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ABSTRACT 

Adding Differential Privacy in an Open Discussion Board System 

This project implements a privacy system for statistics generated by the Yioop search and 

discussion board system. Statistical data for such a system consists of various counts, sums, 

and averages that might be displayed for groups, threads, etc. When statistical data is made 

publicly available, there is no guarantee of preserving the privacy of an individual. Ideally, 

any data extracted should not reveal any sensitive information about an individual. In order to 

help achieve this, we implemented a Differential Privacy mechanism for Yioop. Differential 

privacy preserves privacy up to some controllable parameters of the number  of items or 

individuals being aggregated when statistics from a database are made public. With this 

measure, reasonably accurate information about the database is provided while at the same 

time, privacy of the individual is maintained. The privacy mechanism called ε-differential 

privacy (Dwork, 2006) achieves this by adding some appropriately chosen random noise to 

the query’s answer in such a way that the information retrieved by the user is still accurate 

and at the same time no sensitive information is leaked about an individual. We implemented 

Differential Privacy for group’s statistics page. These pages display provide various statistics 

about a discussion group including its threads and wikis. We also implemented  ε-differential 

privacy for query statistics page that displays the statistics about each query entered by a user 

in the Yioop’s search bar. The project also adds an additional level of privacy by using 

encryption of an application level database information to secure some sensitive data. 
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CHAPTER 1 

INTRODUCTION 

Today there are various online platforms provided to users for various purposes such as social 

media, online shopping, online movies, etc. These platforms use users’ personal data to 

generate statistics. By collecting user data online, they can identify different types of users 

both to improve the site itself and also to target users to sell them goods and services. For 

example, Amazon recommends the products for buying based on the customers browsing 

history. Therefore, protecting user’s private information is critical in today’s online world.  

This project implements privacy techniques on a statistical database. Users whose data 

appears in such a database should not be subject to any uniquely identifying data even if the 

statistics are made public. There have been many approaches for privacy when organizations 

publish personal statistics such as removing very personal information about the individual 

(dob, ssn) and making the user as anonymous as possible. But even with this approach, there 

had been cases in the past when releasing anonymized data had failed to preserve the privacy 

of an individual. For example, there was the identification of medical records of the governor 

of Massachusetts in a public “anonymized” medical database. There was also the 

identification of search history of Thelma Arnold in public “anonymized” AOL query records 

[8]. 
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There are numerous cases of attacks happening on the database systems on a frequent basis. 

Relying on older ways of authentication and access control are not enough to protect the data 

from malicious users. Therefore, there is a critical need to protect the privacy of an individual 

who is part of the statistical database.  

It is possible that even the user who is part of the system may have bad intention and can try 

to derive some sensitive data from the non-sensitive statistical results displayed by the 

system. Thus, we want  a level of  privacy in a statistical database that makes it difficult for 

anyone to extract any information from the statistics. 

One fundamental technique in order to achieve such privacy is called ε-differential privacy 

(Dwork, 2006). It is the privacy mechanism that is implemented in this project. This privacy 

is achieved by adding some appropriately chosen random noise to the query’s answer in such 

a way that the information retrieved by the user is still accurate and at the same time no 

sensitive information is leaked about an individual. 

In order to add differential privacy, we first looked at different components of the Yioop open 

source discussion system and then identified the most critical components that contain more 

sensitive data and is therefore vulnerable to statistical attacks. Then we applied the concept of 

differential privacy to those components. We also looked at other techniques to improve the 

privacy in the database system of Yioop. One of the techniques we implemented was 

database encryption at an application level.  
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This report is divided into seven chapters: Chapter 2 gives the background about differential 

privacy and also discusses the previous research done to achieve differential privacy in 

database systems. It also mentions other techniques used to improve the privacy in Yioop 

discussion board system. Chapter 3 discusses the preliminary work for this project that was 

done such as database changes and other functionalities. Chapter 4 gives an overview about 

the design of our differential privacy system as well as  how we designed our encryption 

scheme for our the database system. Chapter 5 gives an overview of the implementation of 

the functionalities discussed in the design section. Chapter 6 discusses different types of 

testing and experiments conducted to test the new changes in different components. It also 

describes some tests we ran to check the performance of the system after adding the new 

changes. Finally, Chapter 7 has a conclusion. 
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CHAPTER 2 

BACKGROUND 

This project considers techniques to improve privacy in the Yioop discussion board system. 

One of those techniques is Differential Privacy. Another is database encryption. 

Dwork (2006) defines Differential Privacy as a randomized function K that gives ε-

differential privacy if for all data sets D1 and D2 differing on at most one element, and all S ⊆ 

Range(K), 

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] 

A mechanism K that satisfies above definition ensures the user participating in the database 

that any responses to queries is equally likely to occur even if the participant decides to 

remove his/her data from the data set (Dwork, 2006, p. 9). For example, if an insurance 

provider refers to a database before making a decision of giving an insurance to certain user 

x, then the impact on the user x will remain the same whether or not user x opts in or out of 

the database (Dwork, 2006, p. 9). 

There are two models for privacy mechanisms. In Non-Interactive Setting the data collector 

who is a trusted entity publishes a sanitized version of the collected data by removing well-

known identifiers such as names, data of birth, ssn) (Dwork, 2006, p.3). And in Interactive 

Setting the data collector provides an interface through which users may present queries 

about the data to get answers with some added noise. (Dwork, 2006, p.3). 
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An interactive privacy mechanism is used for achieving ε- differential privacy. “The 

mechanism works by adding appropriately chosen random noise to the answer a = f(X), 

where f is the query function and X is the database.” (Dwork, 2006, p.9) 

In addition to the algorithms discussed above, Database Encryption is also used to protect the 

data in a database from intruders. Database Encryption uses an algorithm to cipher the real 

data in a database. These transformed data needs to be decrypted first in order to use them. 

There are different techniques available for database encryption few of which are mentioned 

below (Database Encryption): 

• External Database Encryption 

• Column Level Encryption 

• Field-Level Encryption 

• Symmetric/Asymmetric  Database Encryption 

• Application Level Encryption 

For this project we have used application level encryption where we are using symmetric 

keys which are stored in an external database. We are using column level and field level 

encryption. This way we can control which data is more sensitive and perform encryption 

only in those data. This is different with encryption used in networks or storage systems 

where data is fully encrypted or not encrypted at all. 

There have been different types of work done in the database level in order to secure the 

database. One of the researches presented in the paper by Patel, Sharma and Eirinaki is called 

Negative Database for Database Security.  A Negative Database contains data that includes 
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real data as well as negative data. The framework proposed in the paper manipulates the 

actual data and stores in the database which can then be retrieved in an efficient way. Thus, it 

makes it harder for malicious users to extract real information even though they may be able 

to get access to the database. The security framework consists of four main modules, 

Database caching, Virtual database encryption, Database encryption algorithm, and Negative 

Database conversion algorithm (Patel et. al). After passing through these modules, the 

manipulated data is then stored in the database. The following is an overview of each module 

described by Patel et. al. 

• Database Caching: The frequently used data is stored in an easy access memory such 

as RAM thus making it faster to access data and increases the performance. 

• Virtual Database Encryption: A set of randomly generated keys are added to the data 

in the form of objects and attributes which are then sent to the database. 

• Database Encryption Algorithm: The public key encryption algorithm RSA is used. 

The encryption algorithm is followed by Database caching and Virtual Database 

Encryption algorithm. This module uses the input from prior modules and encrypts 

the data before passing it to the next layer, Negative Database Conversion layer. 

• Negative Database Conversion Algorithm: The is the last module which creates a 

large set of values rather than just a single tuple. The generated sets of data are 

inserted in the database. 
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For this project, we have used some concept of negative database by adding some random 

noise to the actual data and encrypting them before storing in the database. We will discuss 

about this in detail in the implementation section. 
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CHAPTER 3 

PRELIMINARY WORK 

This section describes about the preliminary work that were done in order to implement 

Differential Privacy for this project. Before getting into differential privacy, there were few 

things that needed to be understood such as the model used in computation of the privacy, 

basic techniques and theorems used to achieve differential privacy.  

In the paper presented by Dwork (2006), we chose ε- differential privacy for achieving the 

differential privacy. According to her, the privacy mechanism, denoted as Kf for a query 

function f, computes f(X) and adds noise with a scaled symmetric exponential distribution 

with variance σ2 in each component, described by the density function 

Pr[Kf (X) = a] ∝ exp(− || f(X)  a || 1/σ) 

In order to achieve ε-Differential Privacy,  &  where ∆f is the L1-Sensitivity of a 

function.  

Here, if the actual value is n, the value of ‘a’ is taken between the range 0 and 2n + 1. Then 

an integrated value is calculated within that range for the equation above. And a random 

value is selected between 0 and the integrated value in order to get fuzzified result. 

Once we knew which algorithm to use, we extended existing feature in Yioop about the 

statistics of the Discussion Board System by adding a chart that displays statistics in more 

depth.  

σ ≥ ϵ /δ f
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&  

 

The chart spans total views into different time periods such as during the last 24 hours in a 

day, 30 days in a month or 12 months in a year. There is a new link added to number of views 

in Group Statistics page. This links to a new page for viewing the chart showing the statistics 

of each group item. The link is added for ‘last day’, ‘last month’ and ‘last year’. When you 

click on ‘last day’, it shows the chart of number of views during the last 24 hours. Similarly, 

when you click on ‘last month’, it shows the chart of number of views during the last 30 

days. And when you click on ‘last year’, it shows the chart of number of views during the last 
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12 months of the year. Since, ‘last hour’ and ‘All time’ views are just one data, there is no 

link for these two statistics. 

We then needed to identify areas in Yioop search engine as well Open Source Discussion 

Board where we could apply Differential Privacy. So we developed a test suite of statistical 

attacks against query and discussion board statistics. Statistical attack is a method of deriving 

sensitive data from non-sensitive data (Burtescu, 2009). 

An example of a test suite of statistical attack is finding out the user who has viewed a certain 

thread: When a user belongs to a certain group and there are only two members in that group, 

then one user can easily figure out whether or not the other user has recently viewed any 

thread belonging to that certain group. The total number of views of any thread is always 

visible. This can be accessed via Group Feed page. Let’s say the current view of a thread is 

100 and after refreshing it, it goes up to 101, then it’s obvious that another user has just 

viewed that thread. 

The first implementation of the algorithm was done by adding differential privacy to number 

of views of each group’s thread. Basically, it fuzzifies the number of views of each thread of 

the group by using ε-differential privacy according to the paper by Dwork (2006). This is 

done by first checking the current code that calculates the number of views of each thread. 

Then some noise is added to the current implementation. There were also changes made in 

the database where the analytics compute the statistics and stores the result in the database. 

We updated some tables to store values that were calculated by using differential privacy 

algorithm. 
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CHAPTER 4  

DESIGN 

This section discusses the design part of Adding Differential Privacy to an Open Source 

Discussion Board System. 

Defining policy about specific data that is targeted for adding privacy 

Yioop’s search engine and Discussion Board System contains different types of 

contents under groups, threads, wikis, search tool. Each group contains threads and wikis. 

There will be number of users who can join any group with or without the owner’s approval 

depending on the settings of the group. Each user can create a new thread, comment on a 

thread, add/edit/delete a thread depending on the user’s access level.  

There are different analytics that are run to compute different types statistics. For example, 

we can view the statistics of each group. One can see total views for each group, and all its 

threads and wikis during the last hour, day, month and year. Also, there is a search analytics 

that computes statistics about each query entered by a user in the search. 

There are different types of data that gives various information about each component. Thus 

we need to define policy which identifies specific data that requires higher level of privacy. 

After identifying special cases of data, we can focus on those sets of data to add more privacy 

than before. 
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Controlling Security Feature from the UI level 

After the preliminary work was done, the only way to enable Differential Privacy was 

through the code. In config file, you could change the value of Differential Privacy to either 1 

which will enable or 0 which will disable the setting. There was no way of specifying it via 

the user interface. There should be an option for the root user to enable or disable Differential 

Privacy via the user interface. So, an enhancement in the security feature in the user interface 

is needed. An option should be added for Differential Privacy under Security section of the 

Yioop search engine where the root user could select either ‘Enable’ or ‘Disable’ option. 

Differential Privacy should then be added to the data that is part of the privacy policy as 

mentioned in the previous section based on the option selected by the user. 

Database encryption at an application level 

To increase the level of privacy, some of the data can be secured even more by 

encrypting them in the database. This also requires defining policy such as which data is 

more sensitive and requires higher security and perform encryption only in those data. Once 

the set of data has been identified, we need to select the type of encryption to use for 

encrypting and decrypting the data. For this project we are using application level encryption 

where symmetric keys are stored in an external database. We are using column level and field 

level encryption. We are using an external database so that even if an intruder gets access to 

the main database, he/she will not be able to decrypt the data in the database without having 

access to the external database. Thus this adds additional level of security to the database. 
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Adding Differential Privacy according to the defined policy on selected data 

The analytics job uses raw data accumulated for each group based on activities of all 

the users. It then aggregates those data into different time periods giving the statistics hourly, 

daily, monthly and yearly. These are the impression statistics. This statistics can give 

information on how frequently certain group or thread or wiki is visited.  

&  

Figure 2: Groups Statistics Summary Page 
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In addition to the main summary page as shown above in the figure, one can also view the 

statistics in the chart for each time period. This displays statistical information in more detail. 

For non-sensitive group, it is reasonable to display the data to users. But when it comes to 

sensitive data, it becomes critical to protect the data of an individual.  
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CHAPTER 5 

IMPLEMENTATION 

Controlling Security from the UI level 

The root user can control the level of privacy via the user interface. An option to 

enable or disable the differential privacy has been added under Security section. The user can 

navigate to Security section from the left hand side menu. Then under Privacy section, a 

dropdown option has been added for Differential Privacy. The drop down option includes 

Enable and Disable. By default Disabled option is selected.  Selecting the option ‘Enable’ 

will enable the differential privacy in the Yioop search engine and Discussion Board System. 

Similarly, selecting the option ‘Disable’ will disable the differential privacy in the Yioop 

search engine and Discussion Board System. 

&  
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Figure 3: Manage Account 

&  

Figure 4: Security Settings 

Database encryption at the application level 

We identified sets of data in the open source discussion board system that require 

more control in terms of privacy.  In the discussion board, there are different types of groups. 

Each group has a list of users and users can post different threads, add/edit/delete comments, 

vote plus or minus for each thread, etc.  Thus we are adding encryption to certain data inside 

each group. There are different types of encryption that can be performed in the database. We 

are using application level encryption of the database. Not all data inside each group needs to 

be encrypted as some of them are very insensitive. We are interested in encrypting all the 

threads posted by all the users and it’s replies/comments. Hence, we are using column level 

and field level encryption.  
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In order to perform encryption and decryption we are using symmetric keys. The keys 

are stored in an external database. By doing so, the data cannot be decrypted without having 

access to the keys which are stored in an external database. So even if the intruder gets access 

to the main database system, he/she will not be able to get the plain data. To make it more 

secure,  we are injecting random values to the actual data every time we are performing any 

database operation (insert, update). 

Figure 5: Flow Diagram of Encryption/Decryption process 

If the user does not want to encrypt the data, we have added an option in the user interface. 

This option is available during a group creation or edition. Under Manage Groups section, 

you can create a new group where there is a drop down menu for Encryption field. This gives 

two options: ‘Enable’ to enable the encryption of data and ‘Disable’ to disable the encryption 

of data. By default, ‘Disable’ is selected. 
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&  

Figure 6: Create a new encrypted group 

If encryption is enabled for a group, all posts in that group will be encrypted before storing it 

to the database. When displaying the posts of a group, the key which is stored in an external 

database is accessed first in order to decrypt the data before displaying it in the discussion 

board. 

&  

Figure 7: View encrypted posts in a group 
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&  

Figure 8: Encrypted values stored in a database 

Adding Differential Privacy according to the defined policy on selected data 

The main algorithm for adding Differential Privacy as described in the Background 

section is implemented in this section. The algorithm adds an ε-noise taken from an L1 

gaussian source to the actual value (Dwork, 2006).  

Pr[Kf (X) = a] ∝ exp(− || f(X)  a || 1/σ)  

The value is calculated by Integration method. Since function consists of absolute value, the 

integration is broken down into two to remove absolute from the function. First integral runs 

from 0 through actual value, and second integral runs from actual value through max_value. 

Then after using substitution rule, first and second integral range change, say [a,b] and [b,c]. 

Adding Differential Privacy in Group Statistics 

The first implementation is done for the statistics of each group. Under each group, 

there are statistics that are displayed showing number of views in each group, thread and 

wiki. This information can be sensitive for a discussion board system as it can reveal which 

user has viewed which thread recently or in the past. 
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So, we added differential privacy to the group’s statistics. For each time period under group, 

thread and wiki, we calculated the views based on the algorithm described by Dwork (2006) 

and displayed the calculated values in the summary page. One of the challenges here is to 

make sure the displayed values for each time period is logical. For example, let’s say the 

algorithm calculated some value for the last hour of a group, say 8. Then if the algorithm 

calculated some value for the last day of that group, which is lower than previous time period 

(8), then we will have to make adjustments in the calculated value. Thus we have to make 

sure, value calculated by each time period is at least as large as it’s lower time period. 

&  

Figure 9: Groups statistics summary after adding differential privacy 
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Adding Differential Privacy in Search Statistics 

The next use of differential privacy in Yioop we implemented was on the query 

statistics page. This is the page that displays the statistics about each query entered by a user 

in the search. A user uses the search tool to do a search by typing a single or multiple words. 

As this is a sensitive information about the user, it becomes critical to ensure the privacy of 

the user using the system. Thus, we are adding the privacy in the statistics generated from the 

user’s queries so it becomes difficult for someone to find out any information about the user 

from the numbers displayed in the statistics. 

&  

Figure 10: Query statistics before adding differential privacy 

The figure belows displays the search query statistics after differential privacy has been 

enabled. This fuzzifies the actual count for each search query thus making it 

incomprehensible for anyone to extract the exact information. 

�28



&  

Figure 11: Query statistics after adding differential privacy 
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CHAPTER 6 

TESTING AND EXPERIMENTS 

This section discusses testing and experiments done for the new changes for adding 

Differential Privacy in the system. It is divided into following parts: 

• Basic Setup 

• Testing Differential Privacy in Group Statistics 

• Testing Differential Privacy in Query Statistics 

• Testing the performance when encryption is enabled 

Basic Setup: 

To test the way Differential Privacy is implemented on query and group statistics page, we 

first need to generate statistics. So, we first created a list of 100 users and 50 groups. Then we 

inserted groups for these users. Each user ‘i’ belongs to group ‘Groupi’. In order to test 

different scenarios, we are using Group1 as a reference group. So we are adding multiple 

users to this Group by assigning the first 50 users to Group1. Then under Group1, we created 

20 different threads. With this basic setting, we can test the changes in the UI of Yioop for 

different scenarios. 

$ php ManyThreadExperiment.php 
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& & &  

Figure 12: Experiment to setup users/groups/threads 

Testing Differential Privacy in Group Statistics 

We need data to generate statistics about the group in order to run the experiment for 

testing differential privacy in the group statistics. For this we need a simulation program that 

makes different users visit different threads. In order to simulate different users visiting 

different threads, we added a program that extends from the basic setup. This extension now 

simulates different users viewing each of the 20 threads. This way we collect statistics about 

each of the 20 threads in Group1 for different time periods (hourly, weekly, monthly, yearly).  
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&  

Figure 13: User experiment for viewing different threads 

We then tested the UI by comparing the Statistics of the group when enabling Differential 

Privacy versus not enabling Differential Privacy. 
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&  

Figure 14: Experiment showing statistics before enabling differential privacy 
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&  

Figure 15: Experiment showing statistics after enabling differential privacy 

By looking at the above two screenshots, the statistics displayed by differential privacy does 

not reveal exact count which is achieved by adding the gaussian noise to the actual value as 

described in the implementation section. Therefore, it becomes difficult for an adversary to 

perform statistical attacks against query and discussion board statistics. 
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Testing Differential Privacy in Query Statistics 

To test differential privacy implemented in query statistics page, we first need to 

generate statistics of the queries. So we created list of search queries and performed searches 

for each query in random numbers. We then looked at the counts of each query in the 

statistics summary page and compared the statistics between non differential privacy setting 

and differential privacy setting. The counts in differential privacy setting have been deviated 

from the actual count as expected. 
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&  

Figure 16: Experiment showing statistics after enabling differential privacy 

Testing the performance when encryption is enabled 

When encryption is enabled in the group, every threads posted in the group are 

encrypted. Since we are using column level and field level encryption, we are not encrypting 

the entire database but only some columns in the table.  
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For the testing, we used the basic setup described in ‘Basic Setup’ section but with one 

change when creating groups. Here we are passing an option to encrypt the group during 

group creation. So all the threads that are created are now encrypted in the database. We are 

creating the same 20 threads as used in ‘Testing Differential Privacy in Group Statistics’ 

section but these are now in encrypted mode. 

&  

Figure 17: Creating groups with encryption enabled 

&  

Figure 18: Creating threads in an encrypted group 
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&  

 
Figure 19: Displaying threads in an encrypted group 

Here the values stored in the database are in an encrypted mode and the keys needed to 

decrypt those data are stored in an external database.  

&  

Figure 20: Encrypted values stored in a database 
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For our database, we are encrypting two columns of only one table and performing database 

operations such as insertion, deletions, queries, etc on those encrypted columns. For a 

moderate size of database, there is not much impact on the performance but as the size grows, 

it can impact the overall performance. 
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CHAPTER 7 

CONCLUSION 

In this project, we have implemented Differential Privacy as a privacy measure to some of the 

components in the Yioop search engine and open source discussion board system. As more 

and more attacks on the database systems are happening on a regular basis, it is extremely 

critical to protect the data from malicious users.  

We are concerned not only with malicious users but even with whether users of the system 

with some negative intention can derive some sensitive data from non-sensitive statistical 

results displayed by the system. Differential privacy adds an additional layer of privacy to 

very sensitive data by adding some gaussian noise to the actual data and displaying the 

fuzzified data. Thus it makes anyone difficult to extract any information from the statistics 

displayed by the system. 

We identified critical components of the system that are vulnerable to statistical attacks and 

applied the concept of differential privacy to those components. We mainly covered the 

statistics generated by the group and search analytics. These data can be very sensitive to an 

individual user. By enabling differential privacy, we are ensuring a user not to reveal any 

individual information whether or not the user stays or drops the participation in the database.  

We also added another layer of protection to the database by encrypting the database at a 

column level. Instead of encrypting the entire database, we identified some of the critical 
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fields in the database that requires more protection and worked only in those fields for adding 

encryption such as title and description of a thread, its comments and replies, etc. 

There are various techniques of adding privacy of the user participating in the statistical 

database. We explored few ways to achieve it. The importance of privacy-preserving 

statistical database is high as more and more users are using online platforms today and their 

data are used for many purposes by the companies. 
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