
AI on Classic Video Games Using Reinforcement Learning

By

Shivika Sodhi

Project Advisor:

Dr. Chris Pollett

Committee Members:

Dr Jenny Lam

Dr. Robert Chun

Outline
• Introduction

• Archon

• Related Work

• Reinforcement Learning
• Q-learning Algorithm

• Deep Learning
• Convolutional Neural Network Algorithm

• Approach 1

• Approach 2

• Conclusion, Result, Future Work, References

The Big Picture

Chatbot

Introduction

Primary Goal:

• Design an artificially intelligent bot to play a classic video game,
Archon: the light and dark.

• The agent learns on its own to automatically determine
successful strategies that lead to the greatest long-term
rewards.

Project Goals

Related Work

• Computer backgammon program

• Developed in 1992 by Gerald
Tesauro at IBM

• Achieved a level of play just slightly
below that of the top human
backgammon players of the time

TD Gammon

Related Work

Playing Atari with Deep Reinforcement Learning

• Remarkable results by DeepMind

• Demonstrated how a computer learned to play Atari 2600 video
games by observing just the screen pixels and receiving a reward
when the game score increased

• Gave state-of-the-art results in six of the seven games it was tested
on

• No adjustment of the architecture or hyperparameters.

Archon

• Classic video game, developed in 1983 by Free Fall
Associates

• Similar to chess, apart from the fight mode

• Generally in combat, a stronger player defeats a weaker
player in either defending or capturing a square

The Light and the Dark
GoblinKnight

Libraries used

• OpenCV-Python
• aimed at real-time computer vision

• Template matching
• technique for finding areas of an image that

match (are similar) to a template image (patch).
• Source image: image in which we expect to

find a match to the template image
• Template image: patch image that will be

compared to the template image

For image processing

Libraries used

• PyautoGUI

• Keyboard

• PIL (Python Imaging Library)

For automating the bot

Introduction

• General purpose framework for decision-making

• Inspired by behaviorist psychology

• Between supervised and unsupervised learning

• Agent learns to interact with an environment through occasional
feedback

• The reward, to achieve a long-term goal.

• Each action by the agent influences it’s future state

Reinforcement Learning

Markov Decision Process
• Framework for modeling decision

making situations

• Outcomes are partly random and
partly under the control of an agent

• Set of states and actions, together
with rules for transitioning from one
state to another, make up a Markov
decision process

• RL problem represented as a
Markov Decision Process

Credit Assignment
Problem

• Agent performs an action and
receives a positive reward

• No relation with actions performed
just before getting that reward

• Q-learning propagates rewards back
in time, until it reaches the crucial
decision point which was the actual
cause for the obtained reward.

State (s)

State (s’)

a

R

Was action “a” the only
responsible action for getting

the reward R?

The problem?

Discounted Future
Reward

• To perform well in the long-term, we need to take into account
not only the immediate rewards, but also the future rewards

• Our environment is stochastic

• The more we dive into the future, the more it may diverge

• Discounted future reward:

Exploration-Exploitation

• An action plan to obtain
certain rewards has been
figured out.

• Is it feasible to keep following
the same action plan or
experiment with something
new that could result in a
larger reward?

The problem?

Exploration-Exploitation

• Agent takes the estimated optimal
action (with the highest Q-value) most
of the time and a random action with
probability ε

• This ensures that the bot explores the
search space and sees how actions not
currently considered optimal would
have fared instead

ε-greedy exploration value

> ε < ε

Random
action

Action
with

highest Q
value

Components of RL
• Policy

• Rule how we choose an action in each state
• Maps from state to action (a = π(s))

• Value Function
• Q(st, at) = max Rt+1

• Best possible score at the end of the game after performing action
a in state s

• Prediction of future reward
• Evaluate state and select between actions

• Model
• Agent’s representation of the environment

Q learning
• Model-free reinforcement learning technique

• Consists of an agent, states S and a set of actions per state A

• Agent moves from s -> s’ by performing

• Executing an action in a specific state provides the agent with a
reward

• Goal of the agent is to maximize its total reward (by learning the
optimal action for each state)

• Optimal action has highest-long term reward R

• R: weighted sum of the expected values of all future steps
staring from the current state

Q-learning Algorithm

Initialize Q

Perform
Action

Choose an action from Q

Measure
Reward

Update Q

Without any form of training

Approach 1

States Up
A1

Down
A2

Left
A3

Right
A4

Fire
A5

Stay
A6

(Pl1x, Pl1y),
(Pl2x, Pl2y)

0.92 0.65 0.77 0.83 0.69 0.81

S2 0.83 0.59 0.79 0.93 0.61 0.51

S3 0.62 0.85 0.97 0.73 0.68 0.55

This action has the highest reward, hence
action A1 will be chosen

Initialize length of memory D

Initialize dictionary Q_sa with random weights for each action

For each episode of the game

While not goal

Select an action based on epsilon-greedy

Execute action in emulator, take a
screenshot, calculate reward

Update Sequence and D

Sample random minibatch transitions from D

Compute: (ݐ = (ݐ ,ݐ + ((`+ݐ ,1+ݐ

Update reward in dictionary Q_sa

(ݐ = (ݐ ,ݐ (if terminal)

Initialize sequence s

End

Sequence = [Statet, Actiont,
Statet+1, Actiont+1, Statet+2]

Experience
Replay

Approach 2

Deep Neural Network
• Uses a cascade of many

layers of nonlinear processing
units for feature extraction
and transformation

• Input of the algorithm is raw
pixels

• Works using minimal domain
knowledge

Convolutional Neural
Network
• Act similarly to human receptive fields.

• Make sense of the game’s screen output in a way that is similar to how
humans are able to

• Several layers of convolutions with nonlinear activation
functions applied to the results

CNN

• Sliding window function applied to a matrix

• Instead of considering each pixel independently, convolutional layers
allow us to consider regions of an image

• Build edges from pixels, shapes from edges, and more complex
objects from shapes..

OUR DEEP LEARNING MODEL

Network Architecture

4 Image of size
80x80 stacked

together

CNN Model
(Keras)

Conv2D layer
16 filters

Of size 8x8 with
stride 4

Conv2D layer
32 filters

Of size 4x4 with
stride 2

Dense Layer
256 neurons

Dense Layer
6 neurons

Input

Output

Initialize length of memory D

Initialize Q with random weights for each action

For each episode of the game

While not goal

Select an action based on epsilon-greedy

Execute action in emulator, take a
screenshot, calculate reward

Update Sequence and D

Sample random minibatch transitions from D

Compute: (ݐ = (ݐ ,ݐ + ((`+ݐ ,1+ݐ

Train neural network model based on loss

(ݐ = (ݐ ,ݐ (if terminal)

Initialize sequence s

End

Sequence = [Image1,
Image2, Image3, Image4]

Model.predict(s)

Experience
Replay

Result
• Experiments were performed on 50 iterations of the game, for

two different policies.

• First approach:
• Agent starts playing better gradually, but its improvement is

very slow.
• Survives the fight for approximately 5 more seconds.

• Second approach:
• Agent learns comparatively faster with neural network as

compared to when trained without neural networks.
• Survives the game for about 8 more seconds on the 50th

iteration of the game.

Conclusion
• This research demonstrated that reinforcement learning, when

implemented with neural networks, perform a better and faster
training of the bot as compared to when the Q function is used
as a table.

• We trained an artificially intelligent bot to play Archon using two
different policies

System Configuration

Future Scope
• Train using a GPU and thus compare

performance

• Train the bot to fight players other than the
Knight (light side) and Golem (dark side)

• Train the bot to play the game from the
dark side

• Apply the same technique to the strategy
mode of the game and finish the game

References
• https://ip.cadence.com/uploads/901/cnn_wp-pdf

• http://www.cs.umd.edu/~djacobs/CMSC733/CNN.pdf

• https://www.slideshare.net/roelofp/python-for-image-
understanding-deep-learning-with-convolutional-neural-nets

• https://en.wikipedia.org/wiki/Q-learning

• https://www.slideshare.net/nikolaypavlov/deep-qlearning

• http://cs231n.stanford.edu/reports/2016/pdfs/121_Report.pdf

• http://www.krigolsonteaching.com/reinforcement-learning.html

Thank you.

Commodore 64
• 8-bit home computer

introduced in January 1982
by Commodore International

• Emulator from
http://www.ccs64.com

• Low resolution, less pixels,
easier for image processing
techniques

Appendix

Q-learning Pseudocode

Pseudocode

Pseudocode

