

CS297 Report

Adding Differential Privacy to an Open

Source Discussion Board System

By

Pragya Rana

pragya.rana9@gmail.com

Project Advisor: Dr. Chris Pollett

Department of Computer Science

 San José State University

 One Washington Square San José, CA 95112

TABLE	OF	CONTENTS	

	

INTRODUCTION	...	3	
DELIVERABLE 1	...	4	
DELIVERABLE 2	...	6	
DELIVERABLE 3	...	8	
DELIVERABLE 4	...	10	
CONCLUSION	..	12	
REFERENCES	..	13	

INTRODUCTION

This project deals with implementing a privacy system for statistics generated by

Yioop search engine and discussion board system. Currently in Yioop’s discussion board

system, various statistical data are calculated such as number of users belonging to a

group, number of views of a thread, etc. Statistical data provides information based on a

collective data or a sample. When statistical data is made publicly available, there is no

guarantee of preserving the privacy of an individual.

For example, given the statistics of annual income of individuals of a certain place

and average annual income. If one person knows that someone’s annual income is higher

than the average income by certain percentage, he/she can easily calculate this person’s

annual income. Any data extracted should not reveal any sensitive information of an

individual.

Therefore, the motivation of this project is to protect the privacy of an individual

who is part of the statistical database of Yioop’s search engine and discussion board

system. The goal of privacy-preserving statistical database is to allow the user to learn

properties of the extracted information, while protecting the privacy of the individual in

the sample. In order to achieve this, there is a privacy mechanism called Differential

Privacy that we will implement in this project.

Differential privacy preserves the privacy up to some controllable parameters of

individuals when statistics from a database are made public. With this measure, accurate

information about the database is provided while at the same time, privacy of the

individual is maintained.

There are few ways of achieving differential privacy of data. One of the

mechanisms is called ε-differential privacy (Dwork, 2006). This privacy is achieved

by adding some appropriately chosen random noise to the query’s answer in such a way

that the information retrieved by the user is still accurate and at the same time no

sensitive information is leaked about an individual.

The rest of the report explains about the work done in each of the four

deliverables for CS297. In Deliverable 1, I prepared a presentation on Differential

Privacy based on Cynthia Dwork’s paper. In Deliverable 2, I added a statistical chart

when clicked on most visited threads in Yioop. In Deliverable 3, I developed a test suite

of statistical attacks against query and discussion board statistics. And finally in

Deliverable 4, I added differential privacy to number of views of each group's thread.

DELIVERABLE 1

The first deliverable was to understand the concept of Differential Privacy, the

need for this mechanism in Yioop search engine and then prepare a presentation on the

topic. Before implementing differential privacy in Yioop, there are few things that need

to be understood such as the model used in computation of the privacy, basic techniques

and theorems used to achieve differential privacy.

Differential privacy ensures users participating in any form of data analysis by

protecting their sensitive information. This doesn’t mean the data will be less accurate by

hiding information about the user’s data. We will still be able to reveal useful information

from the statistical database, while protecting the privacy of the individuals in the sample.

Privacy	Data	Analysis	

There are two models for privacy mechanisms. In Non-Interactive Setting data collector

(a trusted entity) publishes a “sanitized” version of the collected data (sanitization

employs techniques such as data perturbation and sub-sampling, removing well-known

identifiers such as names, birthdates, ssn). And in Interactive Setting data collector

provides an interface through which users may pose queries about the data and get

answers.

While comparing Non- Interactive with Interactive approach, the results for Interactive

approach are powerful. Non- Interactive approach is more difficult due to difficulty of

supplying utility that has not yet been specified at the time the sanitization is carried out.

Differential	Privacy	

A randomized function K gives ε-differential privacy if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S]

	

A mechanism K satisfying this definition ensures the user participating in the database

that any responses to queries is equally likely to occur even if the participant removed

his/her data from the data set. For example, if an insurance provider refers to a database

before making a decision of giving an insurance to certain user x, then the impact on the

user x will remain the same whether or not user x opts in or out of the database.

	

Achieving	Differential	Privacy	

 This section describes a concrete interactive privacy mechanism for achieving ε-

differential privacy. The mechanism works by adding appropriately chosen random noise

to the answer a = f(X), where f is the query function and X is the database.

Exponential Noise and the L1-Sensitivity

 In order to achieve ε-differential privacy, there is an addition of random noise whose

magnitude is chosen as a function of the largest change a single participant could have on

the output to the query function; we refer to this quantity as the sensitivity of the

function. Sensitivity is a property of the function alone that is independent of the

database. The technique is best when ∆f is small, i.e. introduce the least noise.

For f : D → Rd, the L1-sensitivity of f is

∆f = max D1, D2 || f(D1) − f(D2) ||

for all D1,D2 differing in at most one element.

The privacy mechanism, denoted as Kf for a query function f, computes f(X) and adds

noise with a scaled symmetric exponential distribution with variance σ2 in each

component, described by the density function

Pr[Kf (X) = a] ∝ exp(− || f(X) – a || 1/σ)

For f : D → Rd, the mechanism Kf gives (∆f/σ)- differential privacy.

For query strategy F = {fρ : D → Rd }, the mechanism Kf gives (∆F/σ)-differential

privacy.

Deliverable 2

The second deliverable was to add statistical chart when clicked on most visited

threads in Yioop. This deliverable helped in getting familiar with Yioop coding

framework and thus worked as learning curve for the rest of the deliverables. Currently,

the statistics of the group including its threads and wikis are shown in terms of total

number of views. One can see total views for each group, thread and wikis during the last

hour, day, month and year.

This deliverable extends the feature by showing the statistics in a chart. The chart

spans total views into different time periods such as during the last 24 hours in a day, 30

days in a month or 12 months in a year. There is a new link added to number of views in

Group Statistics page. This links to a new page for viewing the chart showing the

statistics of each group item. The link is added for ‘last day’, ‘last month’ and ‘last year’.

When you click on ‘last day’, it shows the chart of number of views during the last 24

hours. Similarly, when you click on ‘last month’, it shows the chart of number of views

during the last 31 days. And when you click on ‘last year’, it shows the chart of number

of views during the last 12 months of the year. Since, ‘last hour’ and ‘All time’ views are

just one data, there is no link for these two statistics.

There are few changes made in ImpressionModel. The current SQL statements that

calculate total views for each time period have been slightly modified. Also a new

function called ‘getPeriodHistogramData is added in ImpressionModel that calculates

total number of views of given item for given time period. This is called from

SocialComponent, which in turn uses the returned data from ImpressionModel, formats it

and prepares the data that is then displayed via ManagegroupsElement.

In order to view the latest statistics, make sure to turn on the Media Updater,

which is only accessible by root. Go	to	Manage	Machines	->	Media	Updater	and	click	

on	‘Log	On’	to	turn	it	on.	Once	the	Media	Updater	is	turned	on,	you	can	view	the	

statistical	chart	via	Manage	Account	->	Click	on	any	group	->	Click	Statistics.	This	

can	also	be	viewed	through	Manage	Groups	page.	

	

The	following	chart	displays	statistics	of	group	‘TestGroup1’	about	the	

number	of	views	in	the	last	day.

Figure	1:	Statistical	Chart

Deliverable 3

The third deliverable was to develop a test suite of statistical attacks against query

and discussion board statistics. We needed to come up with some test suites so that we

could identify the areas in Yioop where we could apply differential privacy for this

project.

Statistical attack is a method of deriving sensitive data from non-sensitive data.

The number of entries returned by any query in a statistical database is either zero or any

number up to total number of records stored on the database. The expected behavior of

statistical query is to return non-individual results. Even though the results returned by

the query don’t reveal data about a single individual or a record, it is possible to infer

protected information by combining the results of several statistical queries into one.

These attacks depend on the specific aggregate operator they use.

There are two cases of inference, which often appear in databases: data

aggregation and data association (Burtescu, 2009). Data aggregation problem arises

whenever a set of information is classified at a higher level than individual levels of

involved data. Data association problem arises whenever two values taken together are

classified at a higher level than the one of each value.

Types	of	attacks:	

1. Direct attacks are attacks that involve queries, which directly yields sensitive

data item. These are successful only if the database does not implement any

protection mechanism.

2. Indirect attacks derive sensitive data from non-sensitive statistical results. These

are attacks that are executed by combining multiple queries to extract other data

than those that are displayed by individual query.

Test suite of statistical attacks against query and discussion board

statistics
	

1. Finding out the user who has viewed a certain thread: When a user belongs to a

certain group and there are only two members in that group, then one user can

easily figure out whether or not the other user has recently viewed any thread

belonging to that certain group. The total number of views of any thread is always

visible. This can be accessed via Group Feed page. Let’s say the current view of a

thread is 100 and after refreshing it, it goes up to 101, then it’s obvious that

another user has just viewed that thread.

2. Finding out the user who has posted in a group’s thread: Let’s say any user can

post to any thread of a group as an anonymous. But if there are only 2 users

belonging to a certain group, even though a user posts as an anonymous, this user

is revealed to another user.

3. We can find out user id of a user who has posted any comments on any group

discussion board. For example:

• Click on any group (say ‘TestGroup1’). This shows list of current posts

under that group.

• Below each post, you can see ‘Last Post: <DD/MM/YYYY> -

<USER_ID>’.

• For the post (say ‘Welcome to TestGroup1 Thread’), you can see ‘Last

Post: 17/09/2016 - testuser1’. Click on ‘testuser1’. You can get the user_id

in the url or under ‘Query Statistics’:

SELECT COUNT(DISTINCT GI.ID) AS NUM FROM GROUP_ITEM

GI, GROUPS G, USER_GROUP UG, USERS P WHERE P.USER_ID='3' AND

….

4. Indirect attack via SQL Query

If we know that one user (user_id 2) has only 1 advertisement, we can find budget

put by user_id 2

a. SELECT SUM(BUDGET) FROM Advertisement WHERE user_id != 2;

b. SELECT SUM(BUDGET) FROM Advertisement

By taking a difference of (a) and (b), we can get the Budget put by user_id 2

Deliverable 4

Deliverable 4 starts the first implementation of Differential privacy. It adds

differential privacy to number of views of each group's thread. Basically, it fuzzifies the

number of views of each thread of the group by using epsilon differential privacy

according to Cynthia Dwork's paper on Differential Privacy. This is done by first

checking the current code that calculates the number of views of each thread. Then some

noise is added to the current implementation.

A new function addDifferentialPrivacy is added to the base controller that actually

implements the ε-differential privacy. The privacy mechanism, denoted as Kf for a query

function f, computes f(X) and adds noise with a scaled symmetric exponential

distribution with variance σ2 in each component, described by the density function

Pr[Kf (X) = a] = exp(− || f(X) – a || 1/σ)

Here, if the actual value is n, the value of ‘a’ is taken between the range 0 and 2n + 1.

Then an integrated value is calculated within that range for the equation above. And a

random value is selected between 0 and the integrated value in order to get fuzzified

result.

An experiment is conducted based on the equation above to check how much the

calculated view deviates from actual number of views. This experiment uses different x-

axis values for the number of views starting with 1, 5, 25, 625, 3125, 15625, 78125,

390625 and 1953125. For each x-axis value, there are 50 y-axis values that are generated

by the equation above. The following chart uses the scatter plot that clearly shows how y-

axis values are scattered for each x-axis value. As the value of x-axis gets larger, y-axis

values come closer.

Figure	2:	Fuzzy	Data	Experiment

The function addDifferentialPrivacy is called from controller’s SocialComponent. There

is also an update in Item_Impression_Summary table. Now there are two additional

columns FUZZY_NUM_VIEWS and TMP_NUM_VIEWS. A flag called

‘DIFFERENTIAL_PRIVACY’ is also added in Config.php to turn on/off differential

privacy as it may be required to	use	actual	data	instead	of	fuzzified	data.	

	

	

	

	

	

CONCLUSION

In conclusion, it was a good experience working on an interesting topic of ‘Differential

Privacy’. I get to learn about the concept of differential privacy and the importance of

privacy-preserving statistical database. Especially when today’s technological world

requires so much of statistical data in every field, it becomes extremely important to not

reveal any individual’s sensitive information while still be able to continue working

accurately with the statistical data.

While working on this project, I got familiar with Yioop’s search engine and the coding

framework used in this project. I learned how current statistics about the group is

computed, stored in the database and then fetched from the database. I used this

knowledge to develop a chart that displays the statistics of the group such as number of

views of groups, threads and wikis during the last hour, week, month and year. Then I

came up with some use cases of statistical attacks against query and discussion board

statistics. This gave an idea of where in Yioop can we possibly apply differential privacy.

The first place where I started an actual implementation of differential privacy was in

Group feeds page where the total number of views of each thread is displayed. Now this

piece of information has been fuzzified in order to prevent any one to figure out actual

user’s viewing activity.

For the next semester, we will explore in depth about other model, techniques and

theorems used in the computation of the privacy in order to achieve differential privacy.

We can also identify any possible areas in Yioop search engine where we can implement

differential privacy besides the number of views that was implemented this semester. We

need to do further research on different mechanisms mentioned by Cynthia Dwork in her

paper and use an appropriate mechanism in Yioop.

REFERENCES

Dwork, C. Differential Privacy, 33rd International Colloquium on Automata, Languages

and Programming, part II, 2006

Dwork, C. and Roth, A. The Algorithmic Foundations of Differential Privacy,

Foundations and Trends in Theoretical Computer Science Vol. 9, Nos. 3–4 (2014) 211–

407, 2014

Burtescu, (2009). Database Security – Attacks and Control Methods. Retrieved from

http://www.jaqm.ro/issues/volume-4,issue-4/pdfs/burtescu.pdf

