Figure 2.2: A simple bidirectional recurrent neural network

In this project, we used bidirectional RNNs in encoding part.

2.4 Encoder-Decoder Sequence-to-Sequence Architecture

Sequence-to-sequence means the input to a model is a sequence and the

output from the model is also a sequence. An encoder-decoder architecture can be

applied to do this task. The process of understanding the input sequence is

considered as encoding the input sequence to some vectors Crypto. The process of

generating output is considered as decoding the Crypto. Figure 2.3 shows the

concept of encoder-decoder sequence-to-sequence architecture . x is the input, h is

the state in encoding process, y is the output, and g is the state of decoding process.

The question answering task in this project is a sequence-to-sequence task.

However, some additional techniques must be equipped to the basic architecture in

7

Figure 2.3: Concept of encoder-decoder sequence-to-sequence architecture

8

Figure 2.3. Each input actually includes two sequences - a question and a passage.

As such, in the encoding process, some method is required to make each passage

aware of the corresponding question and encode the two together. The attention

mechanism discussed in Section 2.5 is one such method. At the same time, each

output sequence is an answer which is represented by two indices for the input

passage sequence. A special decoding technique called pointer network discussed in

Section 2.6 is needed.

2.5 Attention Mechanism

The attention mechanism in neural networks was first described by Bahdanau

et al. in the application of neural machine translation[BCB14]. In a neural machine

translation task, an encoder-decoder sequence-to-sequence model encodes each input

sentence to some vectors and decodes the vectors to a sentence in another language

with the same content. The attention mechanism is used to enable the decoding

process aware of the encoding states h1, ...hn. As shown in Figure 2.4, y is the

output, g is the state, and c is the attention vector. We have

gi = f(gi−1, yi−1, ci).

The attention vector ci is produced by using gi−1 to “query” the encoding states

h1, ...hn through

ci =
∑
j

αi,jhj

αi,j = exp ei,j/
∑
j

exp ei,j

ei,j = attention(hj, gi−1).

An example of the attention function is ei,j = tanh(Whhj +Wggi−1 + b).

9

Figure 2.4: Attention mechanism in machine translation

10

The attention mechanism is a way to “be aware of a sequence”. Since being

aware of more context is a basic need of natural language processing tasks, it is

reasonable to use the attention mechanism in other tasks besides machine

translation.

In this project, the passage is required to “be aware of the question” in

encoding process. At the same time, the answer is required to “be aware of the

encoding states of passage and question”. The detailed formulas are given in

Chapter 3.

2.6 Pointer Network

The pointer network[VFJ15] was invented by Vinyals et al. in 2015. Using the

pointer network enables the decoder to output tokens from input sequence. The

attention mechanism is used with the pointer network. However, aside from getting

an attention vector, the attention weight vector α is considered as a probability

distribution which indicates how likely each token in the input sequence is the

current output. That is,

yi = xk

where

k = argmaxj(αi,j).

Note that compared with the machine translation architecture in Figure 2.4, in the

pointer network, yi is not fed into the next decoding state.

In this project, the pointer network was used in the decoding part of several

models.

11

Figure 2.5: Concept of pointer network

12

CHAPTER 3

DESIGN

In this chapter, I will explain the five models one by one. Recall that Model 1

is the Match LSTM & Answer Pointer model which has a typical encoder-decoder

sequence-to-sequence recurrent network architecture designed by Wang and

Jiang[WJ16]. Model 2, 3, 4 and 5 are designed by making changes to Model 1.

3.1 Model 1

Wang and Jiang proposed an encoder-decoder sequence-to-sequence

architecture for the question answering task on SQuAD dataset [WJ16]. Each

instance of training data includes one passage, one question and one answer. The

passage is a sequence of tokens, the question is a sequence of tokens, and the answer

is a sequence of two indices indicating the start and end positions in passage. Recall

that each answer is part of the corresponding passage in SQuAD. Below is an

example instance of training data:

• Passage: The city had a population of 1,307,402 according to the 2010

census , distributed over a land area of 372.1 square miles (963.7 km2) .

The urban area of San Diego extends beyond the administrative city limits

and had a total population of 2,956,746 , making it the third-largest urban

area in the state , after that of the Los Angeles metropolitan area and San

Francisco metropolitan area . They , along with the RiversideSan

Bernardino , form those metropolitan areas in California larger than the

13

San Diego metropolitan area , with a total population of 3,095,313 at the

2010 census .

• Question: How many square miles does San Diego cover ?

• Answer: 372.1

Before feeding training data into the model, tokens in passages and questions

are vectorized to word feature vectors. As such, one pre-trained word feature vector

matrix is an additional dataset required.

The vectorized training data is fed into the encoder. The encoder includes two

layers - the preprocessing layer and the bidirectional match LSTM layer. In the

preprocessing layer, a LSTM runs over each passage word feature vector sequence

and outputs a sequence of LSTM states. The same LSTM is used to encode each

question word feature vector sequence to a sequence of LSTM states.

Hp =
−−−−→
LSTM(P)

Hq =
−−−−→
LSTM(Q)

where

P ∈ Rd×p : passage

Q ∈ Rd×q : question

Hp ∈ Rl×p : encoded passage

Hq ∈ Rl×q : encoded question

p : length of passage

q : length of question

14

l : dimension of LSTM states

d : dimension of word feature vector

In the bidirectional match LSTM layer, a LSTM equipped with

passage-question attention, which is called match LSTM, is used to encode each

sequence of passage states and the corresponding sequence of question states

together to a sequence of match LSTM states. To be specific,

−→
G = tanh(W qHq + (W phi

p +W r−−−→hi−1
r + bp)⊗ eq)

−→αi = softmax(wt−→Gi + b⊗ eq)

where

W q,W p,W r ∈ Rl×l

bp, w ∈ Rl

b ∈ R

hpi ∈ Rl : one column of Hp

and

−→zi =

 hi
p

Hq−→αi
T

 ∈ R2l

−→
hi

r =
−−−−→
LSTM(−→zi ,

−−−→
hi−1

r).

After iterating between getting attention weight vector −→αi and getting match

LSTM state hi
r p times, we get [h1

r, ..., hp
r]. Concatenate them to get

−→
Hr = [h1

r, ..., hp
r] ∈ Rl×p.

15

Then go over Hp from right to left to get
←−
Hr. Concatenate

−→
Hr and

←−
Hr to get

the final output of encoding process

Hr =

−→Hr

←−
Hr

 ∈ R2l×p.

The decoding process includes only one layer - the answer pointer layer. This

layer is motivated by the pointer network. Wang and Jiang proposed two ways to

design this layer. Here I only explain the boundary way. In this way, each output of

the decoding process includes two probability distributions. The first probability

distribution tells how likely each token in passage to be the start of the answer. The

second probability distribution tells how likely each token in passage to be the end

of the answer. To be specific,

Fk = tahn(V Hr + (W ahak−1 + ba)⊗ ep)

βk = softmax(vtFk + c⊗ ep)

where

V ∈ Rl×2l

W a ∈ Rl×l

ba, v ∈ Rl

c ∈ R

hk−1
a ∈ Rl : ith state of answer LSTM

and answer LSTM is

hk
a = LSTM(HrβT

k , h
a
k−1)

16

By iterating between the attention mechanism and the answer LSTM two

times, we could get the output of the decoding process - β0 and β1.

Now we can get the loss function. Let as denote the ground truth start index

of the answer and ae denote the ground truth end index, we have

p(a|Hr) = p(as|Hr)p(ar|Hr) = β0,as × β1,ae

where

βk,j = jth token of βk

To train the model, the loss function

J(θ) = − 1

N

N∑
i=1

log p(an|Hr)

is minimized.

Figure 3.1: Encoder part of Model 1

17

Figure 3.2: Decoder part of Model 1

3.2 Model 2

The difference from Model 2 and Model 1 is in the decoding process. In Model

2,

hk
a = HrβT

k .

That is, instead of the current state of answer LSTM, the previous attention vector

is used to query the current attention weight vector.

3.3 Model 3

The difference between Model 3 and Model 2 is that in Model 3 the W r
−−−→
hi−1

r in

the bidirectional match LSTM layer is removed. This modification aims at checking

whether
−−−→
hi−1

r carries some redundant context information. After this change,

−→
G = tanh(W qHq + (W phi

p + bp)⊗ eq)

18

Figure 3.3: Decoder part of Model 2

Figure 3.4: Encoder part of Model 3

19

3.4 Model 4

The difference between Model 4 and Model 2 is that in Model 4 the the

preprocessing layer is removed. This modification aims at checking whether the

preprocessing layer carries some redundant context information.

Figure 3.5: Encoder part of Model 4

3.5 Model 5

The difference between Model 5 and Model 2 is that in Model 5 both the

preprocessing layer and W r
−−−→
hi−1

r in the bidirectional match LSTM layer are

removed. This aims at checking whether context information carried by both is

included in some other parts of Model 2.

20

Figure 3.6: Encoder part of Model 5

21

CHAPTER 4

IMPLEMENTATION

4.1 Adjusting Models for Batch Training

When training a model, all of the training data is fed into the model to

update the parameters. In one specific model, the number of times to iterate the

encoding process is fixed. However, different passages have different lengths and

different questions also have different lengths. As such, adjusting all passages to a

same length and adjusting all questions to another same length are necessary.

For sequences longer than a fixed length, a part of the sentence is cut out. For

sequences shorter than a fixed length, a faking pad token is used to pad them. In

practice, each passage is adjusted to passage padding length and is paired with a

mask vector passage mask which has size passage padding length. Each question

is adjusted to question padding length and paired with a mask vector

question mask which has size question padding length. Each entry of mask vector

is either zero or one. Zero indicates that the current token does not exist in the

original sequence. One indicates the opposite.

When implementing a model, every effort is made to prevent the model from

distracted by tokens that do not exist. This makes the model in implementation

different from the theoretical one. Take Model 1 as an example. In the

preprocessing layer, after getting a sequence of states, the mask vector is used to

reset the values of positions that do not exist to zero in an additional step

Hp = Hp ◦ (passage mask ⊗ l)

22

Hq = Hq ◦ (question mask ⊗ l).

In the match LSTM layer, the attention weights of positions that do not exist are

also set to zero in an additional step

−→αi = softmax((wt−→Gi + b⊗ eq)) ◦ question mask.

Similar to the preprocessing layer, we have

Hr = Hr ◦ (passage mask ⊗ 2l).

In the answer pointer layer, similar to the match LSTM layer, we have

βk = softmax((vtFk + c⊗ ep)) ◦ passage mask.

4.2 Tensorflow Graphs

Tensorflow is an open source software for numerical computation. It is most

widely used for implementing neural networks. The central idea of Tensorflow is

describing a complex numeric computation as a graph. Variables are “trainable”

nodes. Placeholders are nodes whose values are fed in run time. Taking Model 1

as an example, Variables should be used to represent all the parameters of the

encoding and decoding layers and Placeholders should be used to represent

passages, questions, and answers. Building a computation graph using Tensorflow is

very convenient. First, the API provides some building blocks which speed up

coding a lot. For example, to implement a special LSTM cell with attention

mechanism, we could use the RNNCell interface instead of coding every formula

from scratch. Second, we do not need to calculate gradients by hand. To train a

graph, some APIs of Tensorflow are called to get a train operation. Then the

training data is fed through Placeholders to run the train operation. When the

train operation is run, the Variables are updated.

23

Figure 4.1: Concept of the Tensorflow graphs used in this project

24

Figure 4.1 describes the concept of the Tensorflow graphs for five different

models used in this project. The cloud shapes represent the Placeholders. The

Variables are included in Encoder and Decoder. The rectangles represent nodes in

the calculation process. The circles represent the final outputs used in training or

testing.

We now describe how to build a Tensorflow graph: In the embedding step, the

model transforms word tokens into word feature vectors using a given word feature

vector matrix. This matrix is part of the graph and is constant. The Encoder

encodes passage word feature vectors and question feature vectors to Hr. The

Decoder decodes Hr to two probability distributions β0 and β1. Recall that β0 tells

how likely each token in a passage is the start of the answer and β1 tells how likely

each token in a passage is the end of the answer. The loss is calculated using β0, β1

and ground truth answers fed through answer Placeholders. From the loss, a train

operation is calculated.

The run time works as follow: In the training and validation process, the

passages, questions and answers are fed into the graph. Running the train operation

with data fed into through Placeholders will update all the Variables. In the

testing process, only passages and questions are fed into the graph. The predicted

answers are determined from β0 and β1.

4.3 Implementation Pipeline

For a specific model, in the train and validation process, some Tensorflow

graphs that have same structure but different values for Variables are saved. The

validation loss is used to choose the best graph. Then the best graph is used to do

testing.

25

Figure 4.2: Implementation pipelines

26

CHAPTER 5

EXPERIMENTS

5.1 Data

The Stanford Question Answering Dataset (SQuAD) is used to do

experiments. The GloVe word feature vectors[PSM14] are used to initialize words.

In the first step, a Python natural language processing library nltk is used to

tokenize raw data into passage word token sequences, question word token

sequences and answer spans. Each answer span includes a start index and an end

index. In total, our training set contains 78,839 instances, our validation set

contains 8,760 instances, and our test set contains 10,570 instances.

Table 5.1: Data sets

Set Name Number of Instances

Train 78,839
Validation 8,760

Test 10,570

The vocabulary is then made from the word token sequences from the training

set and validation set. After the vocabulary is made, each word token is turned into

its corresponding index in the vocabulary. Two special indices are used to represent

the unknown token and the padding token. Before feeding index sequences into the

Tensorflow graph, the index sequences are padded to fixed lengths, as mentioned in

Section 4.1. The whole training data set is then split into mini batches to support

stochastic gradient decent.

27

After the vocabulary is made, a smaller word feature vector matrix is made

from the original GloVe word feature vectors. The smaller word feature vector

matrix only includes vectors of words in the vocabulary. The unknown token is

assigned an average of all the vectors of known tokens. The padding token is

assigned a zero vector. The index of each token in the smaller word feature vector

matrix is same as that in the vocabulary.

Figure 5.1: Data pipelines

5.2 Settings

Figure 5.2 shows the distribution of passage lengths. Figure 5.3 shows the

distribution of question lengths. Based on the distributions, 400 is set as

passage padding length and 30 is set as question padding length. We use the

GloVe word feature vectors with size 100. The size of the LSTM state in the

28

preprocessing layer, which is l in theoretical model, is set at 64. The regularization

scale of L2-regularization is set at 0.001. The batch size is set at 32. The adam

optimizer is set using the default settings of Tensorflow. The normalization

boundary to clip gradients is set at 5. 200 sample instances from training set are

used to estimate training accuracy. 200 sample instances from validation set are

used to estimate validation accuracy. The learning rate is selected through several

experiments shown in Figure 5.4. Based on these experiments, the learning rate is

set at 0.002.

Figure 5.2: Distribution of passage lengths

The F1 score and the exact match score are used to evaluate the performance

of each model. F1 treats a predicted answer and a ground truth as bag of words and

calculate a harmonic average of precision and recall; exact match measures the

percentage of predictions and ground truths that are exactly the same. The testing

data contains several ground truth answers for one passage-question pair. The best

score is chosen as the final score.

A machine that has Tesla K80 12 GB Memory, 61 GB RAM and 100 GB SSD

29

Figure 5.3: Distribution of question lengths

Table 5.2: Experimental settings

Hyperparameter Name Value

Word Feature Vector Dimension (d) 100
Hidden State Size (l) 64

L2 regularization Scale 0.001
Hidden State Size (l) 64

Batch Size 64
Passage Length 400

Question Length 30
Clip Norm 5

Learning Rate 0.002

30

Figure 5.4: Performance of different learning rates

31

is used to train the models.

5.3 Results

5.3.1 Training Process

Figure 5.5, 5.6, 5.7, 5.8 and 5.9 show the training process of five different

models. One epoch contains roughly 25 * 100 mini batches. The training loss and

training scores are calculated every 100 mini batches using the 200 sample instances

from training set. We do the same for validation loss and validation scores. Training

one epoch takes roughly 100 minutes. A thorough training of each model requires

around 10 epochs and takes around 17 hours.

As indicated by Figure 5.5, Model 1 converges after three epochs. The

training F1 score converges to around 0.5, the training exact match score converges

to around 0.35, the validation F1 score converges to around 0.3, and the validation

exact match score converges to around 0.2.

As indicated by Figure 5.6, Model 2 keeps learning in 10 epochs. The training

F1 score converges to around 0.6, the training exact match score converges to

around 0.5, the validation F1 score converges to around 0.4, and the validation

exact match score converges to around 0.3.

As indicated by Figure 5.7, Model 3 converges after 10 epochs. The training

F1 score converges to around 0.65, the training exact match score converges to

around 0.45, the validation F1 score converges to around 0.4, and the validation

exact match score converges to around 0.3.

As indicated by Figure 5.8, Model 4 converges after four epochs. The training

F1 score converges to around 0.6, the training exact match score converges to

around 0.4, the validation F1 score converges to around 0.4, and the validation

32

exact match score converges to around 0.2.

As indicated by Figure 5.9, Model 5 keeps learning in the 10 epochs. The

training F1 score converges to around 0.5, the training exact match score converges

to around 0.35, the validation F1 score converges to around 0.3, and the validation

exact match score converges to around 0.2.

5.3.2 Testing Results

Table 5.3: Testing results

Model Test Exact Match Test F1

Reference Paper 64.7 73.7
Model 1 23.4 33.6
Model 2 33.0 45.8
Model 3 33.0 46.2
Model 4 33.0 45.6
Model 5 24.3 33.9

Table 5.3 shows the testing results of all models. The reference paper gets F1

score 73.7 and exact match score 64.7 [WJ16]. Model 1 gets F1 score 33.6 and exact

match score 23.4. It does not reproduce the scores of the reference paper. Model 2,

3 and 4 behave similarly with F1 score around 46 and exact match score around 33.

Model 5 behaves worse than the other three experiments with F1 score 33.9 and

exact match score 24.3.

5.4 Analysis

Comparing the test results of Model 1 with that of the reference paper, the

difference is quite surprising. To find out why my implementation does not

reproduce the results of the original paper, further debugging and parameter tuning

are needed.

33

Figure 5.5: Training process of Model 1

34

Figure 5.6: Training process of Model 2

35

Figure 5.7: Training process of Model 3

36

Figure 5.8: Training process of Model 4

37

Figure 5.9: Training process of Model 5

38

Comparing the testing results of Model 2 and Model 1, the scores of Model 2

are better. As mentioned in Section 3.2, Model 2 uses previous attention vector to

query the current attention weight vector. However, Model 1 uses the current

answer LSTM state to query the attention weight vector. The answer LSTM state is

produced by applying a non-linear transformation on the attention vector. It turns

out not including the non-linear transformation gives better results.

Model 2, 3 and 4 behave similarly. This means removing either the

preprocessing layer or the hr in the bidirectional match LSTM layer does not

decrease test results. A reasonable guess is the two parts provide duplicate context

information.

Model 5 performs worse than Model 2, 3 and 4. This means removing both

the preprocessing layer and the hr in the bidirectional match LSTM layer decreases

testing results. A reasonable guess is the context information provided by these two

parts is not provided in other parts of Model 1. As such, one of the two must be

kept.

39

CHAPTER 6

CONCLUSION

This project presented a thorough implementation of a question answering

system. Five different models were tried and several interesting observations were

found.

Further work is required to find out why Model 1 failed to reproduce the

testing results of the reference paper. At the same time, more parameter tuning

work is required to make the experiments more precise. Last but not the least,

making novel architectures to bypass the state-of-art results is always a good way to

move the question answering research forward.

40

BIBLIOGRAPHY

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, Neural
machine translation by jointly learning to align and translate, arXiv
preprint arXiv:1409.0473 (2014).

[BDVJ03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian
Jauvin, A neural probabilistic language model, Journal of machine
learning research 3 (2003), no. Feb, 1137–1155.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio,
Learning phrase representations using rnn encoder-decoder for
statistical machine translation, arXiv preprint arXiv:1406.1078 (2014).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber, Long short-term memory,
Neural computation 9 (1997), no. 8, 1735–1780.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning, Glove:
Global vectors for word representation, Proceedings of the 2014
conference on empirical methods in natural language processing
(EMNLP), 2014, pp. 1532–1543.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams,
Learning representations by back-propagating errors, nature 323
(1986), no. 6088, 533.

[RZLL16] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang,
Squad: 100,000+ questions for machine comprehension of text, arXiv
preprint arXiv:1606.05250 (2016).

[VFJ15] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, Pointer networks,
Advances in Neural Information Processing Systems, 2015,
pp. 2692–2700.

[WJ16] Shuohang Wang and Jing Jiang, Machine comprehension using
match-lstm and answer pointer, arXiv preprint arXiv:1608.07905
(2016).

