HOW DOES NETFLIX RECOMMEND MOVIES

Sarika Padmashali
10/04/2016
Recommendation Engine

- Recommendation systems seek to predict the "rating" or "preference" that a user would give to an item.
- Content – based filtering recommends items based on a comparison between the content of the items and a user profile.
- Collaborative filtering filters information by using the recommendations of other people.
Netflix Input

- Input - the history of star ratings across all the users and all the movies.
- Each data point consists of four numbers: (1) user ID - u, (2) movie title - i, (3) number of stars, 1–5, in the rating, denoted as r_{ui}, and (4) date of the rating, denoted as t_{ui}.
- Large dataset but only a fraction of users will have watched a given movie.
- The output is, a set of predictions, one for each movie i that user u has not watched yet. These can be real numbers, not just integers like an actual rating r_{ui}. The final output is a short, rank-ordered list of movies recommended to each user u, presumably those movies receiving ≥ 4 or the top five movies with the highest predicted.
The real test of this mind-reading system is whether user u actually likes the recommended movies.

The **Root Mean Squared Error** (RMSE), measured for those (u, i) pairs for which we have both the prediction and the actual rating. Let us say there are C such pairs.

$$\text{RMSE} = \sqrt{\frac{1}{C} \sum_{(u, i)} (r_{ui} - \hat{r}_{ui})^2}$$

Smaller the RMSE better the recommender model.
Baseline Predictor Models

- Take the average of all the ratings \(\overline{r} \), and use that as the predictor for all \(\{\hat{r}_{ui}\} \).
- \textit{Let's incorporate two more parameters say } \(b_i \text{ to model the quality of each movie } i \text{ relative to the average and } b_u \text{ to model the bias of each user } u \text{ relative to } \overline{r} \).\
- Model of baseline predictor would look like:

\[
\hat{r}_{ui} = \overline{r} + b_u + b_i.
\]

- Where

\[
b_u = \left(\sum_i r_{ui} / M_u \right) - \overline{r}.
\]
\[
b_i = \left(\sum_u r_{ui} / M_i \right) - \overline{r}.
\]

\(M_u \) is the number of movies rated by user \(u \),
\(M_i \) is the number of users who rated movie \(i \).
Neighborhood model

\[d_{ij} = \frac{r_i^T r_j}{\|r_i\|_2 \|r_j\|_2} = \frac{\sum_u \tilde{r}_{ui} \tilde{r}_{uj}}{\sqrt{\sum_u (\tilde{r}_{ui})^2 \sum_u (\tilde{r}_{uj})^2}} \]

\[\hat{r}_{ui}^N = (\bar{r} + b_u + b_i) + \frac{\sum_{j \in \mathcal{L}_i} d_{ij} \tilde{r}_{uj}}{\sum_{j \in \mathcal{L}_i} |d_{ij}|} \]
Summary of the algorithm

• Train the baseline predictor by solving the least squares problem.
• Obtain the baseline predictor matrix
• Compute the movie-movie similarity matrix
• Pick a neighborhood size L to compute neighborhood movies L for each movie i
• Compute sum of baseline predictor and the neighborhood predictor
Regularization

- Learning is both an exercise of *hindsight* and one of *foresight*
- Perfect hindsight often means you are simply re-creating history
- Robust learning without overfitting
- Regularization is a common one: add a penalty term that reduces the sensitivity to model parameters by rewarding smaller parameters

\[
\text{minimize}_{\text{(model parameters)}} \ (\text{Squared error term}) + \lambda \ (\text{Parameter size squared}).
\]
Latent Factor Model

• The latent-factor method relies on *global structures* underlying the table.
• One of the challenges in recommendation system design is that the table is both *large* and *sparse*.
• We suspect there may be structures that can be captured by two, much smaller matrices.
• Build a low-dimensional model for these high-dimensional data.
• K-dimensional vector \mathbf{p}_u to explain each user u's movie taste. And for each movie i, we use a K-dimensional vector \mathbf{q}_i explaining the movie's appeal. The inner product between these two vectors, is the prediction.
THE END