
IMAGE TO LATEX VIA NEURAL NETWORKS

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment of

the Requirements of the Degree

Master of Science

By

Avinash More

May 2018

© 2018

Avinash More

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

IMAGE TO LATEX VIA NEURAL NETWORKS

By

Avinash More

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science

__

Dr. Robert Chun, Department of Computer Science

__

Mr. Varun Soundararajan, Google

ACKNOWLEDGEMENT

I would like to express my gratitude to my project advisor Dr. Chris Pollett for his

support and the guidance. I would not have been able to complete this project without Dr.

Pollett’s valuable suggestions. I would also like to thank my committee members Dr. Robert

Chun and Mr. Varun Soundararajan for their suggestions and time.

I am also thankful to my friends and family for all the moral support and constant

encouragement.

ABSTRACT

Many research papers in mathematics, computer science, and physics are written in LaTeX.

Technical papers and articles in these areas often involve mathematical equations. Writing such

equations in LaTeX takes longer than handwriting the same equations on paper. In this report,

we want to show that the time-consuming process of typesetting LaTeX equations from images

of these equations can be automated and optimized. Neural networks are good at solving related

problems such as handwritten digit recognition, so we adapted these well-studied approaches to

the LaTeX problem. Neural network model training involves large amounts of good quality data.

So, for our project, we propose a convolutional neural network architecture to recognize LaTeX

equations along with a way to generate labeled datasets of mathematical equation images and

their corresponding LaTeX expressions. Our neural network model predicts from mathematical

equations involving numbers, letters, mathematical symbols, and matrix images, the

corresponding LaTeX for these equations. We have achieved an accuracy of more than 90% in

predicting LaTeX for these complex equations involving up to 35 characters.

 6

TABLE OF CONTENTS

IMAGE TO LATEX VIA NEURAL NETWORKS .. 1

A Project .. 1

Presented to .. 1

IMAGE TO LATEX VIA NEURAL NETWORKS .. 3

INTRODUCTION .. 8

BACKGROUND .. 13

Tensorflow .. 17

DATA GENERATION ... 20

IMPLEMENTATION .. 23

Predict the first character ... 24

Predicting the Latex for Simple Equations .. 31

Predicting the LaTeX for Complex Mathematical Equations .. 33

Predicting the LaTeX for an Equation Containing Matrix Operations 35

EXPERIMENTS .. 36

Mini Batch Size ... 38

Feature Map ... 41

Learning Rate ... 44

Results .. 45

CONCLUSION .. 48

REFERENCES... 49

 7

LIST OF FIGURES

Figure 1: Log function ... 8

Figure 2: Limits ... 9

Figure 3: Multiline mathematical equation .. 9

Figure 4: Equations containing matrix .. 9

Figure 5: Deep Neural Network .. 13

Figure 6: Single Neural Calculation .. 14

Figure 7: Convolutional neural network .. 15

Figure 8: The convolution operation ... 15

Figure 9: Max pooling operation ... 16

Figure 10: CNN architecture for prediction of the first character ... 26

Figure 11: CNN architecture for the prediction of LaTeX for simple mathematical equations 31

Figure 12: Simple mathematical equation ... 32

Figure 13: A complex mathematical equation ... 33

Figure 14: CNN architecture for the prediction of LaTeX for complex mathematical equation 34

Figure 15: Matrix operation ... 35

Figure 16: Iterative applied machine learning ... 36

Figure 17: Filter application on an image .. 41

Figure 18: Feature map size vs time taken(sec) ... 46

Figure 19: Training cost per iteration .. 47

Figure 20: Validation accuracy over the epochs .. 47

 8

INTRODUCTION

Many research papers in mathematics, computer science, and physics are written in

LaTeX format. While writing technical papers or articles, there are some scenarios where the text

to be written is a mathematical equation. Writing a mathematical equation in LaTeX format takes

a lot more time compared to writing the same equation on paper. The time-consuming approach

of converting the equation written on paper to LaTeX format can be automated and optimized. In

this project, I am exploring an approach to automate this process.

Getting a LaTeX representation for a mathematical equation is a harder problem to the

optical character recognition (OCR) problems which have been attempted in the past. There are

multiple reasons why this problem is harder.

1. Size

The size of a character varies depending on the position of the literal in the mathematical

equation.

For example:

a. Size of a character in the exponent part is smaller than the size of the character in

the base part. Example: aa

2. Fonts

In a mathematical equation, the font of the variable and font of the functions can be

different.

Examples:

a. Log functions:

 Figure 1: Log function

b. Limits:

 9

 Figure 2: Limits

3. Multiline equations

A single equation can have multiple lines.

Examples:

Figure 3: Multiline mathematical equation

4. Equation reading order

In a usual OCR problem, we read line by line. We read each line from left to right. After

the end of the line, we move to the next line and read that line from left to right again. So,

we have this predefined setup in place where we read from top to bottom for lines and

from left to right for characters in a line. In mathematical equations, this is not always the

case. Let us take a look at an example of an equation containing a matrix.

Figure 4: Equations containing matrix

LaTeX corresponding the above equation is “$ \begin{bmatrix}1 & 2\\ b &

3\end{bmatrix} = \begin{bmatrix}a & 5\\ x & q\end{bmatrix} + \begin{bmatrix}w & m\\

5 & d\end{bmatrix}$ ”. If we analyze this expression we can find few things. If this was

 10

a normal OCR implementation, then it would have considered this equation to be of two

lines. The first line would have been the first row all three matrices. The second line

would have consisted “=” and “+”. The third line would have consisted of the second row

of all the matrices. Contrary to this way, this mathematical equation is read differently as

we can see from the LaTeX expression. We read the whole matrix on the left-hand side

of assignment operator before moving to the assignment operator. While reading the

matrix we would read the starting matrix symbol which lasts for two vertical lines, then

we read the first row of the first matrix from left to right, then we move to next row of the

matrix and then we read the closing matrix bracket. After reading the matrix in this

fashion we read the assignment operator and the other two matrices in the same fashion.

Reading text from the images of books is not a new problem. Problems like this have been

attempted since the early 1900s. In the year 1914, a machine was developed by a Russian

researcher Emanuel Goldberg to read the characters and convert those to telegraph code [1]. In

1974 researchers Ray Kurzweil started working on a product which should be able to recognize

character written in any font also called Omni-font OCR problem. In 1978, the first of

commercial version of this OCR computer software was introduced. As of the present, with the

popularity of the internet, many online cloud-based services are available for OCR. Further with

the use of smartphones, OCR applications have become commonplace. Different OCR

applications try to solve specific OCR problems. Common examples include reading financial

documents such as Cheque, automatic character recognition from the vehicle number plate,

reading text from the images of books (Google books), etc.

Reading mathematical expression from an image has been attempted as early as 2000s

(Belaid and Haton 1984). In this paper, they use a syntactic parser to interpret 2-D mathematical

 11

formulas. In this approach, they parse using a localizing a principle operator contained in the

formula and from there they partition it into subsequences where each subsequence is analyzed

similarly [2].

Winkler et al. 1995 [3] proposed a method to find symbols in handwritten mathematical

expression images based on Hidden Markov Model (HMMs). In this method, once a symbol was

identified actual classification would be done by finding the most probable symbol sequence

based on HMM. Consider an example where a period symbol can be a decimal point as well as it

can be a multiplication operator. Once a period symbol has been recognized, it was classified as

period symbol as a multiplication symbol, or it was a period symbol as it is in case of decimal

point using HMM.

Unlike a problem of getting a mathematical expression from an image, an image to

markup generation problem is a relatively new problem. For example, in the year 2016 this

problem statement was also posted on the OpenAI’s requests to research section. One of the

approaches used to solve this problem was using a concept called coarse-to-fine attention by

Harvard researchers. In this project, a dataset of images used was the dataset formed by

extracting the mathematical equations from the different technical publications [4].

A similar problem to our problem is that of converting an image to a corresponding

HTML. Deng, Yuntian et al, 2016 explored an approach to solve this problem with a model

which does not need to have any knowledge of the underlying markup language. This model is

an extension of attention based encoder-decoder model.

All the solutions to the above application specific OCR problems were based on the

technology trends of the time period in which they were written. In recent years, because of

advancement in the hardware technologies, the training of neural networks has become more

 12

feasible and easier. In this project, we are trying to solve the LaTeX Transcription Problem(LTP)

with the neural networks. We use convolutional neural networks (CNN)to solve LTP.

This report is organized into six different sections. The first section deals with the

introduction and already existing publications related to LTP. In the second section, we discuss

background needed to implement and understand the proposed solution. The third section

explores the data generation approach we have used. The implementation details involving all

the four deliverables are discussed in the fourth section. Experiments and results are the part of

section five. Section six concludes the report.

 13

BACKGROUND

In this section of the report, we will discuss the back ground required to implement the

solution we are proposing. We will explore neural networks, convolutional neural networks, and

deep learning library Tensorflow.

Neural networks are loosely modeled after the human brain. In the human brain, we have

millions of neurons which are connected to each other. So, it is basically a network of neurons.

These neurons receive signals from inputs or neuron from earlier layers. Those signals are passed

along to appropriate neurons based on the type of the signal they carry.

Consider the artificial neural network in Figure 5. As shown in the image, this neural

network has five layers. The first layer is called an input layer. The last layer is called as the

output layer. All the layers excluding the first and the last layer are called as hidden layers.

Figure 5: Deep Neural Network

 14

We can see from the image that all the nodes are connected to all the nodes in the next

layer. All the edge connection from nodes in one layer to nodes in the next layer are have

weights. The decision of whether the neuron would fire or not is taken as follows.

Figure 6: Single Neural Calculation

 How the output at each node is computed as shown in Figure 6. The weighted sum is

taken and a non-linear function is applied to that sum to decide whether the neuron would fire or

not. The typical non-linear function choices are a sigmoid function, tanh function, rectified linear

unit(RELU) function etc.

Now that we have explored neural networks a little bit, let us jump directly into the

convolutional neural network. The convolution operation in deep learning is inspired from the

convolution operation in digital signal processing. In digital signal processing, a convolution of

two signals is used to get the third digital signal. Convolution can be considered as an

algorithmic procedure of mixing information from multiple sources to get the desired output.

Similarly, in deep learning convolution operations can be used to mix information from multiple

sources to get desired results. Convolution is the fundamental operation on which convolutional

 15

neural networks are based. CNNs are the most popular neural networks for computer vision

tasks.

In a CNN, we use a small size window to focus on only a certain part of the image at a

time. We use the same window to slide across the whole image to identify various features. This

small window is called as feature map or a kernel or a filter. Usually, convolution is used with a

pooling operation to extract the important features from the convoluted output. Typical CNN

implementation looks like as shown in Figure 7.

Figure 7: Convolutional neural network

As shown in Figure 7, we try to identify multiple features at each layer of CNN. Let us

see how convolution operation is performed.

Figure 8: The convolution operation

 16

To perform convolution operation, we take kernel and map it on the input and take dot

product imposed image and the kernel. Then we slide the kernel across the whole image to get

the result corresponding to the next superimposed part of the image. This operation is showsn in

the Figure 8.

Now that we have understand how a convolution operation is performed, let us see how

the pooling operation is performed. In our example, we are performing max pooling with a

kernel of size 22. We take the maximum element from the first 22 window of the image. We

move the kernel to right by two positions and take max value again. This procedure is repeated

multiple times till we cover the entire image. As shown in Figure 9, the red colored box on the

left side of the image is max-pooled to get the value of 12 which is in the red box on the right

side of the image.

Figure 9: Max pooling operation

 17

Tensorflow

After deciding on the choice of neural network it seemed essential to explore a suitable deep

learning library. We explored a deep learning library by Google called TensorFlow. The

following are some reasons to use an already existing popular library:

• Code reuse: It is better not to reinvent the wheel.

• Less error-prone: As the libraries are used and tested by multiple users it is usually less

error-prone.

• Level of abstraction: Using a library provides a level of abstraction because of which

programmer does not have to worry about minor details of the code.

• Efficiency: Libraries are written by the expert programmers. They are tested for

performance. Therefore, libraries are efficient.

• Online community support: Because popular libraries are used by a large community of

programmers, the community provides excellent online support.

Python programming language has libraries such as NumPy and SciPy to make it more

efficient for numerical and scientific computing. NumPy has its subroutines compiled in a more

efficient the low-level programming language. Therefore, using NumPy subroutines instead of

Python looping constructs with lists makes Python programs more efficient. Transferring data

from one programming environment to other is an expensive operation. This overhead gets even

more when we are transferring data to graphics processing unit (GPU) or when we are

transferring the data to a distributed environment where there is a high cost associated with the

data transfer. To handle this overhead TensorFlow has an interesting approach. Instead of

frequently switching between different language environments, TensorFlow lets a user define the

complete computation. This complete computation is represented by computation graph of

 18

interacting operations. Once the complete graph is defined, TensorFlow executes the complete

computation graph by establishing a session.

There might be a scenario when we do not know the input at the time of deciding the

computation graph. To handle such scenarios TensorFlow has a concept called placeholders.

Using placeholders, input can be fed to the computation graph.

TensorFlow also has various methods for doing common operations related to multilayer

perceptron such as follow:

1. Calculating the error or the cost:

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

2. Applying various matrix operations such as multiplication, addition, inverse, etc.:

y = tf.matmul(x,W) + b

3. Applying different activation functions:

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

4. Deciding and applying the backpropagation algorithms:

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

5. Defining a neural network:

def conv2d(x, W):

 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):

 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],

 strides=[1, 2, 2, 1], padding='SAME')

TensorFlow has provides a way to save and restore the model.

 19

The following code can be used to save the model:

with tf.Session() as sess:

 sess.run(init_op)

 # Do some work with the model.

 inc_v1.op.run()

 dec_v2.op.run()

 # Save the variables to disk.

 save_path = saver.save(sess, "/tmp/model.ckpt")

 print("Model saved in file: %s" % save_path)

The following code can be used to restore the model:

with tf.Session() as sess:

 # Restore variables from disk.

 saver.restore(sess, "/tmp/model.ckpt")

 print("Model restored.")

We explored these methods of TensorFlow with the classic MNIST dataset.

 20

DATA GENERATION

The importance of finding the correct and appropriate dataset which will be closer in

representation to the real-world data is not often recognized. But, there have been many instances

where the same algorithm with a better set of data has given much better results [6]. Therefore, it

was important to find appropriate data for training the model. After exploring various standard

machine learning data libraries such as UCI machine learning repository, kaggle.com,

deeplearning.net, etc., it was realized that coming up with a way to generate data and labels

would be a better way moving forward. Therefore, we explored a couple of approaches to

generate data.

Two approaches were explored prominently. The first approach was creating a portable

network graphics (PNG) image file and the second approach was for generating portable

document format (PDF) file using postscript. The approach of generating PDF uses PNG as base

file and embeds it with more wrappers and creates an equivalent PDF file. Therefore, using PNG

file seemed more appropriate way. So, we started exploring various ways to create a PNG image

of mathematical equations.

The PNG image file can be generated with a code in different ways but for our dataset

generation, there are multiple conditions which need to be satisfied. One of the most important

condition while generating a data set for training is that it should have image representation as

well as the label for the same. The label for this problem is a LaTeX representation of the image.

Having an exact representation of the LaTeX for all the images in the dataset is a critical

requirement for our problem-solving approach.

 21

While exploring possible libraries for generating data library modules Matlab seemed

suitable. As Matlab is a proprietary, its corresponding library in Python programming language

called Matplotlib was chosen. Using Matplotlib images can be created with an equation in

LaTeX form as the text.

Following code snippet shows the way to generate images:

def render_latex(formula, fontsize=10, dpi=300, format_='svg'):

 fig = plt.figure(figsize=(0.3, 0.25))

 fig.text(0.05, 0.35, u'${}$'.format(formula), fontsize=fontsize)

 buffer_ = StringIO()

 fig.savefig(buffer_, dpi=dpi, transparent=True, format=format_, pad_inches=0.0)

 plt.close(fig)

 return buffer_.getvalue()

image_bytes = render_latex(expression, fontsize=5, dpi=200, format_='png')

image_name = './data/' + 'name.png'

with open(image_name, 'wb') as image_file:

 image_file.write(image_bytes)

While using matplotlib for creating images and corresponding LaTeX labels works well

when the equations do not have a complex mathematical representation such as a matrix. While

rendering these non-complex mathematical equations we do not need to have TeX installed,

since matplotlib has its own TeX expression parser along with layout engine, and fonts. The

layout engine used in matplotlib TeX is a fairly direct adaptation of the layout algorithms in

 22

Donald Knuth’s TeX, so it has a good quality while rendering the LaTeX in the image format.

For complex mathematical equations rendering, we have to have TeX installed on the machine

for python to use it. To use installed TeX we have to specify it in configurations setting part of

the code. The following two lines can be used to set this parameter.

from matplotlib import rcParams

rcParams['text.usetex'] = True

After setting these parameters it is important to use ‘amsmath’ package which provides the

support for representations such as a matrix. The following line of code can be used to refer to

‘amsmath’ package.

rcParams['text.latex.preamble'] = r'\usepackage{amsmath}'

Another important condition which should be satisfied while using these lines of code is that

path of LaTeX installable should be set correctly to make these lines work. The following line

will append already existing environment path variable with LaTeX path

os.environ["PATH"] += os.pathsep + '/Library/TeX/texbin'

Once, all these setting are done any text element can use math text. You should use raw

strings (precede the quotes with an 'r'), and surround the math text with dollar signs ($), as in

TeX.

 23

IMPLEMENTATION

Image to LaTeX is a complex problem to solve. This problem has multiple challenges.

Those challenges we have already discussed in the previous sections. Because of these

challenges, it was important to divide the problem into small chunks and conquer it

individually.

For our solution, we divided the problem solution into four deliverables. Each deliverable

is built upon the previous deliverable. Following are the five deliverable which we worked on

during the implementation phase.

1. The first deliverable: Predicting the first character

2. The second deliverable: Predicting the LaTeX for simple equations

3. The third deliverable: Predicting the LaTeX for complex mathematical equations

4. The fourth deliverable: Predicting the LaTeX for matrix operations [2 X 2]

In the next few pages, we will discuss each of these deliverables in details. We will also

discuss the challenges which we faced and approaches which helped us to tackle these

challenges.

 24

Predict the first character

Prediction of the first character in a long mathematical equation seemed like the most

basic step while starting with the implementation of a solution to an image to LaTeX problem.

This deliverable can be considered as a foundation of the solution which we have proposed in

this project.

While implementing this deliverable, we started with images of equations consisting of

five to ten characters. We did multiple versions of this simple deliverable. Initially, we generated

equations starting with only four possible characters as the first characters. Those four characters

were a summation symbol (∑), an integration symbol (∫), a square root symbol (√), and a

fraction symbol. For the first three choices, it can be easily understood that the first symbol is as

expected or as it appears in the image if it is assumed that reader is reading the image from left to

right and top to bottom. In case of a fraction, the numerator appears as the first symbol when we

are reading it, but in LaTeX code it is a different scenario. Let us take a look at why for fractions

it is not so straightforward.

Consider a fraction
𝑎

𝑏
 . In this example the first symbol for a reader is a letter ‘a’, the

second symbol is a horizontal bar and the third symbol is a letter ‘b’. When we write

corresponding equation in LaTeX, its representation is as \frac{a}{b}. In the LaTeX code for

same fraction, the first character is \frac. Therefore, even for a simplest example this is not as

straightforward at it seems.

The first decision we made while working on this deliverable was on the representation

of the labels. It is a very common and a popular technique to use one hot vectors encoding to

 25

represent labels in classification problems. While using a one hot vector encoding technique, we

set all values in the vector to zero except for the label of the current class.

The following table shows the image and a label encoding with a few examples.

Table 1: Image and the Label Representation

Image Label corresponding the first character

[1,0,0,0]

[0,1,0,0]

[0,0,1,0]

[0,0,0,1]

Now that we have decided the label representation, we should also decide how to read the image

and how to feed it to the machine learning model. As we have discussed earlier, we are using

python as a programming language for implementing our solution, using numpy library with it

for storing the data is a very standard approach. While reading data from a folder we can read the

images in a grayscale mode. When we are reading data from a folder, we can read it like this.

image_path = glob.glob(dataset_folder + '/*.png')

im_array = np.array([np.reshape(np.array(Image.open(img).convert('L'), 'f'), (image_size)) for

img in image_path])

y_from_file = pickle.load(open(lable_data_file, "rb"))

 26

In this example, dataset_folder is the folder with all the data images, image_size is the

size of a flattened image, lable_data_file is the pickle file with all the labels.

For training a model on this data we are using a convolutional neural network. Network

configuration is as follow.

Figure 10: CNN architecture for prediction of the first character

 While training this neural network we used Adam optimizer to update the weights in the

neural network. There are multiple reasons for using Adam optimizer which we have covered in

later parts of this report.

 This implementation seemed perfectly fine in theory and we were expecting results to be

good and model to converge a very small value of cost. In reality, this was not the case and to

 27

our disappointment, model neither gives good results nor did it converge. There were few

problems which we thought could be the reason for worry.

We compared our model with Yan LeCun’s MNIST[8] model. Our model was trained on

20000 images compared to 70000 images LeCun’s model was trained on. The size of an image

in LeCun’s model was 28 pixels in width and 28 pixels in height whereas mathematical equation

images we generated were of size 60 pixels in width and 50 pixels in height. LeCun’s MNIST

data sample image has just one character in it whereas our data sample image had 5 to 10

characters. LeCun’s model was trained on same neural network model transition as ours. From

this data we concluded that we were not having enough data because of two primary reasons

which are as follow:

1. Our image size was almost 4 times bigger than LeCun’s MNIST image sizes.

2. Number of images in MNIST training set were 3.5 times more than the number of

images in our training set

With this newfound reasoning, it seemed perfectly natural to have data set size of around

200,000 images to get good results and for the model to converge. So, our next experiment for

the prediction of the first character was with 200,000 images of width 60 pixels and 50 pixels in

height. As described previously, we had our own data generation setup. So, it was easy to

generate as many images as we want. If this was not the case, then we would have struggled hard

to find such images when required.

With the dataset of 200,000 images, we were extremely hopeful that model will converge

and results would be as close as LeCun’s results on MNIST dataset if not better than those. Even

with this dataset, results were disappointing and the model did not converge. This experiment’s

disappointing results proved very good learning experience. This experiment’s failure pushed us

 28

to debug every possible step in the implementation. Even after rigorous debugging nothing

worthy of change was not found. We studied multiple different implementations of image

classification to identify any possible bugs in the code. Most of those implementations supported

our approach and coding methodology of the implementations. After reading multiple papers it

was realized that bug was neither there in the network configuration nor there in the TensorFlow

code implementation. To substantiate our understanding, we conducted one more experiment.

In this experiment, we used the code we had written for mathematical equations’ first

character prediction with MNIST dataset which is incorporated in TensorFlow library. In this

setting, model was converging within just 5000 images with an accuracy of more than 90%. This

result was very important because that gave our model validation and us some validation that our

implementation is quite accurate. This validation made us realize that model and network

configuration is not the area of concern. So, it was natural to make sure we are reading data as it

is being read by TensorFlow for MNIST images. There were two things which were of prime

importance while reading data.

The first thing was the way we are assigning the value of 0 and 1 to pixels from an image.

When we researched how data was being read by TensorFlow, it was seen that TensorFlow reads

white pixels as value zero and black pixels as value 1. On the contrary, we were reading white

pixel as value 1 and black pixel as value 0. The reason for this mistake was that we were using

an inbuilt method from python PIL package to read the image in grayscale mode. We corrected

this mistake by using little modification in the way we were reading the image data into numpy

arrays. The following lines of code demonstrate how this modification in the code.

y = pickle.load(open(data_folder + ".p", "rb"))

images = []

 29

y_return = []

for i in range(len(y)):

image_path = data_folder + "/" + str(i) + ".png"

 current_image = np.reshape(np.asarray(Image.open(image_path).convert('1')),

image_size)

 current_image = current_image * -1.0 + 1.0

 images.append(current_image)

 y_return.append(y[i][character_number-1])

The second thing which we were doing while training was the way we were shuffling the

data at the start of each epoch. Earlier we were shuffling the data manually with the help of a

variable. So, there was a scope for overfitting because of that. We changed this approach by

using an inbuilt method of another machine learning library sci-kit learn. Following lines of code

demonstrate how shuffling can be done using sci-kit learn’s shuffle method.

 from sklearn.utils import shuffle

training_data, training_data_yi = shuffle(training_data, training_data_yi,

random_state=0)

After applying these two changes, we finally had our model to converge and accuracy of

our model was more than 95%.

Once we achieved excellent results for the prediction of the first character in our

experiment we decided to add more characters to see how well does this convolutional neural

network classifies this big set of characters. For the final implementation of this deliverable we

used the following sets of the characters.

 30

1. Letters: It consisted of all the 26 lowercase alphabets of English language from ‘a’ to

‘z’.

2. Numbers: It consisted of all the 10 digits from ‘0’ to ‘9’.

3. Special symbols: It consisted fraction character (horizontal bar), summation symbol

(∑), an integration symbol (∫), and a square root symbol (√).

With this new data of 20000 images, we trained the model using the convolutional neural

network the same configuration as shown in the Figure 10 and we classified images into correct

classes with an accuracy of more than 98% accuracy.

 31

Predicting the Latex for Simple Equations

The first deliverable involving the prediction of the first character of a mathematical

equation was a great milestone in the implementation of this project. After the stupendous

results prediction of the first character, we decided to see if we could use the same network to

predict all the characters in mathematical equations.

 While generating the data for this deliverable it was important to limit the number of

mathematical operations we were going to support. We decided to limit our scope to four

operators namely, addition, subtraction, multiplication and, exponentials.

Network configuration for this case is as follow:

Figure 11: CNN architecture for the prediction of LaTeX for simple mathematical equations

As it can be seen from the figure 11, we have made this network deeper than the network we had

earlier.

 32

For this implementation, image size has got bigger because we were having images with

seven characters. An important thing to understand in this scenario is that even though we were

having 7 characters in the image, sometimes there were only 6 characters visible in the image.

Why so? Consider an example: 2^3+5-a. In this example, there are 7 characters in the LaTeX

representation but the image looks like this.

Figure 12: Simple mathematical equation

The ‘^’ symbol is not visible in the image. But, the convolutional neural network has to

predict it. For this deliverable, we trained our model on 20000 images. In this case, we observed

one pattern that whenever we were training it for characters which were deeper in the image it

would take more time for the model to converge. We trained model for each character separately.

For each character training, we made sure that model converged with the cost less than 0.5 and

validation accuracy above 90%.

 33

Predicting the LaTeX for Complex Mathematical Equations

The first two deliverables were the test to decide on whether our approach of using

convolutional neural network was a correct approach to predict LaTeX expression for an image

of the mathematical equation. For this deliverable, we were supposed to generate images which

were more complex than the images we had generated earlier. To make mathematical equations

complex we increased the number of characters in the mathematical expression. For this

deliverable, we used around 50 characters. With these 50 characters as the possible characters we

created mathematical equations containing maximum 30 character and generated images

corresponding to those.

Figure 13: A complex mathematical equation

As in this deliverable, we are using images which were having more than 50 characters,

the number of filters in each layer has to be increased. So, we doubled the number of filters for

each layer compared to the network configuration which we had for the previous deliverable.

The following image shows the network configuration for this deliverable.

 34

Figure 14: CNN architecture for the prediction of LaTeX for complex mathematical equation

With this network configuration, we trained our CNN model on 30000 images for each

character separately. We trained it for 10 epochs. By the end of the training, we had achieved the

accuracy of more 90% for each character and cost was reduced to 0.5. During the training of this

network we learned how to avoid oscillations and how to choose different learning rate

depending on the position of the character for which we were training the model. We have

discussed more about it in the experiments sections.

 35

Predicting the LaTeX for an Equation Containing Matrix Operations

After the successful experiments with complex mathematical equations we decided to

explore more complex mathematical equations, which last for more than one line. One obvious

choice for such equations was matrix equations. Matrix equations pose new challenges compared

to other types of equations because of the arrangement as we discussed in the introduction

section.

 For our implementation purpose, we considered simple matrix operations involving

matrix addition, subtraction multiplication, and assignment of a 22 matrix. The following

image shows a visual representation of kind of mathematical equations for which we are training

the model.

Figure 15: Matrix operation

This matrix equation has 30 characters when we write it in the LaTeX format. We used

the same network configuration which we used in the previous deliverable. In this

implementation, as we had done earlier we trained the network for each character separately. In

this deliverable too, we trained the network on 30000 images. We trained it for 10 epochs. By the

end of the training we had achieved an accuracy of more 90% for each character and the cost was

reduced to 0.5. During the training of this network, we learned how to avoid oscillations and how

to choose different learning rate depending on the position of the character for which we were

training the model. We have discussed more about it in the experiments sections.

 36

EXPERIMENTS

Applied machine learning is an iterative process[9]. It is not so straightforward that we

can get the desired results proposed model. Even for the most experienced machine learning

scientists, it is very difficult to tell what exact values of the parameters would be the perfect

values for generating the optimum results. This process follows multiple iterations where each

iteration consists of the following steps as shown in the Figure 16. One has to go around the

cycle many times to find a good choice for the network.

Figure 16: Iterative applied machine learning

In machine learning there are some variables whose value is set before the training of the

model is started. This type of variables called as hyperparameters. On the contrary, parameters

are the variables whose value is computed during the training of the machine learning model. For

our model, we experimented with various hyperparameters and learned multiple important

lessons from each of the experiments which we will summarize in the next few pages.

 37

We will be specifically discussing the experiments we did with following hyperparameters.

1. Mini batch size

2. Size of feature map

3. Number of feature maps

4. Changing the value of learning rate

 38

Mini Batch Size

There are two main reasons for deep learning to be successful in today’s time. The first

reason is, of course, the availability of powerful hardware. The second reason is the availability

of the large datasets. Training a machine learning model on this big dataset is a slow process.

Therefore, finding a fast way to train the machine learning model is very important in

minimizing the time required to perform experiments and finding the most efficient

configuration of the mode.

When we are using python as a programming language and numpy for vectorizing the

input and the output, some part of the speed up process has been solved. There is still a lot of

scope for speeding up. If we are using the entire training set consisting of thousands or hundreds

of thousands of data points, then we have to process all the data points before deciding to move

in the direction of the minimum value of the cost function using optimization algorithm.

Similarly, for the next iteration, we have to process entire training set before making the decision

about the next step in the direction of finding the minima.

There can be a better way to deal with this situation of processing the entire training

dataset. Consider another approach where we can make the decision of movement in the

direction of minimum cost even before processing the entire dataset. This can be achieved by

splitting the training set into multiple smaller training sets. These smaller training sets are called

as mini-batches. Consider an example where we have 50000 data points in the training set. We

can divide this training set into 500 mini-batches where each mini-batch would have 100 data

points. In this case, we randomly decided the mini-batch size to be of 100 data points. There can

be different ways to decide the size of the mini-batch.

 39

Deciding the size of the mini-batch is not so straightforward decision. There are a lot of

different options available to select the size of the mini-batch. These options vary from having a

mini-batch of single data point which is also called stochastic processing and the other extreme is

using all the data points in the training data which is called as batch processing. Both the

approaches have their advantages and disadvantages. Let us look at those before deciding the

most optimum size of the mini-batch.

Table 2: Different Batch Size Advantages and Disadvantages

 Stochastic Processing Batch processing Mini-Batch processing

What it is? Mini-batch size is

one. It contains only

one data point from

the training set at a

time. The number of

mini-batches is equal

to the number of

examples in the

training set

Mini-batch size

equal to the data

size of the training

set. It contains all

the data point from

the training

dataset. The

Number of mini-

batches is equal to

one.

Mini-batch size is

chosen based on

experiments. Number of

mini-batches = Training

data size / min-batch

size

Advantages We can start seeing

progress in the

direction of the

minimum cost from

We can move in

direction of

minimum cost

with a very few

We utilize the speedup

achieved through

vectorization. We can

start seeing the progress

 40

the first example

itself.

oscillations. It is

expected for the

cost to go down

with every single

iteration.

in the movement

towards the minimum

cost value from the first

batch itself

Disadvantages We lose the speedup

which we had

achieved using

vectorization.

It takes more time

for training

because we are

taking one step in

the direction of

minima after

processing all the

examples.

There would be

oscillations while

moving towards the

direction of minimum

cost value.

As seen from the above table, we can see that dividing the data into mini-batches is an

efficient way to train machine learning model. Typical mini-batch sizes used in the real-world

machine learning training experiments are of sizes 64, 128, 256, 512 or 1024 data samples. We

can see that all of these have one thing in common; they are powers of 2. As the computer

memory is laid out and accessed in the memory blocks of the power of two, sometimes having

the batch size power of 2 gives provides faster training [10].

 41

Feature Map

In CNN, we have a sliding window which we slide over the image to identify different

features of the image. This sliding window is called as feature map or kernel or feature detector.

Usually, the feature map is represented using a multidimensional matrix. In case of a two-

dimensional image it is a two-dimensional matrix of certain size. Depending on different values

of the elements in this two-dimensional matrix we get different output of convolution when the

image is convoluted with the feature map. The following images shows how the application of

different filters will create different results.

Figure 17: Filter application on an image

 42

As shown in the example, we get a different convoluted image for different filters. These

filter values are initialized to certain values before training. While training the machine learning

model, these values modified so that they will identify the desired features.

 Choice of feature map is an important decision because it is directly connected with the

amount of time required to train the network and the kind of features to be recognized. As

convolution operation is a dot product of feature map and a receptive field of an image, bigger

the size of feature map more time it would take for training the model because there would those

many numbers of calculations. Similarly, if we are trying to get the smaller features in an image

having a smaller size of feature map helps.

 As neural network training is an expensive operation, most of the times, it is

recommended to take advantage of earlier research and apply transfer learning while deciding

the hyperparameters of the neural network. Our problem is similar to the classification of digits

with MNIST dataset, therefore it seemed obvious to use the kernel size as LeCun’s CNN had

used. We experimented with 3 sizes of feature map before settling onto the feature map size of

5X5 as used by LeCun in training MNIST data.

After deciding the size of feature map, it was important to decide the number of feature

maps at each layer of CNN. As choosing the size of feature map based LeCun’s CNN training of

MNIST data proved to be useful, it seemed like a good option to use a comparative number of

features. For example, LeNet was trying to classify just the digits, comparatively, our network is

trying to classify more than 50 characters.

The following are the characters which we tried to classify.

 43

'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0',

'1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '^', '\\int', '\\sum', '(', ')', '{', '}', '_', ' ', '=', '\\infty',

'\\begin{bmatrix}', '\\end{bmatrix}', '\\\\', '&'

As we are having almost 50 characters to be classified the network layers we used were

having more number of filters.

 44

Learning Rate

 As discussed earlier, we have used Adam optimizer [11] to update network weights

because it is most popular for computer vision problems. While using any optimizer with

TensorFlow, we have to provide a hyper parameter learning rate. This hyperparameter, decides

the how network weights would be updated. This hyperparameter decides the magnitude of the

steps taken towards the lowest cost. In theory, higher the value of learning rate faster we should

reach the minimum cost. In reality, this is not the case because if we use a very high value of

learning rate it might happen that our step towards lowest cost is so big that we would actually

miss the minimum cost and move away from it. With the same learning rate, it might happen that

we would miss it again and move away from it. This kind of behavior is also called as oscillating

around the minimum cost. To avoid such behavior, it is important to decide on such value of

learning rate that we each the local minimum cost without oscillating around it for too long.

 In our implementation, while training the network for the prediction of the first 3 to 4

characters we kept the learning rate to be 0.01 and we achieved phenomenal results. We tried the

same learning rate for the prediction of rest of the characters too expecting similar results. To our

surprise, the model did not converge for the prediction of characters which were little away from

the first few characters. The model kept oscillating for different value of cost for long period of

time. This prompted us to choose smaller value of learning rate for the prediction of characters

which were way from the first few characters. We used a various different value of learning rate

depending on the position of the character in the equation.

 45

Results

All the results are for data involving complex mathematical equations shown in Figure 13.

Mini batch size

For our convolutional neural network training, we experimented with a batch size of 64, 128, 512

and 1024 data samples. We got the most optimum results for the batch size of 128 data samples.

Feature maps size

The following table shows our observations about use of three different feature map sizes with

which we experimented.

Table 3: Feature Map Size and Observation

Feature map size Observation

5X5 It took around 10 seconds to train one batch of 128 images. Model

converged and performed well on the test and validation data.

7X7 It took around 15 seconds to train on one batch of 128 images. Model

worked fairly well on test and validation data but the efficiency was not

as good as it was when we were using 5X5 filter size.

10X10 It took around 25 second to trains on one batch of 128 images. Even

after training for more than 10 hours the model did not perform well on

test data.

 46

Figure 18: Feature map size vs time taken(sec)

Learning rate

The following table shows the various values of learning rate which were used for prediction of

the character depending on the character position in the equation.

Table 4: Character Position and the learning rate

Character Numbers Learning rate

1-4 0.01

5-10 0.0015

10-17 0.001

17-30 0.0001

 47

Training cost: It takes more number of iteration to converge the model for twelfth character

than the second character.

Figure 19: Training cost per iteration

Validation accuracy: The validation accuracy for model is better for the characters which are

closer to the start than the characters which are deeper in the equation.

Figure 20: Validation accuracy over the epochs

 48

CONCLUSION

In this project, we trained convolutional neural network to predict the LaTeX

corresponding to an image of mathematical equations. We achieved an accuracy of more than

90% for the images containing up to 35 characters involving numbers, letters, and a few

mathematical symbols. Our experiments involving the prediction of LaTeX corresponding to

matrix operations of size 22 were also successful where we achieved an accuracy of more than

85%. In this project, we applied transfer learning from LeCun’s CNN solution on MNIST

dataset. This project was a very good exercise to see how far CNNs can go for the classification

problems. While training the equations involving more than 35 characters we realized the

limitations of using CNN for the classification of complex objects when there is a hard

relationship between different objects in an image. Using an encoder–decoder model involving

CNN for encoding and recurrent neural network for decoding would be a better approach for the

prediction of LaTeX corresponding to an image. The encoder – decoder approach can be a future

scope of this project.

 49

REFERENCES

[1] “Emanuel Goldberg”, Internet: https://history-

computer.com/Internet/Dreamers/Goldberg.html

[2] Belaid, Abdelwaheb, and Jean-Paul Haton. "A syntactic approach for handwritten

mathematical formula recognition." IEEE Transactions on Pattern Analysis and Machine

Intelligence 1 (1984): 105-111.

[3] Winkler, H-J., H. Fahrner, and Manfred Lang. "A soft-decision approach for structural

analysis of handwritten mathematical expressions." Acoustics, Speech, and Signal

Processing, 1995. ICASSP-95., 1995 International Conference on. Vol. 4. IEEE, 1995.

[4] Deng, Yuntian, et al. "Image-to-Markup Generation with Coarse-to-Fine

Attention." International Conference on Machine Learning. 2017.

[5] Deng, Yuntian, Anssi Kanervisto, and Alexander M. Rush. "What You Get Is What You

See: A Visual Markup Decompiler." arXiv preprint arXiv:1609.04938 (2016).

[6] Sun, Chen, et al. "Revisiting unreasonable effectiveness of data in deep learning

era." arXiv preprint arXiv:1707.02968 1 (2017).

[7] Goodfellow, Ian, et al. Deep learning. Vol. 1. Cambridge: MIT press, 2016.

[8] LeCun, Yann, et al. "Learning algorithms for classification: A comparison on

handwritten digit recognition." Neural networks: the statistical mechanics

perspective 261 (1995): 276.

[9] Le, Quoc V., et al. "On optimization methods for deep learning." Proceedings of the 28th

International Conference on International Conference on Machine Learning. Omnipress,

2011.

https://history-computer.com/Internet/Dreamers/Goldberg.html
https://history-computer.com/Internet/Dreamers/Goldberg.html

 50

[10] Ponnuru Rajeswari, Pookalangara Ajit Kumar “CIFAR-10 Classification using Intel®

Optimization for TensorFlow*”, Internet: https://software.intel.com/en-us/articles/cifar-

10-classification-using-intel-optimization-for-tensorflow, Dec 12, 2017

[11] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980(2014).

https://software.intel.com/en-us/articles/cifar-10-classification-using-intel-optimization-for-tensorflow
https://software.intel.com/en-us/articles/cifar-10-classification-using-intel-optimization-for-tensorflow

	IMAGE TO LATEX VIA NEURAL NETWORKS
	A Project
	Presented to
	IMAGE TO LATEX VIA NEURAL NETWORKS
	INTRODUCTION
	BACKGROUND
	Tensorflow

	DATA GENERATION
	IMPLEMENTATION
	Predict the first character
	Predicting the Latex for Simple Equations
	Predicting the LaTeX for Complex Mathematical Equations
	Predicting the LaTeX for an Equation Containing Matrix Operations

	EXPERIMENTS
	Mini Batch Size
	Feature Map
	Learning Rate
	Results

	CONCLUSION
	REFERENCES

