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ABSTRACT 

Many research papers in mathematics, computer science, and physics are written in LaTeX. 

Technical papers and articles in these areas often involve mathematical equations. Writing such 

equations in LaTeX takes longer than handwriting the same equations on paper. In this report, 

we want to show that the time-consuming process of typesetting LaTeX equations from images 

of these equations can be automated and optimized. Neural networks are good at solving related 

problems such as handwritten digit recognition, so we adapted these well-studied approaches to 

the LaTeX problem. Neural network model training involves large amounts of good quality data. 

So, for our project, we propose a convolutional neural network architecture to recognize LaTeX 

equations along with a way to generate labeled datasets of mathematical equation images and 

their corresponding LaTeX expressions. Our neural network model predicts from mathematical 

equations involving numbers, letters, mathematical symbols, and matrix images, the 

corresponding LaTeX for these equations. We have achieved an accuracy of more than 90% in 

predicting LaTeX for these complex equations involving up to 35 characters.  
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INTRODUCTION 

 

Many research papers in mathematics, computer science, and physics are written in 

LaTeX format. While writing technical papers or articles, there are some scenarios where the text 

to be written is a mathematical equation. Writing a mathematical equation in LaTeX format takes 

a lot more time compared to writing the same equation on paper. The time-consuming approach 

of converting the equation written on paper to LaTeX format can be automated and optimized. In 

this project, I am exploring an approach to automate this process.  

Getting a LaTeX representation for a mathematical equation is a harder problem to the 

optical character recognition (OCR) problems which have been attempted in the past. There are 

multiple reasons why this problem is harder. 

1. Size  

The size of a character varies depending on the position of the literal in the mathematical 

equation.  

For example: 

a. Size of a character in the exponent part is smaller than the size of the character in 

the base part. Example: aa  

2. Fonts 

In a mathematical equation, the font of the variable and font of the functions can be 

different. 

Examples:  

a. Log functions:  

 

                        Figure 1: Log function 

 

b. Limits:  
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                Figure 2: Limits 

3. Multiline equations 

A single equation can have multiple lines. 

Examples: 

 

Figure 3: Multiline mathematical equation 

4. Equation reading order 

In a usual OCR problem, we read line by line. We read each line from left to right. After 

the end of the line, we move to the next line and read that line from left to right again. So, 

we have this predefined setup in place where we read from top to bottom for lines and 

from left to right for characters in a line. In mathematical equations, this is not always the 

case. Let us take a look at an example of an equation containing a matrix.  

 

Figure 4: Equations containing matrix 

LaTeX corresponding the above equation is “$ \begin{bmatrix}1 & 2\\ b & 

3\end{bmatrix} = \begin{bmatrix}a & 5\\ x & q\end{bmatrix} + \begin{bmatrix}w & m\\ 

5 & d\end{bmatrix}$ ”. If we analyze this expression we can find few things. If this was 
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a normal OCR implementation, then it would have considered this equation to be of two 

lines. The first line would have been the first row all three matrices. The second line 

would have consisted “=” and “+”. The third line would have consisted of the second row 

of all the matrices. Contrary to this way, this mathematical equation is read differently as 

we can see from the LaTeX expression. We read the whole matrix on the left-hand side 

of assignment operator before moving to the assignment operator. While reading the 

matrix we would read the starting matrix symbol which lasts for two vertical lines, then 

we read the first row of the first matrix from left to right, then we move to next row of the 

matrix and then we read the closing matrix bracket. After reading the matrix in this 

fashion we read the assignment operator and the other two matrices in the same fashion. 

Reading text from the images of books is not a new problem. Problems like this have been 

attempted since the early 1900s. In the year 1914, a machine was developed by a Russian 

researcher Emanuel Goldberg to read the characters and convert those to telegraph code [1]. In 

1974 researchers Ray Kurzweil started working on a product which should be able to recognize 

character written in any font also called Omni-font OCR problem. In 1978, the first of 

commercial version of this OCR computer software was introduced. As of the present, with the 

popularity of the internet, many online cloud-based services are available for OCR. Further with 

the use of smartphones, OCR applications have become commonplace. Different OCR 

applications try to solve specific OCR problems. Common examples include reading financial 

documents such as Cheque, automatic character recognition from the vehicle number plate, 

reading text from the images of books (Google books), etc. 

Reading mathematical expression from an image has been attempted as early as 2000s 

(Belaid and Haton 1984). In this paper, they use a syntactic parser to interpret 2-D mathematical 
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formulas. In this approach, they parse using a localizing a principle operator contained in the 

formula and from there they partition it into subsequences where each subsequence is analyzed 

similarly [2]. 

Winkler et al. 1995 [3] proposed a method to find symbols in handwritten mathematical 

expression images based on Hidden Markov Model (HMMs). In this method, once a symbol was 

identified actual classification would be done by finding the most probable symbol sequence 

based on HMM. Consider an example where a period symbol can be a decimal point as well as it 

can be a multiplication operator. Once a period symbol has been recognized, it was classified as 

period symbol as a multiplication symbol, or it was a period symbol as it is in case of decimal 

point using HMM.  

Unlike a problem of getting a mathematical expression from an image, an image to 

markup generation problem is a relatively new problem. For example, in the year 2016 this 

problem statement was also posted on the OpenAI’s requests to research section.  One of the 

approaches used to solve this problem was using a concept called coarse-to-fine attention by 

Harvard researchers. In this project, a dataset of images used was the dataset formed by 

extracting the mathematical equations from the different technical publications [4].  

A similar problem to our problem is that of converting an image to a corresponding 

HTML. Deng, Yuntian et al, 2016 explored an approach to solve this problem with a model 

which does not need to have any knowledge of the underlying markup language. This model is 

an extension of attention based encoder-decoder model. 

All the solutions to the above application specific OCR problems were based on the 

technology trends of the time period in which they were written. In recent years, because of 

advancement in the hardware technologies, the training of neural networks has become more 
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feasible and easier. In this project, we are trying to solve the LaTeX Transcription Problem(LTP) 

with the neural networks. We use convolutional neural networks (CNN)to solve LTP.  

This report is organized into six different sections. The first section deals with the 

introduction and already existing publications related to LTP. In the second section, we discuss 

background needed to implement and understand the proposed solution. The third section 

explores the data generation approach we have used. The implementation details involving all 

the four deliverables are discussed in the fourth section. Experiments and results are the part of 

section five. Section six concludes the report.  
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BACKGROUND 

 

In this section of the report, we will discuss the back ground required to implement the 

solution we are proposing. We will explore neural networks, convolutional neural networks, and 

deep learning library Tensorflow.  

Neural networks are loosely modeled after the human brain. In the human brain, we have 

millions of neurons which are connected to each other. So, it is basically a network of neurons. 

These neurons receive signals from inputs or neuron from earlier layers. Those signals are passed 

along to appropriate neurons based on the type of the signal they carry.  

Consider the artificial neural network in Figure 5.  As shown in the image, this neural 

network has five layers. The first layer is called an input layer. The last layer is called as the 

output layer. All the layers excluding the first and the last layer are called as hidden layers. 

 

Figure 5: Deep Neural Network 
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We can see from the image that all the nodes are connected to all the nodes in the next 

layer. All the edge connection from nodes in one layer to nodes in the next layer are have 

weights. The decision of whether the neuron would fire or not is taken as follows.  

 

Figure 6: Single Neural Calculation 

 How the output at each node is computed as shown in Figure 6. The weighted sum is 

taken and a non-linear function is applied to that sum to decide whether the neuron would fire or 

not. The typical non-linear function choices are a sigmoid function, tanh function, rectified linear 

unit(RELU) function etc.  

Now that we have explored neural networks a little bit, let us jump directly into the 

convolutional neural network. The convolution operation in deep learning is inspired from the 

convolution operation in digital signal processing. In digital signal processing, a convolution of 

two signals is used to get the third digital signal. Convolution can be considered as an 

algorithmic procedure of mixing information from multiple sources to get the desired output. 

Similarly, in deep learning convolution operations can be used to mix information from multiple 

sources to get desired results.  Convolution is the fundamental operation on which convolutional 



 15 

neural networks are based. CNNs are the most popular neural networks for computer vision 

tasks.  

In a CNN, we use a small size window to focus on only a certain part of the image at a 

time. We use the same window to slide across the whole image to identify various features. This 

small window is called as feature map or a kernel or a filter. Usually, convolution is used with a 

pooling operation to extract the important features from the convoluted output. Typical CNN 

implementation looks like as shown in Figure 7.  

 

Figure 7: Convolutional neural network 

As shown in Figure 7, we try to identify multiple features at each layer of CNN. Let us 

see how convolution operation is performed.  

 

Figure 8: The convolution operation 
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To perform convolution operation, we take kernel and map it on the input and take dot 

product imposed image and the kernel. Then we slide the kernel across the whole image to get 

the result corresponding to the next superimposed part of the image. This operation is showsn in 

the Figure 8.  

Now that we have understand how a convolution operation is performed, let us see how 

the pooling operation is performed. In our example, we are performing max pooling with a 

kernel of size 22. We take the maximum element from the first 22 window of the image. We 

move the kernel to right by two positions and take max value again. This procedure is repeated 

multiple times till we cover the entire image. As shown in Figure 9, the red colored box on the 

left side of the image is max-pooled to get the value of 12 which is in the red box on the right 

side of the image.  

 
Figure 9: Max pooling operation 
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Tensorflow  

 

After deciding on the choice of neural network it seemed essential to explore a suitable deep 

learning library. We explored a deep learning library by Google called TensorFlow. The 

following are some reasons to use an already existing popular library: 

• Code reuse: It is better not to reinvent the wheel. 

• Less error-prone: As the libraries are used and tested by multiple users it is usually less 

error-prone.  

• Level of abstraction: Using a library provides a level of abstraction because of which 

programmer does not have to worry about minor details of the code.  

• Efficiency: Libraries are written by the expert programmers. They are tested for 

performance. Therefore, libraries are efficient.  

• Online community support: Because popular libraries are used by a large community of 

programmers, the community provides excellent online support.  

Python programming language has libraries such as NumPy and SciPy to make it more 

efficient for numerical and scientific computing. NumPy has its subroutines compiled in a more 

efficient the low-level programming language. Therefore, using NumPy subroutines instead of 

Python looping constructs with lists makes Python programs more efficient. Transferring data 

from one programming environment to other is an expensive operation. This overhead gets even 

more when we are transferring data to graphics processing unit (GPU) or when we are 

transferring the data to a distributed environment where there is a high cost associated with the 

data transfer. To handle this overhead TensorFlow has an interesting approach. Instead of 

frequently switching between different language environments, TensorFlow lets a user define the 

complete computation. This complete computation is represented by computation graph of 
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interacting operations. Once the complete graph is defined, TensorFlow executes the complete 

computation graph by establishing a session.  

There might be a scenario when we do not know the input at the time of deciding the 

computation graph. To handle such scenarios TensorFlow has a concept called placeholders. 

Using placeholders, input can be fed to the computation graph.  

TensorFlow also has various methods for doing common operations related to multilayer 

perceptron such as follow: 

1. Calculating the error or the cost: 

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) 

2. Applying various matrix operations such as multiplication, addition, inverse, etc.: 

y = tf.matmul(x,W) + b 

3. Applying different activation functions:  

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 

4. Deciding and applying the backpropagation algorithms: 

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 

5. Defining a neural network: 

def conv2d(x, W): 

  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

 

def max_pool_2x2(x): 

  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 

                        strides=[1, 2, 2, 1], padding='SAME') 

TensorFlow has provides a way to save and restore the model.  
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The following code can be used to save the model:  

with tf.Session() as sess: 

   sess.run(init_op) 

   # Do some work with the model. 

   inc_v1.op.run() 

   dec_v2.op.run() 

   # Save the variables to disk. 

   save_path = saver.save(sess, "/tmp/model.ckpt") 

   print("Model saved in file: %s" % save_path) 

The following code can be used to restore the model:  

with tf.Session() as sess: 

   # Restore variables from disk. 

   saver.restore(sess, "/tmp/model.ckpt") 

   print("Model restored.") 

We explored these methods of TensorFlow with the classic MNIST dataset.  
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DATA GENERATION 

 

The importance of finding the correct and appropriate dataset which will be closer in 

representation to the real-world data is not often recognized. But, there have been many instances 

where the same algorithm with a better set of data has given much better results [6]. Therefore, it 

was important to find appropriate data for training the model. After exploring various standard 

machine learning data libraries such as UCI machine learning repository, kaggle.com, 

deeplearning.net, etc., it was realized that coming up with a way to generate data and labels 

would be a better way moving forward. Therefore, we explored a couple of approaches to 

generate data.  

Two approaches were explored prominently. The first approach was creating a portable 

network graphics (PNG) image file and the second approach was for generating portable 

document format (PDF) file using postscript. The approach of generating PDF uses PNG as base 

file and embeds it with more wrappers and creates an equivalent PDF file. Therefore, using PNG 

file seemed more appropriate way. So, we started exploring various ways to create a PNG image 

of mathematical equations.  

The PNG image file can be generated with a code in different ways but for our dataset 

generation, there are multiple conditions which need to be satisfied. One of the most important 

condition while generating a data set for training is that it should have image representation as 

well as the label for the same. The label for this problem is a LaTeX representation of the image. 

Having an exact representation of the LaTeX for all the images in the dataset is a critical 

requirement for our problem-solving approach.  
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While exploring possible libraries for generating data library modules Matlab seemed 

suitable. As Matlab is a proprietary, its corresponding library in Python programming language 

called Matplotlib was chosen. Using Matplotlib images can be created with an equation in 

LaTeX form as the text.  

Following code snippet shows the way to generate images:  

def render_latex(formula, fontsize=10, dpi=300, format_='svg'): 

    fig = plt.figure(figsize=(0.3, 0.25)) 

    fig.text(0.05, 0.35, u'${}$'.format(formula), fontsize=fontsize) 

    buffer_ = StringIO() 

    fig.savefig(buffer_, dpi=dpi, transparent=True, format=format_, pad_inches=0.0) 

    plt.close(fig) 

    return buffer_.getvalue() 

 

image_bytes = render_latex(expression, fontsize=5, dpi=200, format_='png') 

image_name = './data/' + 'name.png' 

with open(image_name, 'wb') as image_file: 

    image_file.write(image_bytes) 

 

While using matplotlib for creating images and corresponding LaTeX labels works well 

when the equations do not have a complex mathematical representation such as a matrix. While 

rendering these non-complex mathematical equations we do not need to have TeX installed, 

since matplotlib has its own TeX expression parser along with layout engine, and fonts. The 

layout engine used in matplotlib TeX is a fairly direct adaptation of the layout algorithms in 
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Donald Knuth’s TeX, so it has a good quality while rendering the LaTeX in the image format. 

For complex mathematical equations rendering, we have to have TeX installed on the machine 

for python to use it. To use installed TeX we have to specify it in configurations setting part of 

the code. The following two lines can be used to set this parameter.  

from matplotlib import rcParams 

rcParams['text.usetex'] = True 

After setting these parameters it is important to use ‘amsmath’ package which provides the 

support for representations such as a matrix. The following line of code can be used to refer to 

‘amsmath’ package.  

rcParams['text.latex.preamble'] = r'\usepackage{amsmath}' 

 

Another important condition which should be satisfied while using these lines of code is that 

path of LaTeX installable should be set correctly to make these lines work. The following line 

will append already existing environment path variable with LaTeX path 

os.environ["PATH"] += os.pathsep + '/Library/TeX/texbin' 

Once, all these setting are done any text element can use math text. You should use raw 

strings (precede the quotes with an 'r'), and surround the math text with dollar signs ($), as in 

TeX. 
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IMPLEMENTATION 

 

Image to LaTeX is a complex problem to solve. This problem has multiple challenges. 

Those challenges we have already discussed in the previous sections. Because of these 

challenges, it was important to divide the problem into small chunks and conquer it 

individually.   

For our solution, we divided the problem solution into four deliverables. Each deliverable 

is built upon the previous deliverable. Following are the five deliverable which we worked on 

during the implementation phase. 

1. The first deliverable: Predicting the first character 

2. The second deliverable: Predicting the LaTeX for simple equations 

3. The third deliverable: Predicting the LaTeX for complex mathematical equations 

4. The fourth deliverable: Predicting the LaTeX for matrix operations [2 X 2] 

In the next few pages, we will discuss each of these deliverables in details. We will also 

discuss the challenges which we faced and approaches which helped us to tackle these 

challenges.  
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Predict the first character 

 

Prediction of the first character in a long mathematical equation seemed like the most 

basic step while starting with the implementation of a solution to an image to LaTeX problem. 

This deliverable can be considered as a foundation of the solution which we have proposed in 

this project.  

While implementing this deliverable, we started with images of equations consisting of 

five to ten characters. We did multiple versions of this simple deliverable. Initially, we generated 

equations starting with only four possible characters as the first characters. Those four characters 

were a summation symbol (∑), an integration symbol (∫ ), a square root symbol (√), and a 

fraction symbol. For the first three choices, it can be easily understood that the first symbol is as 

expected or as it appears in the image if it is assumed that reader is reading the image from left to 

right and top to bottom. In case of a fraction, the numerator appears as the first symbol when we 

are reading it, but in LaTeX code it is a different scenario. Let us take a look at why for fractions 

it is not so straightforward.  

Consider a fraction 
𝑎

𝑏
  . In this example the first symbol for a reader is a letter ‘a’, the 

second symbol is a horizontal bar and the third symbol is a letter ‘b’. When we write 

corresponding equation in LaTeX, its representation is as \frac{a}{b}. In the LaTeX code for 

same fraction, the first character is \frac. Therefore, even for a simplest example this is not as 

straightforward at it seems.   

The first decision we made while working on this deliverable was on the representation 

of the labels. It is a very common and a popular technique to use one hot vectors encoding to 
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represent labels in classification problems. While using a one hot vector encoding technique, we 

set all values in the vector to zero except for the label of the current class.  

The following table shows the image and a label encoding with a few examples.  

Table 1: Image and the Label Representation 

Image Label corresponding the first character 

 

[1,0,0,0] 

 

[0,1,0,0] 

 

[0,0,1,0] 

 
[0,0,0,1] 

 

Now that we have decided the label representation, we should also decide how to read the image 

and how to feed it to the machine learning model. As we have discussed earlier, we are using 

python as a programming language for implementing our solution, using numpy library with it 

for storing the data is a very standard approach. While reading data from a folder we can read the 

images in a grayscale mode. When we are reading data from a folder, we can read it like this.  

image_path = glob.glob(dataset_folder + '/*.png') 

im_array = np.array([np.reshape(np.array(Image.open(img).convert('L'), 'f'), (image_size)) for 

img in image_path]) 

y_from_file = pickle.load(open(lable_data_file, "rb")) 
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In this example, dataset_folder is the folder with all the data images, image_size is the 

size of a flattened image, lable_data_file is the pickle file with all the labels. 

For training a model on this data we are using a convolutional neural network. Network 

configuration is as follow.   

 

 

Figure 10: CNN architecture for prediction of the first character 

 

 While training this neural network we used Adam optimizer to update the weights in the 

neural network. There are multiple reasons for using Adam optimizer which we have covered in 

later parts of this report.  

 This implementation seemed perfectly fine in theory and we were expecting results to be 

good and model to converge a very small value of cost. In reality, this was not the case and to 
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our disappointment, model neither gives good results nor did it converge. There were few 

problems which we thought could be the reason for worry.  

We compared our model with Yan LeCun’s MNIST[8] model. Our model was trained on 

20000 images compared to 70000 images LeCun’s model was trained on. The size of an image 

in LeCun’s model was 28 pixels in width and 28 pixels in height whereas mathematical equation 

images we generated were of size 60 pixels in width and 50 pixels in height. LeCun’s MNIST 

data sample image has just one character in it whereas our data sample image had 5 to 10 

characters. LeCun’s model was trained on same neural network model transition as ours. From 

this data we concluded that we were not having enough data because of two primary reasons 

which are as follow:  

1. Our image size was almost 4 times bigger than LeCun’s MNIST image sizes.  

2. Number of images in MNIST training set were 3.5 times more than the number of 

images in our training set 

With this newfound reasoning, it seemed perfectly natural to have data set size of around 

200,000 images to get good results and for the model to converge. So, our next experiment for 

the prediction of the first character was with 200,000 images of width 60 pixels and 50 pixels in 

height. As described previously, we had our own data generation setup. So, it was easy to 

generate as many images as we want. If this was not the case, then we would have struggled hard 

to find such images when required.  

With the dataset of 200,000 images, we were extremely hopeful that model will converge 

and results would be as close as LeCun’s results on MNIST dataset if not better than those. Even 

with this dataset, results were disappointing and the model did not converge. This experiment’s 

disappointing results proved very good learning experience. This experiment’s failure pushed us 
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to debug every possible step in the implementation. Even after rigorous debugging nothing 

worthy of change was not found. We studied multiple different implementations of image 

classification to identify any possible bugs in the code. Most of those implementations supported 

our approach and coding methodology of the implementations. After reading multiple papers it 

was realized that bug was neither there in the network configuration nor there in the TensorFlow 

code implementation. To substantiate our understanding, we conducted one more experiment.  

In this experiment, we used the code we had written for mathematical equations’ first 

character prediction with MNIST dataset which is incorporated in TensorFlow library.  In this 

setting, model was converging within just 5000 images with an accuracy of more than 90%. This 

result was very important because that gave our model validation and us some validation that our 

implementation is quite accurate. This validation made us realize that model and network 

configuration is not the area of concern. So, it was natural to make sure we are reading data as it 

is being read by TensorFlow for MNIST images. There were two things which were of prime 

importance while reading data.  

The first thing was the way we are assigning the value of 0 and 1 to pixels from an image. 

When we researched how data was being read by TensorFlow, it was seen that TensorFlow reads 

white pixels as value zero and black pixels as value 1. On the contrary, we were reading white 

pixel as value 1 and black pixel as value 0. The reason for this mistake was that we were using 

an inbuilt method from python PIL package to read the image in grayscale mode. We corrected 

this mistake by using little modification in the way we were reading the image data into numpy 

arrays.  The following lines of code demonstrate how this modification in the code. 

y = pickle.load(open(data_folder + ".p", "rb")) 

images = [] 
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y_return = [] 

for i in range(len(y)): 

image_path = data_folder + "/" + str(i) + ".png" 

         current_image = np.reshape(np.asarray(Image.open(image_path).convert('1')), 

image_size) 

        current_image = current_image * -1.0 + 1.0 

        images.append(current_image) 

        y_return.append(y[i][character_number-1]) 

 

The second thing which we were doing while training was the way we were shuffling the 

data at the start of each epoch. Earlier we were shuffling the data manually with the help of a 

variable. So, there was a scope for overfitting because of that. We changed this approach by 

using an inbuilt method of another machine learning library sci-kit learn. Following lines of code 

demonstrate how shuffling can be done using sci-kit learn’s shuffle method.  

  from sklearn.utils import shuffle 

training_data, training_data_yi = shuffle(training_data, training_data_yi, 

random_state=0) 

After applying these two changes, we finally had our model to converge and accuracy of 

our model was more than 95%.  

Once we achieved excellent results for the prediction of the first character in our 

experiment we decided to add more characters to see how well does this convolutional neural 

network classifies this big set of characters. For the final implementation of this deliverable we 

used the following sets of the characters.  
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1. Letters: It consisted of all the 26 lowercase alphabets of English language from ‘a’ to 

‘z’.  

2. Numbers: It consisted of all the 10 digits from ‘0’ to ‘9’. 

3. Special symbols: It consisted fraction character (horizontal bar), summation symbol 

(∑), an integration symbol (∫ ), and a square root symbol (√).  

With this new data of 20000 images, we trained the model using the convolutional neural 

network the same configuration as shown in the Figure 10 and we classified images into correct 

classes with an accuracy of more than 98% accuracy.  
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Predicting the Latex for Simple Equations 

 

The first deliverable involving the prediction of the first character of a mathematical 

equation was a great milestone in the implementation of this project.  After the stupendous 

results prediction of the first character, we decided to see if we could use the same network to 

predict all the characters in mathematical equations. 

 While generating the data for this deliverable it was important to limit the number of 

mathematical operations we were going to support. We decided to limit our scope to four 

operators namely, addition, subtraction, multiplication and, exponentials.  

Network configuration for this case is as follow:  

 

Figure 11: CNN architecture for the prediction of LaTeX for simple mathematical equations 

 

As it can be seen from the figure 11, we have made this network deeper than the network we had 

earlier.  
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For this implementation, image size has got bigger because we were having images with 

seven characters. An important thing to understand in this scenario is that even though we were 

having 7 characters in the image, sometimes there were only 6 characters visible in the image. 

Why so? Consider an example: 2^3+5-a. In this example, there are 7 characters in the LaTeX 

representation but the image looks like this. 

 

Figure 12: Simple mathematical equation 

The ‘^’ symbol is not visible in the image. But, the convolutional neural network has to 

predict it. For this deliverable, we trained our model on 20000 images. In this case, we observed 

one pattern that whenever we were training it for characters which were deeper in the image it 

would take more time for the model to converge. We trained model for each character separately. 

For each character training, we made sure that model converged with the cost less than 0.5 and 

validation accuracy above 90%.  
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Predicting the LaTeX for Complex Mathematical Equations 

 

The first two deliverables were the test to decide on whether our approach of using 

convolutional neural network was a correct approach to predict LaTeX expression for an image 

of the mathematical equation. For this deliverable, we were supposed to generate images which 

were more complex than the images we had generated earlier. To make mathematical equations 

complex we increased the number of characters in the mathematical expression. For this 

deliverable, we used around 50 characters. With these 50 characters as the possible characters we 

created mathematical equations containing maximum 30 character and generated images 

corresponding to those.  

 

Figure 13: A complex mathematical equation 

As in this deliverable, we are using images which were having more than 50 characters, 

the number of filters in each layer has to be increased. So, we doubled the number of filters for 

each layer compared to the network configuration which we had for the previous deliverable. 

The following image shows the network configuration for this deliverable.  
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Figure 14: CNN architecture for the prediction of LaTeX for complex mathematical equation 

 

With this network configuration, we trained our CNN model on 30000 images for each 

character separately. We trained it for 10 epochs. By the end of the training, we had achieved the 

accuracy of more 90% for each character and cost was reduced to 0.5. During the training of this 

network we learned how to avoid oscillations and how to choose different learning rate 

depending on the position of the character for which we were training the model.  We have 

discussed more about it in the experiments sections.  
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Predicting the LaTeX for an Equation Containing Matrix Operations  

 

After the successful experiments with complex mathematical equations we decided to 

explore more complex mathematical equations, which last for more than one line. One obvious 

choice for such equations was matrix equations. Matrix equations pose new challenges compared 

to other types of equations because of the arrangement as we discussed in the introduction 

section.  

 For our implementation purpose, we considered simple matrix operations involving 

matrix addition, subtraction multiplication, and assignment of a 22 matrix.  The following 

image shows a visual representation of kind of mathematical equations for which we are training 

the model.  

 

Figure 15: Matrix operation 

This matrix equation has 30 characters when we write it in the LaTeX format. We used 

the same network configuration which we used in the previous deliverable. In this 

implementation, as we had done earlier we trained the network for each character separately. In 

this deliverable too, we trained the network on 30000 images. We trained it for 10 epochs. By the 

end of the training we had achieved an accuracy of more 90% for each character and the cost was 

reduced to 0.5. During the training of this network, we learned how to avoid oscillations and how 

to choose different learning rate depending on the position of the character for which we were 

training the model.  We have discussed more about it in the experiments sections.  
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EXPERIMENTS 

 

Applied machine learning is an iterative process[9]. It is not so straightforward that we 

can get the desired results proposed model. Even for the most experienced machine learning 

scientists, it is very difficult to tell what exact values of the parameters would be the perfect 

values for generating the optimum results. This process follows multiple iterations where each 

iteration consists of the following steps as shown in the Figure 16. One has to go around the 

cycle many times to find a good choice for the network. 

 

Figure 16: Iterative applied machine learning 

In machine learning there are some variables whose value is set before the training of the 

model is started. This type of variables called as hyperparameters.  On the contrary, parameters 

are the variables whose value is computed during the training of the machine learning model. For 

our model, we experimented with various hyperparameters and learned multiple important 

lessons from each of the experiments which we will summarize in the next few pages.  
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We will be specifically discussing the experiments we did with following hyperparameters. 

1. Mini batch size 

2. Size of feature map 

3. Number of feature maps 

4. Changing the value of learning rate 

  



 38 

Mini Batch Size 

 

There are two main reasons for deep learning to be successful in today’s time. The first 

reason is, of course, the availability of powerful hardware. The second reason is the availability 

of the large datasets. Training a machine learning model on this big dataset is a slow process. 

Therefore, finding a fast way to train the machine learning model is very important in 

minimizing the time required to perform experiments and finding the most efficient 

configuration of the mode.  

When we are using python as a programming language and numpy for vectorizing the 

input and the output, some part of the speed up process has been solved. There is still a lot of 

scope for speeding up. If we are using the entire training set consisting of thousands or hundreds 

of thousands of data points, then we have to process all the data points before deciding to move 

in the direction of the minimum value of the cost function using optimization algorithm. 

Similarly, for the next iteration, we have to process entire training set before making the decision 

about the next step in the direction of finding the minima.  

There can be a better way to deal with this situation of processing the entire training 

dataset. Consider another approach where we can make the decision of movement in the 

direction of minimum cost even before processing the entire dataset.  This can be achieved by 

splitting the training set into multiple smaller training sets. These smaller training sets are called 

as mini-batches. Consider an example where we have 50000 data points in the training set. We 

can divide this training set into 500 mini-batches where each mini-batch would have 100 data 

points. In this case, we randomly decided the mini-batch size to be of 100 data points. There can 

be different ways to decide the size of the mini-batch.  
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Deciding the size of the mini-batch is not so straightforward decision. There are a lot of 

different options available to select the size of the mini-batch. These options vary from having a 

mini-batch of single data point which is also called stochastic processing and the other extreme is 

using all the data points in the training data which is called as batch processing. Both the 

approaches have their advantages and disadvantages. Let us look at those before deciding the 

most optimum size of the mini-batch.  

Table 2:  Different Batch Size Advantages and Disadvantages 

 Stochastic Processing Batch processing Mini-Batch processing 

What it is? Mini-batch size is 

one. It contains only 

one data point from 

the training set at a 

time. The number of 

mini-batches is equal 

to the number of 

examples in the 

training set 

Mini-batch size 

equal to the data 

size of the training 

set. It contains all 

the data point from 

the training 

dataset. The 

Number of mini-

batches is equal to 

one.  

Mini-batch size is 

chosen based on 

experiments. Number of 

mini-batches = Training 

data size / min-batch 

size 

Advantages We can start seeing 

progress in the 

direction of the 

minimum cost from 

We can move in 

direction of 

minimum cost 

with a very few 

We utilize the speedup 

achieved through 

vectorization. We can 

start seeing the progress 



 40 

the first example 

itself. 

oscillations. It is 

expected for the 

cost to go down 

with every single 

iteration. 

in the movement 

towards the minimum 

cost value from the first 

batch itself 

Disadvantages We lose the speedup 

which we had 

achieved using 

vectorization.  

It takes more time 

for training 

because we are 

taking one step in 

the direction of 

minima after 

processing all the 

examples.  

There would be 

oscillations while 

moving towards the 

direction of minimum 

cost value.  

 

As seen from the above table, we can see that dividing the data into mini-batches is an 

efficient way to train machine learning model. Typical mini-batch sizes used in the real-world 

machine learning training experiments are of sizes 64, 128, 256, 512 or 1024 data samples. We 

can see that all of these have one thing in common; they are powers of 2. As the computer 

memory is laid out and accessed in the memory blocks of the power of two, sometimes having 

the batch size power of 2 gives provides faster training [10].   
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Feature Map 

 

In CNN, we have a sliding window which we slide over the image to identify different 

features of the image. This sliding window is called as feature map or kernel or feature detector. 

Usually, the feature map is represented using a multidimensional matrix. In case of a two-

dimensional image it is a two-dimensional matrix of certain size. Depending on different values 

of the elements in this two-dimensional matrix we get different output of convolution when the 

image is convoluted with the feature map.  The following images shows how the application of 

different filters will create different results.   

 

Figure 17: Filter application on an image 
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As shown in the example, we get a different convoluted image for different filters. These 

filter values are initialized to certain values before training. While training the machine learning 

model, these values modified so that they will identify the desired features.  

 Choice of feature map is an important decision because it is directly connected with the 

amount of time required to train the network and the kind of features to be recognized. As 

convolution operation is a dot product of feature map and a receptive field of an image, bigger 

the size of feature map more time it would take for training the model because there would those 

many numbers of calculations. Similarly, if we are trying to get the smaller features in an image 

having a smaller size of feature map helps.  

 As neural network training is an expensive operation, most of the times, it is 

recommended to take advantage of earlier research and apply transfer learning while deciding 

the hyperparameters of the neural network. Our problem is similar to the classification of digits 

with MNIST dataset, therefore it seemed obvious to use the kernel size as LeCun’s CNN had 

used. We experimented with 3 sizes of feature map before settling onto the feature map size of 

5X5 as used by LeCun in training MNIST data.  

After deciding the size of feature map, it was important to decide the number of feature 

maps at each layer of CNN. As choosing the size of feature map based LeCun’s CNN training of 

MNIST data proved to be useful, it seemed like a good option to use a comparative number of 

features. For example, LeNet was trying to classify just the digits, comparatively, our network is 

trying to classify more than 50 characters.  

The following are the characters which we tried to classify.  
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'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', 

'1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '^', '\\int', '\\sum', '(', ')', '{', '}', '_', ' ', '=', '\\infty', 

'\\begin{bmatrix}', '\\end{bmatrix}', '\\\\', '&' 

As we are having almost 50 characters to be classified the network layers we used were 

having more number of filters.  
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Learning Rate 

 

            As discussed earlier, we have used Adam optimizer [11] to update network weights 

because it is most popular for computer vision problems. While using any optimizer with 

TensorFlow, we have to provide a hyper parameter learning rate.  This hyperparameter, decides 

the how network weights would be updated. This hyperparameter decides the magnitude of the 

steps taken towards the lowest cost. In theory, higher the value of learning rate faster we should 

reach the minimum cost. In reality, this is not the case because if we use a very high value of 

learning rate it might happen that our step towards lowest cost is so big that we would actually 

miss the minimum cost and move away from it. With the same learning rate, it might happen that 

we would miss it again and move away from it. This kind of behavior is also called as oscillating 

around the minimum cost. To avoid such behavior, it is important to decide on such value of 

learning rate that we each the local minimum cost without oscillating around it for too long.  

 In our implementation, while training the network for the prediction of the first 3 to 4 

characters we kept the learning rate to be 0.01 and we achieved phenomenal results. We tried the 

same learning rate for the prediction of rest of the characters too expecting similar results. To our 

surprise, the model did not converge for the prediction of characters which were little away from 

the first few characters. The model kept oscillating for different value of cost for long period of 

time. This prompted us to choose smaller value of learning rate for the prediction of characters 

which were way from the first few characters. We used a various different value of learning rate 

depending on the position of the character in the equation.  
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Results 

 

All the results are for data involving complex mathematical equations shown in Figure 13. 

Mini batch size 

For our convolutional neural network training, we experimented with a batch size of 64, 128, 512 

and 1024 data samples. We got the most optimum results for the batch size of 128 data samples. 

Feature maps size 

The following table shows our observations about use of three different feature map sizes with 

which we experimented.  

Table 3:  Feature Map Size and Observation 

Feature map size Observation 

5X5 It took around 10 seconds to train one batch of 128 images. Model 

converged and performed well on the test and validation data.  

7X7 It took around 15 seconds to train on one batch of 128 images. Model 

worked fairly well on test and validation data but the efficiency was not 

as good as it was when we were using 5X5 filter size.  

10X10 It took around 25 second to trains on one batch of 128 images. Even 

after training for more than 10 hours the model did not perform well on 

test data.  
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Figure 18: Feature map size vs time taken(sec) 

 

Learning rate 

The following table shows the various values of learning rate which were used for prediction of 

the character depending on the character position in the equation.  

Table 4: Character Position and the learning rate 

Character Numbers Learning rate 

1-4 0.01 

5-10 0.0015 

10-17 0.001 

17-30 0.0001 
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Training cost: It takes more number of iteration to converge the model for twelfth character 

than the second character.  

 

Figure 19: Training cost per iteration 

Validation accuracy: The validation accuracy for model is better for the characters which are 

closer to the start than the characters which are deeper in the equation.  

 

Figure 20: Validation accuracy over the epochs 
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CONCLUSION 

 

In this project, we trained convolutional neural network to predict the LaTeX 

corresponding to an image of mathematical equations. We achieved an accuracy of more than 

90% for the images containing up to 35 characters involving numbers, letters, and a few 

mathematical symbols. Our experiments involving the prediction of LaTeX corresponding to 

matrix operations of size 22 were also successful where we achieved an accuracy of more than 

85%. In this project, we applied transfer learning from LeCun’s CNN solution on MNIST 

dataset. This project was a very good exercise to see how far CNNs can go for the classification 

problems. While training the equations involving more than 35 characters we realized the 

limitations of using CNN for the classification of complex objects when there is a hard 

relationship between different objects in an image. Using an encoder–decoder model involving 

CNN for encoding and recurrent neural network for decoding would be a better approach for the 

prediction of LaTeX corresponding to an image. The encoder – decoder approach can be a future 

scope of this project.  
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