
An	Open	Source	Discussion	Group	Recommendation	
System

By
Sarika	Padmashali

Advisor
Dr.	Chris	Pollett

Committee	Members
Dr.	Katerina	Potika
Dr.	Leonard	Wesley

SJSU Washington Square Agenda

• Purpose	and	Introduction

• Background	about	Yioop and	Problem	Statement

• Collaborative	Filtering	Techniques

• Preliminary	Work

• Classic	Baseline	Predictor

• Term	Frequency	Inverse	Document	Frequency

• Recommendation	Job

• Conclusion	and	Future	Work

• Questions

SJSU Washington Square Purpose

• In this project we have added a new feature to Yioop, a search and discussion
board portal, which recommends the Yioop users with exciting groups and
threads.

• Yioop Recommendation System uses two techniques to make
recommendation – Collaborative filtering baseline predictor and Term
Frequency – Inverse Document Frequency

• This system makes use of the users impressions on the Yioop site and tries to
recommend relevant threads and groups.

SJSU Washington Square
Introduction	to	recommendation

• People take recommendations from others in the form of spoken words,
letters, documentaries, surveys, articles, blogs, etc.

• A Recommendation System gives these suggestions to users to browse through
the internet, surf through articles, movies, restaurants, books, discussions,
groups, groceries, etc. and find the most relevant and exciting information to
them.

SJSU Washington Square About	Yioop

• Yioop is an open source search engine and discussion group software

• Yioop provides many features of large search portals such as search results,
media services, social groups, blogs and wikis

• Yioop allows users to create discussion groups and start a new thread on those
groups where they can discuss with other Yioop users

SJSU Washington Square

• Instead of letting users browse through a bunch of threads and groups. We have
improved the users experience by recommending threads or groups which might
be of interest to them based on the threads or groups a user has viewed in the
past

• Our recommendation system suggests the users with two items:
1.	Threads
2.	Groups

• Suggest trending and popular threads to users using the classic baseline predictor
model.

• Suggest the threads or groups to users based on the words they have liked to view
in the past.

Problem	Statement

SJSU Washington Square Collaborative	Filtering	Techniques

• The foundation of collaborative filtering techniques is based on the simple idea
that users who rate items similarly are likely to rate other items similarly.

Collaborative	Filtering	Technique

SJSU Washington Square

• Recommendation systems can be built by a variety of algorithms.

• User based and item based recommendations are very intuitive and simple to
implement, matrix factorization techniques are sophisticated algorithms which
helps us to discover latent features between the interactions of users and items.

• Matrix factorization is a simple tool which helps us to discover the information
hidden under data.

• As the name implies matrix factorization intends to factorize the matrix i.e., find
the two or more matrices which when multiplied will give us back the original
matrix

• The basic idea behind latent matrix factorization is the fact that if two or more
users are giving high rating to an item, it is because they like some latent (hidden)
feature behind that item

Preliminary	Work	Summary

SJSU Washington Square

• Now if we have a matrix 𝑅 which will be a matrix of users and item ids.

• Suppose we have	𝑚	users and n items, we now want to find 𝑘 latent features.

• We must find the two matrices 𝑃 and 𝑄 such that their product is approximately
𝑅.

• Thus, matrix 𝑃 would be am by kmatrix and matrix 𝑄 would be a k by nmatrix.

Preliminary	Work	Summary	(Contd.)

𝑅	 ≈ 𝑃	. 	𝑄) = 𝑅+

SJSU Washington Square

• Building a matrix requires some measure which associates the users with the
items such as ‘rating’.

• Some numerical measure to build the matrix

• Yioop did not have a rating option which allowed users to give numerical rating to
a thread or a group.

• Problem with pages belonging to very large categories

• Hidden features would be very large

• Computationally expensive

Problems	with	other	techniques

SJSU Washington Square Classic	Baseline	Predictor

• We have used parts of the contribution to the “Bell-Kor’s Pragmatic Chaos” final
solution, which won the Netflix Grand Prize to recommend threads or groups to
users

• Collaborative filtering model try to capture the interaction between the users
and the items that produce ratings differently

• There are some biases between the users and the items which the baseline
predictors try to leverage

• Some users have a tendency of rating generously whereas some users have a
tendency of rating poorly

SJSU Washington Square Math	behind	Classic	Baseline	Predictor

• Let 𝑟 denote the total average rating. A baseline predictor for an unknown rating
𝑟-,/ is denoted by the 𝑏-,/ and accounts for the user and item effects

𝑏-/ = 𝑟 +	𝑏- + 𝑏/

• Now for each user 𝑖 in the corpus we first calculate the user bias for 𝑖 by
summing all the ratings which the user has rated and divide it by the number of
items rated by the user. We now subtract total average rating from this
computed measure which shows us how much a user is deviating from the
average rating r

• For example, if a user A has rated 3 movies on 5 as 3, 2, 1 respectively; the
overall average rating for all the users is 3.5; then the bias computed fir that
user would be -1.5. This clearly states that the user A has a systematic tendency
of rating movies, poorly i.e., below the average rating.

SJSU Washington Square Math	behind	Baseline	Predictor(Contd.)

• Similarly, for the items, there are certain items which are very popular and are
rated highly whereas some items are rated poorly. This metric shows a lot about
the quality of items.

• The metrics 𝑏-and 𝑏/	represent how far the user is deviated from the average
rating 𝑟. Suppose we want to predict what user “Sarika" would rate the
restaurant "In-n-Out Burger" and the overall average rating = 3.7, the users and
the restaurants bias comes out to be 1.7 and - 1.2 respectively then the
predicted rating would be 3.7 + 1.7 -1.2 = 4.2

• We have considered the kind of rating a user gives, the quality of the items and
the overall average rating. This way we get an insight about the users taste
towards an item

SJSU Washington Square Tweak	Baseline	Predictor	for	Yioop

• One of the challenges while building a baseline predictor for a dataset is the
absence of ratings.

• The matrix of users and their ratings for items is sparse. Most of the time users
don’t rate; few users rate a lot of items while some rate very few items.

• The baseline predictors help in reducing these biases as the computation sees
how a user rates an item.

SJSU Washington Square Implementing	the	baseline	predictor

• For implementing the baseline predictors in Yioop, we required the ‘rating’
attribute - how a user rated a group or a thread

• Yioop which does have a voting system - thumbs up or thumbs down

• The number of times a user views a thread was logged in the ITEM_IMPRESSION
table in the Yioop database. We made use of this corpus of data to build the
‘rating’ attribute.

Mathematically	the	user	and	item	bias	was	calculated	as	below:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑅𝑎𝑡𝑖𝑛𝑔	𝑟 =
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑟𝑒𝑎𝑑𝑠	𝑣𝑖𝑒𝑤𝑒𝑑
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡	𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑈𝑠𝑒𝑟	𝑏𝑖𝑎𝑠 = 	𝑢/ =
E-FGHI	JK	L/HMN	JK	O	-NHI	KJI	OPP	QRIHOSN

E-FGHI	JK	S/NQ/TUQ	QRIHOSN	O	-NHI	RON	L/HMHS
–	average	rating	

𝑇ℎ𝑟𝑒𝑎𝑑	𝑏𝑖𝑎𝑠	 = 	 𝑡/ =
)JQOP	E-FGHI	JK	L/HMN	O	QRIHOS	IHUH/LHN	

E-FGHI	JK	S/NQ/TUQ	-NHIN	L/HM/TV	QROQ	QRIHOS
- – average	rating	

SJSU Washington Square Implementing	baseline	predictor	(Contd.)

Mathematically,

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑢𝑠𝑒𝑟	𝑟𝑎𝑡𝑖𝑛𝑔	𝑓𝑜𝑟	𝑎	𝑡ℎ𝑟𝑒𝑎𝑑 = 𝑟/Q^= 𝑢𝑠𝑒𝑟	𝑏𝑖𝑎𝑠	𝑢/ +

																																														𝑡ℎ𝑟𝑒𝑎𝑑	𝑏𝑖𝑎𝑠	𝑡/ + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑎𝑡𝑖𝑛𝑔	𝑟.

SJSU Washington Square

• The Baseline Predictor ended up showing the most popular threads

• Baseline Predictor for Yioop made use of the number of times a user views a
thread and the number of times a thread was viewed to calculate the user and
the item bias

• Hence, we tried to improve the model and make more accurate
recommendations by delving deep into the users impressions.

• We were leveraging the user and the thread biases. However, we had to add
some contextual analysis to improve the model

Problem	with	the	classic	baseline	predictor

SJSU Washington Square Information	Retrieval	in	Search	Engines
• The task of retrieving data from a user’s behavior has become common and

necessary

• Information retrieval is searching a collection of data from text documents,
databases, log searches, etc. and gaining insights about that data

• There are many approaches available to retrieve information from, in the
search engine such as a probabilistic model incorporating the user’s frame of
mind while the user entered a query and enhancing the approximations to
make better suggestions

• There is Latent Semantic Indexing (LSI) algorithm that builds a reduced
dimensional vector space which represents the n-dimensional representation of
a set of documents.

SJSU Washington Square Term	Frequency	– Inverse	Document	Frequency

• Usually whenever a person queries, if a document contains the terms in the
query then we score that document as being relevant.

• However, the number of occurrences of a word in a document is not taken into
consideration while weighing the relevance of a document

• TF – IDF tries to weigh the documents such that the number of occurrences of
the word is taken into consideration

• Words with a high TF-IDF value in a document implies a strong relationship of
the word with the document

SJSU Washington Square TF	- IDF

• We will first describe the problem followed by the mathematical background of
the algorithm and examine the behavior of various variables in the following
sections.

• Let us suppose we have a set of documents 𝐷:	𝑑Z,𝑑[, 𝑑\, 		… , 𝑑T and a user
query 𝑞 = 	𝑤Z,	𝑤[, 𝑤\ for a set of words 𝑤/. We want to return the subset of D
documents which are the most relevant documents in the corpus based on the
user’s query.

SJSU Washington Square Term	Frequency	Calculation	with	an	example

• As	an	example,	with	three	documents,	try	to	understand	the	mathematics	
behind	the	term	frequency	calculation.

Document	1:	Flume	is	an	Apache	Hadoop	project.	Flume	is	a	
distributed,	reliable	service.

Document	2:	Hadoop	has	an	ecosystem	project	called	Spark	which	works	
in	memory.	Spark	is	an	apache	hadoop project

Document	3:	PHP	is	a	good	web	server	side	programming	language

• Now	let	us	assume	that	a	user	has	entered	a	query	q:	Hadoop	project	

SJSU Washington Square TF	Calculation	(Contd.)

𝑇𝐹 = 	𝑙𝑜𝑔 𝑓Q,S + 1	𝑖𝑓	𝑓Q,S > 0	𝑎𝑛𝑑	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Term	Frequency	Table	for	document	1

Logarithmic	Term	Frequency	Table	for	document	1

Also, there are few words which occur a lot of time in a big file.
To reduce the effect of such words we introduce the logarithm.

words flume is an apache hadoo

p

project distribute

d

reliable service

frequency 0.4 0.4 1 1 1 1 1 1 1

words flume is an apache hadoop project distributed reliable service

frequency 2 2 1 1 1 1 1 1 1

SJSU Washington Square Inverse	Document	Frequency	(IDF)

• While	calculating	the	term	frequency	we	are	considering	that	all	the	words	
are	equally	important	in	a	document

• However,	it	does	not	take	into	consideration	the	effect	of	a	few	words	which	
occur	in	most	of	the	documents

• IDF	helps	to	leverage	that	bias:

Mathematically,	IDF	is	calculated	as	below:

𝐼𝐷𝐹 𝑡 = log
𝑁
𝑁Q

where	‘N’	is	the	total	number	of	documents	in	the	corpus	and	𝑁Q is	the	
number	of	documents	containing	the	term	𝑡.

SJSU Washington Square

• Let	us	compute	the	IDF	for	the	word	‘hadoop’.
• The	total	number	of	documents	for	our	example	is,	𝑁 = 3
• The	number	of	documents	which	contains	the	term	Hadoop	is,	𝑁Q = 2		

𝐼𝐷𝐹 ℎ𝑎𝑑𝑜𝑜𝑝 = log
3
2 = 0.17	

IDF	

Sample	IDF	Table	for	document	1

Words IDF

flume 0.47

is 0

a 0

hadoop 0.17

project 0.17

SJSU Washington Square Weights	TF	*	IDF

• Bymultiplying	the	term	frequency	and	the	inverse	document	frequency	we	
can	get	the	frequently	occurring	words	in	a	document	and	we	can	also	
propagate	the	effect	of	the	frequency	that	word	occurring	in	the	rest	of	the	
documents

• For	example,	in	document	1	the	word	Hadoop	has	the	normalized	term	
frequency	1	and	the	IDF	for	Hadoop	is	0.17	so	the	weight	will	be	0.17

Query	terms Document	1 Document	2 Document	3

hadoop 0.17 0.17 0

project 0.17 0.17 0

Weights	for	query	terms	in	the	document

SJSU Washington Square Cosine	Similarity

Mathematically,

𝐶𝑜𝑠𝑖𝑛𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, 𝐶𝑆 𝑑Z,𝑑[= 	 (𝑑Z.𝑑[)/	(||𝑑Z||. ||𝑑[||)
𝐷𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑑Z.𝑑[) =

	𝑑Z 0 . 𝑑[0 …𝑑T 0 +. . . +	𝑑Z 𝑛 𝑑T[𝑛]
||𝑑T|| = 	 𝑑T[0][+ 𝑑T[1][+ ⋯+	𝑑T[𝑛][

�

The cosine similarity gives us a measure of how important a
document is to a user.

SJSU Washington Square Tweaking	TF	– IDF		for	Yioop

• Every thread in Yioop has a title and description associated with it. We
made use attributes to create the bag of words for us.

• Adding filters to remove the wiki pages

• Create	bag	of	words	based	on	the	meta	data	- title	and	description	

SJSU Washington Square Calculating	TF	for	each	word

Term	Frequency	TF(items) 	= 	𝑙𝑜𝑔 𝑓Q,S + 1	𝑖𝑓	𝑓Q,S > 0	𝑎𝑛𝑑	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The	GROUP_ITEM	table	in	Yioop	had	all	the	description	of	a	thread	and	
had	attributes	like	title,	description,	date	published,	group	admin,	the	id	of	
the	group	it	belonged	to,	etc

• We	scanned	through	each	thread	extracting	the	title	and	the	description,	
followed	by	tokenizing	the	words.	

• We	made	use	of	the	number	of	times	a	thread	is	viewed	and	then	summed	
the	term	frequency	count	for	that	word	using	the	
ITEM_WORD_FREQUENCY	table	to	give	us	the	measure	of	how	many	times	
a	user	has	seen	a	word	

SELECT COUNT (*) AS FREQUENCY, USER_ID AS UID, WORD_ID AS WID FROM

ITEM_WORD_FREQUENCY IWF INNER JOIN ITEM_IMPRESSION II WHERE IWF.ITEM_ID =

II. ITEM_ID GROUP BY USER_ID, WORD_ID

SJSU Washington Square IDF	

𝐼𝐷𝐹M,Q = log
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑟𝑒𝑎𝑑𝑠	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔	𝑡ℎ𝑒	𝑤𝑜𝑟𝑑	(𝑤)

𝐼𝐷𝐹M,- = log
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑠𝑒𝑟𝑠		

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑠𝑒𝑟𝑠	𝑤ℎ𝑜	𝑣𝑖𝑒𝑤𝑒𝑑	𝑡ℎ𝑒	𝑤𝑜𝑟𝑑	 𝑤 + 1

We calculated it using the formula below:

• We now calculated the Inverse Document Frequency IDF for threads
by scanning through the bag of words and for each word we measured
the number of times it appeared in the threads as compared to the
entire corpus.

We	add	1	while	calculating	IDF	for	users	to	consider	a	case	where	no	user	
has	seen	the	word	(thread)

SJSU Washington Square TF	*IDF	for	Yioop

SJSU Washington Square Recommending	threads	and	groups

• We	calculate	the	cosine	similarity	between	each	user	and	the	threads	and	
try	to	find	the	threads	which	are	most	like	the	users	taste.	

• We	recommend	the	top	similar	threads	to	users

• Groups	in	Yioop are	made	of	threads.	Group	names	in	Yioop are	very	
generic	and	does	not	really	describe	the	content	of	what	the	group	is	
about.

• So,	we	decided	to	make	use	of	the	threads	title	and	description	which	
makes	up	a	group	to	recommend	groups	

• For	each	group,	we	first	extracted	all	the	threads	belonging	to	a	group	and	
then	summed	up	their	cosine	similarity	measure	for	a	group.	

SJSU Washington Square Advantages	of	TF	– IDF	for	recommendation	in	Yioop

• The	method	is	very	intuitive	as	we	are	trying	to	find	out	how	much	relevant	
a	word	is	to	a	user	based	on	the	number	of	times	a	user	has	viewed	a	word.

• We	are	trying	to	find	out	how	important	a	word	is	to	a	thread	based	on	the	
frequency	of	the	word	in	the	thread

SJSU Washington Square Running	the	recommendation	Job

.
• We were dealing with a lot of data as each user, thread/group logs were

being examined

• If we ran a recommendation job in the background all the time based on
the new logs received, it would slow down the computing power and there
are chances that the computer might crash

• For faster execution and to recommend threads/groups to users instantly
we had two parts to our job implementation:
1.	Offline	Job	– Computation	Part
2.	Online	recommendations	– Rendering	Part

SJSU Washington Square Offline	Job	– Computation	Part

• A batched job is a job which runs for a data for a frame of time

• Yioop has a scalable framework media job which schedules job and runs
based on when it is scheduled

• We made an offline job for the recommendation system which makes the
Yioop system learn about the log

• The recommended threads are stored in
RECOMMENDATION_LIST_THREADS_* and groups are stored in
RECOMMENDATION_LIST_GROUPS_* tables. The * tells us which table is
live. Here * takes the value of 1 or 2 depending on which table is live.

• The table which is live is not affected at all while updating.

SJSU Washington Square

• The	user	is	recommended	with	three	items:
1.		Three	most	trending	groups	based	on	the	classic	baseline	predictor	model	we	
built
2.Three	most	interesting	threads	based	on	the	words	which	he/she	has	viewed	in	
the	past
3.Three	most	interesting	groups	based	on	the	words	which	he/she	has	viewed	in		
the	past

Online	Recommendation	(Rendering	Part)

SJSU Washington Square Incremental	Job
• Running a job from scratch increases the running time of the system and it does

not improve the recommendations by much

• Having the recommendation engine run once a week is effective but we also
want to take the current logs into consideration

• The incremental model tweaks the term frequencies of the users and threads
and approximates its effect in the TF*IDF weights

• Our system captures the effects of the latest logs and tweaks the old weights
calculated accordingly reducing the running time

𝑇𝐹 ∗ 𝐼𝐷𝐹�,�

=
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑙𝑑	𝑢𝑠𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑙𝑑	𝑎𝑛𝑑	𝑢𝑠𝑒𝑟𝑠 + 1 ∗ 𝑂𝐿𝐷 𝑇𝐹 ∗ 𝐼𝐷𝐹�,�

+	
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑒𝑤	𝑢𝑠𝑒𝑟𝑠 + 1

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑙𝑑	𝑎𝑛𝑑	𝑛𝑒𝑤	𝑢𝑠𝑒𝑟𝑠 + 1 ∗ 𝑁𝐸𝑊 𝑇𝐹 ∗ 𝐼𝐷𝐹�,�

SJSU Washington Square User	Feedback	and	Testing

• We checked the effectives of this system by asking some people

• We tested our model by asking people who were users of Yioop as well as some
new users. 90 out of 100 people who tested this model had good reviews and
had a better website experience

• Cold start problem was one of the issues we resolved because of user feedback

• We also did some unit testing on the model using Yioop’s Testing Framework to
check for correctness of the words extraction and frequency count created.

SJSU Washington Square User	Interface

SJSU Washington Square Challenges	while	building	the	recommendation	
system

• Dealing with a lot of data

• Usually recommendation systems are built with some ratings data

• One of the challenges of this project was to figure out a way to rate a thread as
no user could give a numeric rating to a thread/group.

• We made use users viewing history to convert it into a rating a user would give to
a thread.

• For the term frequency inverse document frequency, we made use of the fact of
the number of times a user views a word to calculate the metrics.

SJSU Washington Square Areas	of	Improvement

SJSU Washington Square Conclusion

• Built a recommendation system for Yioop using the baseline predictor

• We improved our recommendation system by incorporating the term frequency
and the inverse document frequency in to our model

• We implemented the recommendation system and integrated it with Yioop to
recommend the most popular threads/groups and the most relevant
threads/groups based on users viewing history.

• To test the effectiveness, we asked several users to try our recommendation
system and give their opinion. We also did some unit testing on the system

SJSU Washington Square References

[1]	P.	Resnick	and	H.	R.	Varian,	“Recommender	systems,” Communications	of	the	ACM,	
vol.	40,	no.	3,	pp.	56–58,	1997.

[2]	Ramos,	Juan.	"Using	TF-IDF	to	Determine	Word	Relevance	in	Document	Queries."	
[Online].	Available:	
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=
pdf	[Accessed:	02	- May- 2017].

[3]	Koren,	Yehuda. The	BellKor Solution	to	the	Netflix	Grand	Prize (2009).	[Online].	
Available:	http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf	
[Accessed:	02	- May- 2016].

[4]	"Netflix	Prize." Wikipedia.	Wikimedia	Foundation.	[Online].	Available:	
https://en.wikipedia.org/wiki/Netflix_Prize [Accessed:	02	- May- 2017].

SJSU Washington Square References	(Contd.)

[5]	"Term	Frequency	and	Weighting." Term	Frequency	and	Weighting.	Cambridge	
University	Press,	2008.	[Online].	Available:	
https://nlp.stanford.edu/IR-book/html/htmledition/term-frequency-and-weighting-
1.html	[Accessed:	02	- May- 2017].

[6]	Seekquarry.com,	“Resources,”	2015.	[Online].	Available:	
https://www.seekquarry.com/p/Resources.	[Accessed:	02	- May- 2017].	
[7]	Dunning,	Ted,	and	B.	Ellen	Friedman. Practical	Machine	Learning:	Innovations	in	
Recommendation.	Beijing:	O'Reilly,	2014.	Print.

[8]	Langville,	A.	N.,	&	Meyer,	C.	D.	(2012).	Who's	#1?	The	science	of	rating	and	ranking.	
Princeton:	Princeton	University	Press.

[9]	Cormen,	T.	H.,	Leiserson,	C.	E.,	&	Rivest,	R.	L.	(1990).	Introduction	to	algorithms.	
Cambridge,	MA:	MIT	Press.

SJSU Washington Square References	(Contd.)

[10]	Gábor	Takács	,	István	Pilászy	,	Bowyán	Németh	,	Domonkos	Tikk,	Major	
components	of	the	gravity	recommendation	system,	ACM	SIGKDD	Explorations	
Newsletter,	v.9	n.2,	December	2007	[doi>10.1145/1345448.1345466]	

Thank You!

Demo	and	Questions

