Al on Classic Video Games Using Reinforcement Learning

=3
Shivika Sodhi

Project Advisor:
Dr. Chris Pollett

Committee Members:

Dr Jenny Lam
Dr. Robert Chun

S S SAN JOSE STATE
U UNIVERSITY

Outline

* [ntroduction
 Archon
« Related Work
* Reinforcement Learning
* Q-learning Algorithm
* Deep Learning
« (Convolutional Neural Network Algorithm
 Approach 1
 Approach 2
 Conclusion, Result, Future Work, References

S S SAN JOSE STATE
U UNIVERSITY

GOOGLE LENS TURNS YOUR
CAMERA INTO A SEARCH BOX

The Big Picture

L Bixby

9 $24,000 0 W $77,147)) $21,600)"

principle

Chatbot

S S SAN JOSE STATE
UNIVERSITY

Introduction

Project Goals

Primary Goal:

Design an artificially intelligent bot to play a classic video game,
Archon: the light and dark.

The agent learns on its own to automatically determine
successful strategies that lead to the greatest long-term
rewards.

S S SAN JOSE STATE
U UNIVERSITY

Related Work

TD Gammon

« Computer backgammon program

« Developed in 1992 by Gerald
Tesauro at IBM

| Is your turn, Score: @

* Achieved a level of play just slightly Iiﬁgﬂf&'mmm e 3
below that of the top human
backgammon players of the time

S S SAN JOSE STATE
U UNIVERSITY

Related Work

Playing Atari with Deep Reinforcement Learning

* Remarkable results by DeepMind

 Demonstrated how a computer learned to play Atari 2600 video
games by observing just the screen pixels and receiving a reward
when the game score increased

« (Gave state-of-the-art results in six of the seven games it was tested
on

* No adjustment of the architecture or hyperparameters.

S S SAN JOSE STATE
U UNIVERSITY

Archon

[Knight J [Goblin

The Light and the Dark

« Classic video game, developed in 1983 by Free Fall
Associates

« Similar to chess, apart from the fight mode

* Generally in combat, a stronger player defeats a weaker
player in either defending or capturing a square

S S SAN JOSE STATE
U UNIVERSITY

Libraries used

For image processing

¢ OpenCV-Python
e aimed at real-time computer vision

* Template matching

« technique for finding areas of an image that
match (are similar) to a template image (patch).

« Source image: image in which we expect to
find a match to the template image

 Template image: patch image that will be
compared to the template image

S S SAN JOSE STATE
U UNIVERSITY

Libraries used

For automating the bot

P

PyautoGUI

Keyboard

PIL (Python Imaging Library) SJSU SAN JOSE STATE

UNIVERSITY

internal state “Nreward

X
Introduction @1 BB

learning rate o
inverse temperature (3
discount rate y

Reinforcement Learning

observation

« General purpose framework for decision-making
* Inspired by behaviorist psychology
« Between supervised and unsupervised learning

* Agent learns to interact with an environment through occasional
feedback

 The reward, to achieve a long-term goal.
« Each action by the agent influences it’s future state

S S SAN JOSE STATE
U UNIVERSITY

aining Works

1. Before Conditioning 2. Before Conditioning

I o\
: 1|‘|
- He.spg.ng.e : k&" 1

—
Response

Sali\rtiun o No Salivation
Stimulus Response

3. During Conditioning 4. After Conditioning

: ﬁl‘ i :“,l\]\l J
L) — . ' — 2 .
\ | = Response S k.'\"‘ Bell hesponse o
Bell Food Salivation Salivation
Unconditioned Conditioned Conditioned
Response Stimulus Response

©20006 HowStulMWorks

Markov Decision Process

 Framework for modeling decision
making situations

e Qutcomes are partly random and
partly under the control of an agent

« Set of states and actions, together
with rules for transitioning from one
state to another, make up a Markov
decision process

 RL problem represented as a
Markov Decision Process

SJSU

SAN JOSE STATE
UNIVERSITY

Credit Assignment
Problem [st 8 J

The problem?

« Agent performs an action and
receives a positive reward

* No relation with actions performed { State (s’) J @
just before getting that reward

* Q-learning propagates rewards back
in time, until it reaches the crucial Was action “a” the only
decision point which was the actual responsible action for getting
cause for the obtained reward. the reward R?

S S SAN JOSE STATE
UNIVERSITY

Discounted Future
Reward

« To perform well in the long-term, we need to take into account
not only the immediate rewards, but also the future rewards

« Our environment is stochastic
 The more we dive into the future, the more it may diverge
« Discounted future reward:

Ry =1 + YTpgr + VT2, . +Y" 1y

S S SAN JOSE STATE
U UNIVERSITY

Exploration-Exploitation

The problem?

« An action plan to obtain
certain rewards has been
figured out.

Is it feasible to keep following Exp|0re
the same action plan or

experiment with something
new that could result in a
larger reward?

Exploit

S S SAN JOSE STATE
U UNIVERSITY

Exploration-Exploitation

e-greedy exploration

« Agent takes the estimated optimal

action (with the highest Q-value) most

of the time and a random action with
probabillity € > € <€

« This ensures that the bot explores the Action
search space and sees how actions not Random with
currently considered optimal would action highest Q
have fared instead

value

S S SAN JOSE STATE
U UNIVERSITY

Components of RL

* Policy
* Rule how we choose an action in each state n(s) = argmax, Q(s,a)
« Maps from state to action (a = 1(s))

 Value Function
* Qs @) =max R4

« Best possible score at the end of the game after performing action
ain state s

 Prediction of future reward
 FEvaluate state and select between actions

* Model
« Agent’s representation of the environment

S S SAN JOSE STATE
U UNIVERSITY

Q learning

« Model-free reinforcement learning technique
« Consists of an agent, states S and a set of actions per state A
« Agent moves from s -> s’ by performing a € A

« Executing an action in a specific state provides the agent with a
reward

« Goal of the agent is to maximize its total reward (by learning the
optimal action for each state)

« Optimal action has highest-long term reward R

* R: weighted sum of the expected values of all future steps
staring from the current state

S S SAN JOSE STATE
U UNIVERSITY

Q-learning Algorithm

v

Initialize Q

Choose an action from Q

Perform
Action

Measure
Reward

|

Without any form of training

Approach1

S S SAN JOSE STATE
U UNIVERSITY

Up Left Right Stay
Al A3 A4 Ab

(Pl1x, PI1y), 0.92 0.65 077 0.83 0.69 0.81

(P12x, Pl2y)

S2 0.83 59 0.79 093 0.61 0.51

S3 0.62 0.9/ 0.73 0.68 0.55

This action has the highest reward, hence

action A1 will be chosen

[Initialize length of memory D]

(Initialize dictionary Q_sa with random weights for each action)

[For each episode of the game]

> [Initialize sequence s
Sequence = [State,, Action,,

[While not goal] State,,,, Action,,,, State,,,]

— [Select an action based on epsilon-greedy]

Execute action in emulator, take a
screenshot, calculate reward

[Update Sequence and D]

Sample random minibatch transitions from D

U J

e p

Q(s,, a,) =7, (if terminal) | Experience

Replay

Compute:Q(s,, a,) =7, + ymaxQ(s,,,, a,,")

[Update reward in dictionary Q_sa]

[End]

PlayGame o

(5298 PythonTh FayGame by
2 L MayGamepy & Matching.oy Fomition.py o

QesmngCHN_=way ® | | GleamngCNoy =

time.sleep(2.5)

int ("Program begir

start time = time.ti

print ("Logging time:",

memory. pickle

ARCHOH

print {"Training without neural networks, here @ function i:

time.sleep(2.4

glearning_simple()

"Fight over
= time.time()
ime = end time -
"fotal time:",
"PROGRAM ENDED!!")

rt_time

tal time)

if name ==" main ":

main()

» 2 Favortes

5 TODD % Python Conacle Terssral Eventiog
[Plun selecied corfiguradon ki CRIF: UTF8:

p— 12:08 PM
g Pl € ‘ e

Approach 2

S S SAN JOSE STATE
U UNIVERSITY

Deep Neural Network

« Uses a cascade of many
layers of nonlinear processing
units for feature extraction
and transformation

* Input of the algorithm is raw
pixels

* Works using minimal domain
knowledge

Convolutional Neural
Network

* Act similarly to human receptive fields.

 Make sense of the game’s screen output in a way that is similar to how
humans are able to

« Several layers of convolutions with nonlinear activation
functions applied to the results

Xo

impulses carried
toward cell bady

branches

dendn’tesﬁ 5}/ of axon
,_, _# *-’-‘ & axon
nuc‘.leus-——_._. - a_xgr;__ = terminals
ﬁ?ﬂ ‘;\\ impulses carried
away from cell bady
cell body

lilustration of a biological neuron (left) and its mathematical model (right)

S S SAN JOSE STATE
U UNIVERSITY

CNN

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output Predictions

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

ﬂ-‘-

« Sliding window function applied to a matrix

» Instead of considering each pixel independently, convolutional layers
allow us to consider regions of an image

« Build edges from pixels, shapes from edges, and more complex

objects from shapes..
S SU SAN JOSE STATE
UNIVERSITY

OUR DEEP LEARNING MODEL

Input Image

12U |eJnau |jeuonn|oAucd

7/

HOOOG

|
®

Possible Actions

Network architecture

Convolution Fully connected
A
G
It L yer 15t hiddon Jeed hacideen (2568 fully connected)
Axh dnd
[20220 Ot (v Bions |
434
-F ¥ :
dxd
—
4 fromes 16 hiters

S S SAN JOSE STATE
U UNIVERSITY

Network Architecture

4 Image of size
80x80 stacked
together

Dense Layer
6 neurons

Output

Conv2D layer
CNN Model 16 filters

(Keras) Of size 8x8 with
stride 4

Conv2D layer
Dense Layer 32 filters

256 neurons Of size 4x4 with
stride 2

S S SAN JOSE STATE
U UNIVERSITY

[Initialize length of memory D]

C Initialize Q with random weights for each action)

[For each episode of the game]

»

> [Initialize sequence s J\
Sequence = [Image,,
[While not goal] Image,, Image,, Image,]

— [Select an action based on epsilon-greedy

ion i Model.predict
[Execute action in emulator, take a J

screenshot, calculate reward

[Update Sequence and D]

N Sample random minibatch transitions from D

U J

e p

Q(s,, a,) =7, (if terminal) | Experience

Replay

| Compute:Q(s,, a,) =7, + ymaxQ(s,,,, a,,")

[Train neural network model based on loss]

[End]

-Help

ARCHON

(]
4

v

B odlur

e presio

ERINE Py 1

EhE Pyt 15

e,

T E———

LR

5

]

MamTanghi e

Lol

i

e i
1:36 A

WITRWT

=)

Result

« Experiments were performed on 50 iterations of the game, for
two different policies.

* First approach:

« Agent starts playing better gradually, but its improvement is
very slow.

« Survives the fight for approximately 5 more seconds.

« Second approach:

« Agent learns comparatively faster with neural network as
compared to when trained without neural networks.

« Survives the game for about 8 more seconds on the 50th
iteration of the game.

S S SAN JOSE STATE
U UNIVERSITY

=
=]

&

Length of the fight mode (Seconds)
Pad
=

=]

&

&

5

[
[

o

Performance of the agent (without Neural Nets)

. . _ _ 11 i1 _
-‘.‘-..----l.i-. '.!-.i.i.-.-_.-‘. 'i---...l-‘.lll
Mumber of fight modes

S S SAN JOSE STATE
U UNIVERSITY

Performance of the agent (with Neural Nets)

25
™
= .
=]
izﬂ = -.
3

15
E *
= oF &7 .i"
= 10 i . e |
g s ¥ Paage * a - i
-

'-- L] ™ @
E 3 -li' o
=4
= 0
0 10 20 30 40 50 &0
Number of fight modes

S S SAN JOSE STATE
U UNIVERSITY

Conclusion

» This research demonstrated that reinforcement learning, when
implemented with neural networks, perform a better and faster

training of the bot as compared to when the Q function is used
as a table.

« We trained an artificially intelligent bot to play Archon using two
different policies

S S SAN JOSE STATE
U UNIVERSITY

System Contiguration

Windows edition

Windows 10 Home

© 2016 Microsoft Corporation. == Wi n d OWS 1 O

All rights reserved,

System
Processor: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz
2.40 GHz
Installed memory (RAM): 16.0 GB
System type: 64-bit Operating System, x64-based processor Lenovo-

S S SAN JOSE STATE
U UNIVERSITY

Future Scope

« Train using a GPU and thus compare
performance

« Train the bot to fight players other than the
Knight (light side) and Golem (dark side)

e Train the bot to play the game from the
dark side

* Apply the same technique to the strategy
mode of the game and finish the game

References

 https://ip.cadence.com/uploads/901/cnn wp-pdf
o http://www.cs.umd.edu/~djacobs/CMSC733/CNN.pdf

 https://www.slideshare.net/roelofp/python-for-image-
understanding-deep-learning-with-convolutional-neural-nets

 https://en.wikipedia.org/wiki/Q-learning

« https://www.slideshare.net/nikolaypavlov/deep-qglearning
 http://cs231n.stanford.edu/reports/2016/pdfs/121 Report.pdf
o http://www.krigolsonteaching.com/reinforcement-learning.html

S S SAN JOSE STATE
U UNIVERSITY

Thank you.

S S SAN JOSE STATE
U UNIVERSITY

Commodore 64

* 8-bit home computer
introduced in January 1982
by Commodore International

e Emulator from
http://www.ccsb4.com

* Low resolution, less pixels,
easier for image processing
techniques

S S SAN JOSE STATE
U UNIVERSITY

o
T, T,
S

SAN JOSE STATE
UNIVERSITY

=-3
=
—
|
=
=T
—
—
_—
=

L TRV
A VNV

SJSU

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1)

Destination pixel

#,,..--'
_,,..a-'
_,...-'
_,,,..-—'
2
- ==
' 0
=
Convolution filter

(Sobel Gx)

T

=
o
@
o
>
Q

)

AN

input image feature maps feature maps feature maps feature maps

(256x256) (256x256) (128x128) (128x128) (64x64) output
: 1 e (Y category
: | e 0
In Iy
....._ E[: -
convolution subsampling convolution subsampling fully
I layer | layer | layer I layer | connected

S S SAN JOSE STATE
UNIVERSITY

Appendix

Q-learning Pseudocode

T i 1= S Y 1 Il -

Initialize (J{s. a) arbitrarily

Repeat (for each episode):
Initialize s

Repeat (for each step of episode):
Choose a from s using policy derived from @) (e.g., s-greedy)

- T I . T %,

Take action a, observe r, &
r — 1

Qls,a) — Qs,a) +a[r +ymaxy Q(s',a') — Q(s,)]

S S SAN JOSE STATE
U UNIVERSITY

Pseudocode

Algorithm 1 () function as a table

1: procedure (QQLEARN

2 Initialize replay memory D to capacity N.

3 Initialize (with random weights for each action
4 for each episode of game do

seq < [sy,a;, 8p. a4, 8]

[|

i: while not goal do

T: Based on the value of epsilon

8: either select a random action

9: or select action with maximum weight
10: Execute action in emulator

1§ 5 Take a screenshot

12: Calculate the reward

13: Calculate the state

14: Update seq 4— [S;+1. @442, Sp4+2. A1y, Sp+a]
15: D + [s¢, a7, Si41)

16: Sample random minibatch transitions from D
T Compute:()(s;.a;) = 1 + ymarQ(siy1, a1
15: Byl 5

10: End while S S SAN JOSE STATE
20: End for UNIVERSITY

Pseudocode

Algorithm 2 Deep Q) learning algorithmn

1: procedure (QLEARN

2 Initialize replay memory D to capacity N.

3 Initialize] with random weights for each action
4: for each episode of game do
-
6
T

§ + image
seq < [sy, 5, 515 51
while not goal do

8: Based on the value of epsilon

9: either select a random action

10: or select action with maximum weight

11; Execute action in emulator

12: Take a screenshot

13: Calculate the reward

14: Calculate the state

15: Update seq < [s;.S, St 5¢, St11)

16: D ¢+ [Si.-.ahrhsi-i—ll

17 Sample random minibatch transitions from D
18; Predict (] values from the neural network model
19: Compute: (s, a;) = 1y + ymarQ(si+q, ap41)

20: Spy1 & S5

21: Calculate loss to update weights

29 End while S S SAN JOSE STATE
93 End for [J UNIVERSITY

Neural Error
Network E >

+ | Desired

Training of neural networks

S S SAN JOSE STATE
U UNIVERSITY

Q-value Q-value 1 Q-value 2 Q-value n

Network Network
State Action State

Figure 3: Left: Naive formulation of deep Q-network. Right: More optimized architecture of deep Q-network, used in

DeepMind paper.

S S SAN JOSE STATE
U UNIVERSITY

