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INTRODUCTION 

This project deals with implementing a privacy system for statistics generated by 

Yioop search engine and discussion board system. Currently in Yioop’s discussion board 

system, various statistical data are calculated such as number of users belonging to a 

group, number of views of a thread, etc. Statistical data provides information based on a 

collective data or a sample. When statistical data is made publicly available, there is no 

guarantee of preserving the privacy of an individual. 

For example, given the statistics of annual income of individuals of a certain place 

and average annual income. If one person knows that someone’s annual income is higher 

than the average income by certain percentage, he/she can easily calculate this person’s 

annual income. Any data extracted should not reveal any sensitive information of an 

individual. 

Therefore, the motivation of this project is to protect the privacy of an individual 

who is part of the statistical database of Yioop’s search engine and discussion board 

system. The goal of privacy-preserving statistical database is to allow the user to learn 

properties of the extracted information, while protecting the privacy of the individual in 

the sample. In order to achieve this, there is a privacy mechanism called Differential 

Privacy that we will implement in this project. 

Differential privacy preserves the privacy up to some controllable parameters of 

individuals when statistics from a database are made public. With this measure, accurate 

information about the database is provided while at the same time, privacy of the 

individual is maintained.  

There are few ways of achieving differential privacy of data. One of the 

mechanisms is called ε-differential privacy (Dwork, 2006). This privacy is achieved 

by adding some appropriately chosen random noise to the query’s answer in such a way 

that the information retrieved by the user is still accurate and at the same time no 

sensitive information is leaked about an individual. 

The rest of the report explains about the work done in each of the four 

deliverables for CS297. In Deliverable 1, I prepared a presentation on Differential 

Privacy based on Cynthia Dwork’s paper. In Deliverable 2, I added a statistical chart 



when clicked on most visited threads in Yioop.  In Deliverable 3, I developed a test suite 

of statistical attacks against query and discussion board statistics. And finally in 

Deliverable 4, I added differential privacy to number of views of each group's thread. 

 

DELIVERABLE 1 

The first deliverable was to understand the concept of Differential Privacy, the 

need for this mechanism in Yioop search engine and then prepare a presentation on the 

topic. Before implementing differential privacy in Yioop, there are few things that need 

to be understood such as the model used in computation of the privacy, basic techniques 

and theorems used to achieve differential privacy. 

Differential privacy ensures users participating in any form of data analysis by 

protecting their sensitive information. This doesn’t mean the data will be less accurate by 

hiding information about the user’s data. We will still be able to reveal useful information 

from the statistical database, while protecting the privacy of the individuals in the sample. 

 

Privacy	Data	Analysis	

There are two models for privacy mechanisms. In Non-Interactive Setting data collector 

(a trusted entity) publishes a “sanitized” version of the collected data (sanitization 

employs techniques such as data perturbation and sub-sampling, removing well-known 

identifiers such as names, birthdates, ssn). And in Interactive Setting data collector 

provides an interface through which users may pose queries about the data and get 

answers.  

 

While comparing Non- Interactive with Interactive approach, the results for Interactive 

approach are powerful. Non- Interactive approach is more difficult due to difficulty of 

supplying utility that has not yet been specified at the time the sanitization is carried out. 

 

 

 



Differential	Privacy	

A randomized function K gives ε-differential privacy if for all data sets D1 and D2 

differing on at most one element, and all S ⊆ Range(K),  

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S]  

	

A mechanism K satisfying this definition ensures the user participating in the database 

that any responses to queries is equally likely to occur even if the participant removed 

his/her data from the data set. For example, if an insurance provider refers to a database 

before making a decision of giving an insurance to certain user x, then the impact on the 

user x will remain the same whether or not user x opts in or out of the database.  

	

Achieving	Differential	Privacy	

 This section describes a concrete interactive privacy mechanism for achieving ε- 

differential privacy. The mechanism works by adding appropriately chosen random noise 

to the answer a = f(X), where f is the query function and X is the database. 

 

Exponential Noise and the L1-Sensitivity 

 In order to achieve ε-differential privacy, there is an addition of random noise whose 

magnitude is chosen as a function of the largest change a single participant could have on 

the output to the query function; we refer to this quantity as the sensitivity of the 

function. Sensitivity is a property of the function alone that is independent of the 

database. The technique is best when ∆f is small, i.e. introduce the least noise.  

For f : D → Rd, the L1-sensitivity of f is  

∆f = max D1, D2 || f(D1) − f(D2) ||  

for all D1,D2 differing in at most one element.  

 

The privacy mechanism, denoted as Kf for a query function f, computes f(X) and adds 

noise with a scaled symmetric exponential distribution with variance σ2 in each 

component, described by the density function  

Pr[Kf (X) = a] ∝  exp(− || f(X) – a || 1/σ)  

 



For f : D → Rd, the mechanism Kf gives (∆f/σ)- differential privacy.  

 

For query strategy F = {fρ : D → Rd }, the mechanism Kf gives (∆F/σ)-differential 

privacy.  

 

Deliverable 2 

The second deliverable was to add statistical chart when clicked on most visited 

threads in Yioop. This deliverable helped in getting familiar with Yioop coding 

framework and thus worked as learning curve for the rest of the deliverables. Currently, 

the statistics of the group including its threads and wikis are shown in terms of total 

number of views. One can see total views for each group, thread and wikis during the last 

hour, day, month and year.  

 

This deliverable extends the feature by showing the statistics in a chart. The chart 

spans total views into different time periods such as during the last 24 hours in a day, 30 

days in a month or 12 months in a year. There is a new link added to number of views in 

Group Statistics page. This links to a new page for viewing the chart showing the 

statistics of each group item. The link is added for ‘last day’, ‘last month’ and ‘last year’. 

When you click on ‘last day’, it shows the chart of number of views during the last 24 

hours. Similarly, when you click on ‘last month’, it shows the chart of number of views 

during the last 31 days. And when you click on ‘last year’, it shows the chart of number 

of views during the last 12 months of the year. Since, ‘last hour’ and ‘All time’ views are 

just one data, there is no link for these two statistics. 

 

There are few changes made in ImpressionModel. The current SQL statements that 

calculate total views for each time period have been slightly modified. Also a new 

function called ‘getPeriodHistogramData is added in ImpressionModel that calculates 

total number of views of given item for given time period. This is called from 



SocialComponent, which in turn uses the returned data from ImpressionModel, formats it 

and prepares the data that is then displayed via ManagegroupsElement. 

 

In order to view the latest statistics, make sure to turn on the Media Updater, 

which is only accessible by root. Go	to	Manage	Machines	->	Media	Updater	and	click	

on	‘Log	On’	to	turn	it	on.	Once	the	Media	Updater	is	turned	on,	you	can	view	the	

statistical	chart	via	Manage	Account	->	Click	on	any	group	->	Click	Statistics.	This	

can	also	be	viewed	through	Manage	Groups	page.	

	

The	following	chart	displays	statistics	of	group	‘TestGroup1’	about	the	

number	of	views	in	the	last	day. 

 
Figure	1:	Statistical	Chart 



Deliverable 3 

The third deliverable was to develop a test suite of statistical attacks against query 

and discussion board statistics. We needed to come up with some test suites so that we 

could identify the areas in Yioop where we could apply differential privacy for this 

project.  

Statistical attack is a method of deriving sensitive data from non-sensitive data. 

The number of entries returned by any query in a statistical database is either zero or any 

number up to total number of records stored on the database. The expected behavior of 

statistical query is to return non-individual results. Even though the results returned by 

the query don’t reveal data about a single individual or a record, it is possible to infer 

protected information by combining the results of several statistical queries into one. 

These attacks depend on the specific aggregate operator they use. 

There are two cases of inference, which often appear in databases: data 

aggregation and data association (Burtescu, 2009). Data aggregation problem arises 

whenever a set of information is classified at a higher level than individual levels of 

involved data. Data association problem arises whenever two values taken together are 

classified at a higher level than the one of each value. 

 

Types	of	attacks:	

1. Direct attacks are attacks that involve queries, which directly yields sensitive 

data item. These are successful only if the database does not implement any 

protection mechanism.  

2. Indirect attacks derive sensitive data from non-sensitive statistical results. These 

are attacks that are executed by combining multiple queries to extract other data 

than those that are displayed by individual query.  

 

 

 



Test suite of statistical attacks against query and discussion board 

statistics 
	

1. Finding out the user who has viewed a certain thread:  When a user belongs to a 

certain group and there are only two members in that group, then one user can 

easily figure out whether or not the other user has recently viewed any thread 

belonging to that certain group. The total number of views of any thread is always 

visible. This can be accessed via Group Feed page. Let’s say the current view of a 

thread is 100 and after refreshing it, it goes up to 101, then it’s obvious that 

another user has just viewed that thread. 

 

2. Finding out the user who has posted in a group’s thread: Let’s say any user can 

post to any thread of a group as an anonymous. But if there are only 2 users 

belonging to a certain group, even though a user posts as an anonymous, this user 

is revealed to another user. 

 

3. We can find out user id of a user who has posted any comments on any group 

discussion board. For example:  

• Click on any group (say ‘TestGroup1’). This shows list of current posts 

under that group. 

• Below each post, you can see ‘Last Post: <DD/MM/YYYY> - 

<USER_ID>’.  

• For the post (say ‘Welcome to TestGroup1 Thread’), you can see ‘Last 

Post: 17/09/2016 - testuser1’. Click on ‘testuser1’. You can get the user_id 

in the url or under ‘Query Statistics’:  

SELECT COUNT(DISTINCT GI.ID) AS NUM FROM GROUP_ITEM 

GI, GROUPS G, USER_GROUP UG, USERS P WHERE P.USER_ID='3' AND 

…. 

 

4. Indirect attack via SQL Query 



If we know that one user (user_id 2) has only 1 advertisement, we can find budget 

put by user_id 2 

a. SELECT SUM(BUDGET) FROM Advertisement WHERE user_id != 2; 

b. SELECT SUM(BUDGET) FROM Advertisement 

 

By taking a difference of (a) and (b), we can get the Budget put by user_id 2 

 

Deliverable 4 

Deliverable 4 starts the first implementation of Differential privacy. It adds 

differential privacy to number of views of each group's thread. Basically, it fuzzifies the 

number of views of each thread of the group by using epsilon differential privacy 

according to Cynthia Dwork's paper on Differential Privacy. This is done by first 

checking the current code that calculates the number of views of each thread.  Then some 

noise is added to the current implementation. 

 

A new function addDifferentialPrivacy is added to the base controller that actually 

implements the ε-differential privacy. The privacy mechanism, denoted as Kf for a query 

function f, computes f(X) and adds noise with a scaled symmetric exponential 

distribution with variance σ2 in each component, described by the density function 

Pr[Kf (X) = a] =  exp(− || f(X) – a || 1/σ)  

 

Here, if the actual value is n, the value of ‘a’ is taken between the range 0 and 2n + 1. 

Then an integrated value is calculated within that range for the equation above. And a 

random value is selected between 0 and the integrated value in order to get fuzzified 

result. 

 

An experiment is conducted based on the equation above to check how much the 

calculated view deviates from actual number of views. This experiment uses different x-

axis values for the number of views starting with 1, 5, 25, 625, 3125, 15625, 78125, 



390625 and 1953125. For each x-axis value, there are 50 y-axis values that are generated 

by the equation above. The following chart uses the scatter plot that clearly shows how y-

axis values are scattered for each x-axis value. As the value of x-axis gets larger, y-axis 

values come closer. 

 

 
Figure	2:	Fuzzy	Data	Experiment 

 

The function addDifferentialPrivacy is called from controller’s SocialComponent. There 

is also an update in Item_Impression_Summary table. Now there are two additional 

columns FUZZY_NUM_VIEWS and TMP_NUM_VIEWS. A flag called 

‘DIFFERENTIAL_PRIVACY’ is also added in Config.php to turn on/off differential 

privacy as it may be required to	use	actual	data	instead	of	fuzzified	data.	

	

	

	

	

	



CONCLUSION 

In conclusion, it was a good experience working on an interesting topic of ‘Differential 

Privacy’. I get to learn about the concept of differential privacy and the importance of 

privacy-preserving statistical database. Especially when today’s technological world 

requires so much of statistical data in every field, it becomes extremely important to not 

reveal any individual’s sensitive information while still be able to continue working 

accurately with the statistical data. 

 

While working on this project, I got familiar with Yioop’s search engine and the coding 

framework used in this project. I learned how current statistics about the group is 

computed, stored in the database and then fetched from the database. I used this 

knowledge to develop a chart that displays the statistics of the group such as number of 

views of groups, threads and wikis during the last hour, week, month and year. Then I 

came up with some use cases of statistical attacks against query and discussion board 

statistics. This gave an idea of where in Yioop can we possibly apply differential privacy. 

The first place where I started an actual implementation of differential privacy was in 

Group feeds page where the total number of views of each thread is displayed. Now this 

piece of information has been fuzzified in order to prevent any one to figure out actual 

user’s viewing activity. 

 

For the next semester, we will explore in depth about other model, techniques and 

theorems used in the computation of the privacy in order to achieve differential privacy. 

We can also identify any possible areas in Yioop search engine where we can implement 

differential privacy besides the number of views that was implemented this semester. We 

need to do further research on different mechanisms mentioned by Cynthia Dwork in her 

paper and use an appropriate mechanism in Yioop. 
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