

Recommendation Engine

- Recommendation systems seek to predict the "rating" or "preference" that a user would give to an item.
- Content based filtering recommends items based on a comparison between the content of the items and a user profile.
- Collaborative filtering filters information by using the recommendations of other people.

Netflix Input

- Input the history of star ratings across all the users and all the movies.
- Each data point consists of four numbers: (1) user ID- u, (2) movie title- i, (3) number of stars, 1–5, in the rating, denoted as r_{ui} , and (4) date of the rating, denoted as t_{ui} .
- Large dataset but only a fraction of users will have watched a given movie.
- The output is, a set of predictions, one for each movie i that user u has not watched yet. These can be real numbers, not just integers like an actual rating r_{ui} The final output is a short, rankordered list of movies recommended to each user u, presumably those movies receiving ≥ 4 or the top five movies with the highest predicted.

Root Mean Squared Error

- The real test of this mind-reading system is whether user u actually likes the recommended movies.
- The **Root Mean Squared Error** (RMSE), measured for those (*u*, *i*) pairs for which we have both the prediction and the actual rating. Let us say there are *C* such pairs.

$$RMSE = \sqrt{\sum_{(u,i)} \frac{(r_{ui} - \hat{r}_{ui})^2}{C}}$$

Smaller the RMSE better the recommender model

Baseline Predictor Models

- Take the average of all the ratings \bar{r} and use that as the predictor for all $\{\hat{r}_{ui}\}$.
- Lets incorporate two more parameters say b_i to model the quality of each movie i relative to the average and b_u to model the bias of each user u relative to \bar{r} .
- Model of baseline predictor would look like:

$$\hat{r}_{ui} = \bar{r} + b_u + b_i.$$

• Where $b_u = (\sum_i r_{ui}/M_u) - \bar{r}$ $b_i = (\sum_u r_{ui}/M_i) - \bar{r}$

 M_u is the number of movies rated by user u, M_i is the number of users who rated movie i

Neighborhood model

$$\hat{r}_{ui}^N$$

$$d_{ij} = \frac{\mathbf{r}_{i}^{T} \mathbf{r}_{j}}{\|\mathbf{r}_{i}\|_{2} \|\mathbf{r}_{j}\|_{2}} = \frac{\sum_{u} \tilde{r}_{ui} \tilde{r}_{uj}}{\sqrt{\sum_{u} (\tilde{r}_{ui})^{2} \sum_{u} (\tilde{r}_{uj})^{2}}}$$

$$\hat{r}_{ui}^{N} = (\bar{r} + b_u + b_i) + \frac{\sum_{j \in \mathcal{L}_i} d_{ij} \tilde{r}_{uj}}{\sum_{j \in \mathcal{L}_i} |d_{ij}|}$$

Summary of the algorithm

- Train the baseline predictor by solving the least squares problem.
- Obtain the baseline predictor matrix
- Compute the movie- movie similarity matrix
- Pick a neighborhood size L to compute neighborhood movies L for each movie i
- Compute sum of baseline predictor and the neighborhood predictor

Regularization

- Learning is both an exercise of hindsight and one of foresight
- Perfect hindsight often means you are simply re-creating history
- Robust learning without overfitting
- Regularization is a common one: add a penalty term that reduces the sensitivity to model parameters by rewarding smaller parameters

 $minimize_{\{model\ parameters\}}$ (Squared error term) + λ (Parameter size squared).

Latent Factor Model

- The latent-factor method relies on global structures underlying the table.
- One of the challenges in recommendation system design is that the table is both *large* and *sparse*
- We suspect there may be structures that can be captured by two, much smaller matrices.
- Build a low-dimensional model for these high-dimensional data.
- K-dimensional vector \mathbf{p}_u to explain each user u's movie taste. And for each movie i, we use a K-dimensional vector \mathbf{q}_i explaining the movie's appeal. The inner product between these two vectors, is the prediction .

