An Open Source Discussion Group Recommendation System.

SARIKA PADMASHALI
CS297 MASTER'’S PROJECT

INTRODUCTION

The purpose of this project is to build a recommender system for Yioop.
Yioop is an open source search engine, wiki system, and user discussion group
system managed by Dr. Christopher Pollett. I will be developing a
recommendation system for Yioop where the users will be suggested about the
threads or groups they could join based on their user history.

A recommendation system analyzes user behaviour on a website to make
suggestions about what a user should do in the future on the website. It basically
tries to predict the “rating” or “preference” a user would be giving to an item.

[have never contributed to an open source project. Yioop will be the first
open source project that [will be contributing to. Whenever I surfed the web |
was always dealing with some recommendation systems and search engines. |
always wondered what was the difference between the two — both suggest
some items to the users on the web, both do some sort of searching and filtering.
Yioop is a search engine and I thought [would be able to understand the
difference better if I had a chance to work with Yioop framework and build a
recommendation system on top of it. Also, in the previous semester [had done a
literature review on recommendation systems and I was very fascinated by the
content and the mathematics that went behind it.

In this semester | have implemented a few techniques to get the basics
and feel of how the recommendation system works. This project is an attempt to
improve the users experience while they are browsing through the Yioop
website. This feature would avoid users to hit the search tab and search for
threads they like. Rather the threads of their interest will be recommended to
them.

[have coded many of the deliverables in python so far. However, I plan to
build a recommendation engine in PHP for my final project as the Yioop
codebase is in PHP. This semester, for the first deliverable, I implemented a max
flow problem in python - FordFulkerson and Push relabel algorithm. The max
flow problem can be extended to solve the bipartite matching problem which can
map users to threads. For Deliverable 2, [researched the algorithm used to win
the Netflix Prize and tried to implement a part of it for the Yelp Dataset. My
program predicted what a user would rate a particular restaurant using the

biases. In Deliverable 3, I got an opportunity to work with the Yioop codebase. |
will be working extensively on the Yioop codebase next semester, hence it was
essential to understand the framework so that next semester [spend more time
on improving and building the recommendation model for Yioop and less time in
understanding the framework. In Deliverable 4, I tried another technique which
used the latent matrix facrtorization to predict the users rating. [have discussed
each of these deliverables in detail in the section followed by preliminaries.

PRELIMINARIES

Let us take a few examples to help us understand what a recommendation
system recommends. Netflix Recommender system suggests a list of movies to
users to improve their movie watching expeirence. Whenever you log in to your
amazon account, you see “Users who bought this, also bought that” suggestions
from amazon based on your purchase history. This is the power of the
recommendation systems.

Recommendation systems, when properly built ease the users’ experience
of the website and also increases the number of hits the website receives.
Recommendation systems have proven useful for huge companies like Amazon
and Netflix who have a very large expansive client base and have a large number
of movies or products which a large number of people haven’t even seen or
pruchased.

A huge corpus of data depicting users’ behaviour is the key to building a
good recommendation system as we are trying to find similar users or items to
make some suggestions. If we do not have a pattern or similarity between users
or products and each item is different and every other person has a different
taste when why build a recommender system in the first place. However, there is
always a pattern which exists among all the users behvaiour however different
or unique a person might be. Same is the case with products or items and in our
case — groups.

TYPES OF RECOMMENDER SYSTEMS

There are two main types of recommendation systems — Content based
filtering and Collaborative filtering. Each system tries to find similarities
between users and items. Merging data between different users and items helps
these systems gain insights on their patterns.

Content Based Filtering

Content based filtering systems focus on the attributes of items. The
similarity between items is determined by measuring the similarity between
their attributes. Figure 1 is an example of content based filtering. Below is a
mapping of users to the items they shopped. We see that the items grapes and
watermelon have similar attributes — they both are fruits. When Joe purchases
watermelon, we also recommend him to buy grapes. This is a basic example of
how content based filtering works.

>

- /

Fig. 1. Content Based Filtering

Collaborative filtering

Collaborative filtering tries to find other similar users and suggests items
which similar people have liked. It is based on the idea that if two or more users
have assessed an item similarly in the past they are likely to assess other items
similarly in the future. Let us ask ourselves a few simple questions here: How
often have you asked a friend who has a similar taste as yours in movies to
suggest a movie on a boring friday night? How often have you asked your friends
to come shopping with you because you like the clothes they wear?

Collaborative filtering tries to do the very same thing which you do, infact
it acts like your friend here and suggests items for you by mining millions of
similar users. Figure 2 gives an illustration of the basic working of collaborative

filtering. Chris purchases strawberries, oranges and mangoes, Sarika buys

mangoes and watermelons, while Joe buys watermelon. What else would we
suggest Joe? We see that the shopping pattern of Sarika and Joe are similar

hence we suggest Joe to buy mangoes.

Chris
> rawberries
>N

St
>

Mangoes

\@

Sarika

IRk
:

Fig. 2. Collaboratoive Filtering

A RECOMMENDATION SYSTEM FOR YIOOP

For my project, [will use collaborative filtering techniques to
recommend to users about the threads they might be interested in. I will be
suggesting to users a list of groups they might find exciting.

The project will have the following components: I plan to make use of
the user history of Yioop and all the activities which each user might have done
on the Yioop page — click data, browsing history, threads viewed (if this data is
available) and apply some collaborative filtering techniques to recommend new
groups to the users.

This semester [have been researching on the collaborative filtering
techniques, tried to understand the Yioop framework, read various research
papers to find out what would and what would not work for my project.

Deliverable 1: Max Flow Problem

The Maximum flow problem involves finding a feasible flow through a
single-source, single-sink flow network that is maximum. I can use the bipartite
maching problem to map users to threads. We can represent the Yioop dataset as
a weighted bipartite graph where edges between users to threads will be
weighted by some rating. The recommendation model can be used to predict
those weights between users and threads. The edge between a user and a thread
can be thought of as how important that thread is to a particular user. Based on
these weights we can predict users with threads. However, [will not be using
this for my project.

Let us define the maximum flow problem with the help of diagram.
Figure 3 is a network with nodes which are labelled ‘s’, 1 through 7 and ‘t". Node
‘s’ is the source and node ‘t’ is the sink. It is a single-source, single-sink network.
Each edge between two adjacent nodes has some weights assigned to it. Our job
is to pass these weights through the network from one node to the other such
that the weights are always flow. We call this as the flow. We have to find the
maximum flow through the network.

o 4 15 \js 10
s 5 (31\ 8 &) 10 i

A
15 10
Capacity — 15 \
\@ 30 \7)/

Fig. 3. Network Graph

[have tried to solve the maximum flow problem using two algorithms.

1.) Ford Fulkerson method - This algorithm selects a path in the network
and finds the maximum flow through that path. The algorithm then
augments on this path chosen and tries to find if some more flow can
be passed and keeps doing it till there is no augmenting path available.
This is not the best possible algorithm as it certainly depends on the
path we have chosen first. However, there are many techniques for
selecting the best augmenting path.

In [5]: %run "/Users/Sarika/Documents/SEM 3/Masters Project/Deliverable 1/Ford-FulkersonAlgorithm.py”

Enter the filename: graph.txt
This is Graph G:
[e, 16, 13, @, @, @]

[e, o, @, 12, 0, 0]
[e, 4, @, @8, 14, 0]
[e, @, 9, @, @, 20]
[e, @, @, 7, @, 4]
[e, e, @, @, @, 0]
This is Flow f:

[e, 12, 11, o, o, @]
[e, o, @, 12, 0, @]
[e, o, @, 8, 11, @]

[e, o, @, @, @, 19]
[e, @, @, 7, @, 4]
[e, @, @, @, @, 0]
This is Residual f':
(e, 4, 2, 8, 0, @]
[e, @
[e, 4
4]
4]

)

3

e,
[e, @,
[e, o,
Total flow:

2
e, @, o,
e, @, 3,
9, @, @, 1]
e, @, 9,
e, o, 9,
2

3

Fig. 4. Ford-Fulkerson Algorithm Output

2.) Push - Relabel algorithm - This algorithm is very similar to how water
flows i.e water always flow from a reservoir at a higher altitude to a
lower altitude. In this algorithm, first all the node are assigned some
height - source is given a height equal to the number of nodes and all
the other nodes are given a height of 0. Our aim is to push the flow
from a node at higher altitude - source of height 'n’ to a lower altitude
- sink at height ‘0’. The heights of the intermediate nodes keep
changing as the algorithm proceeds.

There are two major operations in this algorithm:

Push operation: This operation basically tries to push an overflowing
node at a higher altitude to a node at a lower altitude. This operation takes place
only if the node has some excess flow than it can carry.

Relabel operation: This operation takes place if there is an overflowing
node and it is at a lower or equal height than all its neighbors and has no node to
pass the excess flow to. Hence we have to relabel the heights of the current node.
The height of the current node is then raised by 1 more than the minimum height
among the adjacent nodes.

[have implemented the Ford Fulkerson and the push relabel algorithms
and it gives the maximum flow in the network. It also uses doctest module in
python to test simple cases.

The maximum flow problem can be extended to solve the bipartite
matching problem. A bipartite graph G = (V, E) is a graph in which the vertex set

V can be divided into two disjoint subsets X and Y such that every edge e in E has
one end point in X and the other end pointin Y.

In [4]: %run "/Users/Sarika/Documents/SEM 3/Masters Project/Deliverable 1/Push-RelabelAlgorithm.py"
Please enter the filename: graph.txt

Number of nodes in the network: 6
szzzzzz===========Pysh-Relabeled (Preflow-push) algorithm ===============z==
Maximum Flow for the network is: 23

Fig. 5. Push-Relabel Algorithm Output
Deliverable 2: Collaborative filtering (Baseline Predictors)

In this deliverable, I tried to build a recommendation system for Yelp by
implementing a part of the algorithm used by the Netflix Competition winners. I
tried to exploit the biases amongst users and restaurants to make predictions.
For example: Some users have a tendency to rate all items poorly while some
rate all the items generously. Similary for the items, some items have a very good
quality as compared to some other items. I have tried to incorporate these biases
while predicting a users rating for a particular item.

[have taken the Yelp Dataset and it predicts user ratings for a particular
business/restaurant based on user reviews. The dataset was provided by Yelp
for public. I have made use of only the Yelp reviews data to predict ratings. The
yelp_academic_dataset_review.json file has 2.7M reviews and 649K tips by 687K
users for 86K businesses. | have made use of the following features -
"business_id", "user_id", "stars" for prediction. I have tried to predict the rating
by computing the business/restaurant and user biases by aggregating the data. [
have calculated the biases of users and businesses with respect to the overall
average rating.

The program calculates the average overall rating followed by the user
and restaurant bias. It saves these values in a dictionary. Once this training is
done, based on the user and restaurant for which we want to predict, it adds
these biases to the average rating to predict a users rating for that particular
restaurant.

Example: Suppose we want to predict what user "Sarika" would rate the
restaurant "In-n-Out Burger" and the overall average rating = 3.7, the users and
the restaurants bias comes out to be 1.7 and -1.2 respectively then the predicted
rating would be 3.7 + 1.7 -1.2 = 4.2.

In [7]: %run "/Users/Sarika/Documents/SEM 3/Masters Project/Deliverable 2/YelpRecommender.py" 7KoVg5QMjYuBtaLFSEThNA mYSpR_SLPgUVymYOvTQd_Q
User ID entered: 7KoVg5QMjYuBtaLFSEThNA

Restaurant ID entered: mYSpR_SLPgUVymYOvTQd_Q

Sum of ratings: 10107148

Count of ratings: 2685066

Average Rating of Yelp: 3.76420840307

Predicted Rating: 5.0

Fig. 6. Collaborative Filtering (Baseline Predictors) Output
Deliverable 3: Yioop Register Page Patch

This particular exercise helped me to get familiar with the Yioop
framework. [will be recommending threads to users in Yioop and would be
rendering my recommendations on the Yioop page. Hence it is essential to
understand the Yioop framework. I have made two patches to get familiar with it.

Patch 1

In this patch, have added client side validation in the register page of
Yioop. While a new user gets registered in Yioop he has to fill a form which has
the following fields like first name, last name, email address, username,
password, retype password and after a user fills these fields the user clicks on
the submit button to get registered. The form is validated on the server side and
if there are any errors then the user is warned about the errors. This consumes a
lot of time and can also have some security issues. [have incorporated client side
validation of the above form using .

The following client side validations have been implemented in Yioop:
1.) All the required fields of the form must be filled otherwise the submit
button is disabled.
First Name:
Last Name:

Username:

Email:
Type email address.

Password:
Type Password

Re-type password:

By using Create
Account button, | agree
to the Yioop Terms and
Privacy Policy.

Create Account

Fig.7. Register Page -Disabled Button Output

2.) If any field is touched by a user which is a required field and the user
keeps it empty, the user is immediately warned to fill it.

First Name:
Enter first name

Fig .8. Register Page —Required field Incomplete Warning

3.) The email address field of the form is checked if it is in the proper format.
For example: sarika.yahoo.com is an invalid email address whereas
sarika.padmashali@yahoo.com is a valid one

sarika@yahoo.com
Valid email address

Email:
Fig .9. Register Page -Email Address Validation Output

4.) The password field should now have alphabets, numbers and must be at
least 8 characters long. It checks the strength and warns the user about

the strength of the password.
Strong password

Fig .10. Register Page -Password Validation Output

5.) The retyped password should match to the one typed earlier else it warns

the user.
Strong password
cseoeococseosse k B
Re-type password: Retyped password
matches
Fig .11. Register Page —-Retyped Password Validation Output
Patch 2

In this patch, I have tried to incorporate a new filter using which the
owner of the group can delete multiple users based on their join date. If a
particular user or a group of users have joined a group long back and the owner
wants to remove those users from the group then the owner can select all those

users and can delete them just at the click of a button. The joining date is
displayed to the owner in the format mm/dd/yy.

Members: [3 users]
bob Active Owner Delete Delete all selected
bob1 Active Ban 12/31/1969 Delete
bob2 Active Ban 12/31/1969 Delete
[Invite More Users]

Save

Fig. 12. Delete Multiple Users Based On Join Date

Members: [1 users]
bob Active Owner Delete Delete all selected

[Invite More Users]

Save

Fig. 13. Delete Multiple Users Based On Join Date (After Deletion)

The two patches in Yioop gave me an opportunity to play with the
components, controllers and views part of the framework which I will be using in
my project implementation.

Deliverable 4: Collaborative Filtering (Latent matrix factorization)

This is another technique which I have implemented and can be used for
predicting a users rating for items. Collaborative filtering techniques which make
use of user-based and item-based filtering are very intuitive and easy to
implement, but it is not as effective as matrix factorization techniques. Matrix
factorization techniques are more effective as it finds the hidden features which
are responsible for the interaction between users and items.

As the name suggests matrix factorization aims at finding the factors of a
matrix such that when you multiply it you get back the originial matrix — if not
the original at least something closer to the original matrix.

Once we find these factors, we can now use these factors to predict the missing
ratings of the items in the matrix l.e., we can now rate the items which had not
been rated by a user earlier.

Matrix factorization basically tries to find the latent features about how
users rate items. For example, a bunch of users might give high ratings to a
particular restaurant because they like the cuisine served in the restaurant or
they like the ambience of the restaurant. If we are able to find these hidden
features then we can predict how a user might rate an item because there is

some kind of mapping between the attributes of the users and the attributes of
the restaurants. Also the number of hidden features will be much smaller to the
number of users/items. Like I said earlier, if every individual has a unique taste
or every movie is unique there is no need for having a recommendation system.

[have used the same Yelp dataset. [have sampled the dataset as
scalability is one issue which comes with matrix factorization as it is
computationally expensive. We have some reviews data from Yelp and each
record has some user ratings, user ids and restauran ids associated with it. The
user and restaurant ids are in a random string format so I first converted it into
some integers and kept that mapping in a dictionary. Now I created a matrix R
which will be a matrix of users and restaurant ids. [have kept 0 at the places
where the users have not recommended an item. The size of R will be |U| X |B|
where U is a set of users and B is a set of restaurants. We now want to find K
latent features. We now have to find the two matrices P and Q such that their
prouct is R approximately.

P = (JU| X Kmatrix) Q = (|B| X K matrix)
R~Px QT ~R"

Now from the above equation we can say that each row of P is an
association between features and users. Similary, each row in Q is an association
between features and restaurants.

Hence now to predict how a user might rate restaurant we just take the dot
product.

N T
Tij = P1 X q;

[have used the gradient descent method to find the matrices P and Q.
Gradient descent basically initilizes the matrix P and Q with some random
numbers and then tries to find how different the obtained matrix is to R and tries
to minimize the error iteratively. To minimize the error we have to know the
direction in which we have to modify the current values. We are finding the
gradient at the current values by differentiating with respect to both the
variables. Once we find the gradient we can multiply it with a constant < and
add it to the current values. x determines the rate at which we want the error
approaching the minimum.

[have also used a regularization technique to avoid overfitting by adding
a parameter (. It basically controls the magnitude of the user feature and the
restaurant feature such that it approximates R better.

In [12]: %run "/Users/Sarika/Docunents/SEM 3/Masters Project/100review.py" nEYPahVWXGD2Pjvgkm7QqQ mYSpR_SLPgUVymYOVTQd_Q
User ID entered: nEYPahVwXGD2Pjvgkn7QqQ

Restaurant ID entered: mYSpR_SLPgUVymYOVTQd_Q

The predited rating for the user id and restaurant id entered above is 1.39715987861

Fig. Collaborative Filtering (Latent Matrix Factorization) output
WHAT DID NOT WORK?
Hits Algorithm:

During my research about recommender systems I researched about HITs
algorithm which is used for ranking web pages and found that HITs algorithm
wouldn'’t be the best choice for a recommender system. HITs broadly classifies a
document into two classes which are authorities and hubs. Authorities include
pages which have relevant information whereas hubs are pages that link to
authorities. A good authority is linked from many good hubs and good hubs are
linked to many good authorities. For web pages each website is linked to other
websites and hence we can calcuate the hub and authority scores. However for a
recommender system we did not find appropriate mappings for restaurants and
users. Hence we thought it wouldn’t work well for our system.

WHAT WORKED?

[also read a few chapters from whose #1? The science of rating and
ranking [1] and I found relevant chapters which I could use in my project. The
ranking problem is similar to recommendation problem in many ways. One of
the major similarity being - rating which is required both for prediction and
ranking.

Massey’s method and Colley’s method are two algorithms which is used
for ranking football teams. [plan to use these techniques for ranking the threads
to users in the project. Also, single value decomposition is another matrix
factorization technique which could be used in my project.

CONCLUSION

[spent this semester researching on the various techniques used for
building a good recommender system. I feel this has built the foundation for my
project and I know what are the places I need to work on in the next semeter.

For my CS 297, undertood how a recommendation system works, what
works and what would not work for my project. Through my deliverables learnt
how can I apply the various techniques to my recommendation system. [also got
an opportunity to understand the Yioop framework which I would be working on

and the research papers [read gave me an insight into the recommendation
system.

For my CS 298, I will first start by collecting the huge corpus of Yioop
data, will go through all the data cleaning and once I have the dataset ready. [will
start applying the techniques [used in CS297. One of my deliverable couldn’t
scale well for millions of records and hence doing some matrix multiplication
tricks to get around it would be something which I will be doing during the initial
phase of the project. | will evaluate my model and see if [am receiving decent
recommendations. The users will then be able to see recommendations of
threads in Yioop discussion groups.

REFERENCES

[1] Langville, A. N., & Meyer, C. D. (2012). Who's #1?: The science of rating and
ranking. Princeton: Princeton University Press.

[2] Pollett, C. "Open Source Search Engine Software!" Open Source Search Engine
Software - Seekquarry. Retrieved on 13 Dec. 2016.

[3] Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to
algorithms. Cambridge, MA: MIT Press.

[4] Gabor Takacs, Istvan Pilaszy , Bottyan Németh , Domonkos Tikk, Major
components of the gravity recommendation system, ACM SIGKDD Explorations
Newsletter, v.9 n.2, December 2007 [d0i>10.1145/1345448.1345466]

