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The Big Picture

Chatbot



Introduction

Primary Goal:

• Design an artificially intelligent bot to play a classic video game, 
Archon: the light and dark. 

• The agent learns on its own to automatically determine 
successful strategies that lead to the greatest long-term 
rewards.

Project Goals



Related Work

• Computer backgammon program 

• Developed in 1992 by Gerald 
Tesauro at IBM

• Achieved a level of play just slightly 
below that of the top human 
backgammon players of the time

TD Gammon



Related Work

Playing Atari with Deep Reinforcement Learning

• Remarkable results by DeepMind

• Demonstrated how a computer learned to play Atari 2600 video 
games by observing just the screen pixels and receiving a reward 
when the game score increased

• Gave state-of-the-art results in six of the seven games it was tested 
on

• No adjustment of the architecture or hyperparameters.







Archon

• Classic video game, developed in 1983 by Free Fall 
Associates

• Similar to chess, apart from the fight mode

• Generally in combat, a stronger player defeats a weaker 
player in either defending or capturing a square

The Light and the Dark
GoblinKnight



Libraries used

• OpenCV-Python
• aimed at real-time computer vision

• Template matching
• technique for finding areas of an image that 

match (are similar) to a template image (patch).
• Source image: image in which we expect to 

find a match to the template image
• Template image: patch image that will be 

compared to the template image

For image processing



Libraries used

• PyautoGUI

• Keyboard

• PIL (Python Imaging Library)

For automating the bot 



Introduction

• General purpose framework for decision-making

• Inspired by behaviorist psychology

• Between supervised and unsupervised learning

• Agent learns to interact with an environment through occasional 
feedback

• The reward, to achieve a long-term goal.

• Each action by the agent influences it’s future state

Reinforcement Learning





Markov Decision Process
• Framework for modeling decision 

making situations

• Outcomes are partly random and 
partly under the control of an agent

• Set of states and actions, together 
with rules for transitioning from one 
state to another, make up a Markov 
decision process

• RL problem represented as  a 
Markov Decision Process



Credit Assignment 
Problem

• Agent performs an action and 
receives a positive reward

• No relation with actions performed 
just before getting that reward

• Q-learning propagates rewards back 
in time, until it reaches the crucial 
decision point which was the actual 
cause for the obtained reward. 

State (s)

State (s’)

a

R

Was action “a” the only 
responsible action for getting 

the reward R?

The problem?



Discounted Future 
Reward

• To perform well in the long-term, we need to take into account 
not only the immediate rewards, but also the future rewards

• Our environment is stochastic

• The more we dive into the future, the more it may diverge

• Discounted future reward:



Exploration-Exploitation

• An action plan to obtain 
certain rewards has been 
figured out.

• Is it feasible to keep following 
the same action plan or 
experiment with something 
new that could result in a 
larger reward?

The problem?



Exploration-Exploitation

• Agent takes the estimated optimal 
action (with the highest Q-value) most 
of the time and a random action with 
probability ε

• This ensures that the bot explores the 
search space and sees how actions not 
currently considered optimal would 
have fared instead

ε-greedy exploration value

> ε < ε

Random 
action

Action 
with 

highest Q 
value



Components of RL
• Policy

• Rule how we choose an action in each state 
• Maps from state to action (a = π(s))

• Value Function
• Q(st, at) = max Rt+1

• Best possible score at the end of the game after performing action 
a in state s

• Prediction of future reward
• Evaluate state and select between actions

• Model
• Agent’s representation of the environment



Q learning
• Model-free reinforcement learning technique

• Consists of an agent, states S and a set of actions per state A

• Agent moves from s -> s’ by performing 

• Executing an action in a specific state provides the agent with a 
reward

• Goal of the agent is to maximize its total reward (by learning the 
optimal action for each state)

• Optimal action has highest-long term reward R

• R: weighted sum of the expected values of all future steps 
staring from the current state



Q-learning Algorithm

Initialize Q

Perform 
Action

Choose an action from Q

Measure 
Reward

Update Q



Without any form of training



Approach 1



States Up
A1

Down
A2

Left
A3

Right
A4 

Fire
A5

Stay
A6

(Pl1x, Pl1y), 
(Pl2x, Pl2y)

0.92 0.65 0.77 0.83 0.69 0.81

S2 0.83 0.59 0.79 0.93 0.61 0.51

S3 0.62 0.85 0.97 0.73 0.68 0.55

This action has the highest reward, hence 
action A1 will be chosen



Initialize length of memory D

Initialize dictionary Q_sa with random weights for each action

For each episode of the game

While not goal

Select an action based on epsilon-greedy

Execute action in emulator, take a 
screenshot, calculate reward

Update Sequence and D

Sample random minibatch transitions from D

Compute: ( ݐ = (ݐ ,ݐ + ( (`+ݐ ,1+ݐ

Update reward in dictionary Q_sa

( ݐ = (ݐ ,ݐ (if terminal)  

Initialize sequence s

End

Sequence = [Statet, Actiont, 
Statet+1, Actiont+1, Statet+2]

Experience 
Replay





Approach 2



Deep Neural Network
• Uses a cascade of many 

layers of nonlinear processing 
units for feature extraction 
and transformation

• Input of the algorithm is raw 
pixels

• Works using minimal domain 
knowledge



Convolutional Neural 
Network
• Act similarly to human receptive fields.

• Make sense of the game’s screen output in a way that is similar to how 
humans are able to

• Several layers of convolutions with nonlinear activation 
functions applied to the results



CNN

• Sliding window function applied to a matrix

• Instead of considering each pixel independently, convolutional layers 
allow us to consider regions of an image

• Build edges from pixels, shapes from edges, and more complex 
objects from shapes.. 



OUR DEEP LEARNING MODEL





Network Architecture

4 Image of size 
80x80 stacked 

together

CNN Model 
(Keras)

Conv2D layer
16 filters

Of size 8x8 with 
stride 4

Conv2D layer
32 filters

Of size 4x4 with 
stride 2

Dense Layer
256 neurons

Dense Layer
6 neurons

Input

Output



Initialize length of memory D

Initialize Q with random weights for each action

For each episode of the game

While not goal

Select an action based on epsilon-greedy

Execute action in emulator, take a 
screenshot, calculate reward

Update Sequence and D

Sample random minibatch transitions from D

Compute: ( ݐ = (ݐ ,ݐ + ( (`+ݐ ,1+ݐ

Train neural network model based on loss

( ݐ = (ݐ ,ݐ (if terminal)  

Initialize sequence s

End

Sequence = [Image1, 
Image2, Image3, Image4]

Model.predict(s)

Experience 
Replay





Result
• Experiments were performed on 50 iterations of the game, for 

two different policies. 

• First approach:
• Agent starts playing better gradually, but its improvement is 

very slow. 
• Survives the fight for approximately 5 more seconds.

• Second approach:
• Agent learns comparatively faster with neural network as 

compared to when trained without neural networks. 
• Survives the game for about 8 more seconds on the 50th 

iteration of the game.







Conclusion
• This research demonstrated that reinforcement learning, when 

implemented with neural networks, perform a better and faster 
training of the bot as compared to when the Q function is used 
as a table.

• We trained an artificially intelligent bot to play Archon using two 
different policies



System Configuration



Future Scope
• Train using a GPU and thus compare 

performance

• Train the bot to fight players other than the 
Knight (light side) and Golem (dark side)

• Train the bot to play the game from the 
dark side 

• Apply the same technique to the strategy 
mode of the game and finish the game
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Thank you.



Commodore 64
• 8-bit home computer 

introduced in January 1982 
by Commodore International

• Emulator from 
http://www.ccs64.com

• Low resolution, less pixels, 
easier for image processing 
techniques







Appendix

Q-learning Pseudocode



Pseudocode



Pseudocode






