
A Chatbot Framework for Yioop

A Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements of the Degree

Master of Science

By

Harika Nukala

May 2017

 2

© 2017

Harika Nukala

ALL RIGHTS RESERVED

 3

The Designated Project Committee Approves the Master’s Project Titled

A Chatbot Framework for Yioop

by

 Harika Nukala

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

 May 2017

Dr. Chris Pollett Department of Computer Science

Dr. Robert Chun Department of Computer Science

Dr. Leonard Wesley Department of Computer Science

 4

ABSTRACT

A CHATBOT FRAMEWORK FOR YIOOP

by Harika Nukala

Over the past few years, messaging applications have become more popular than Social

networking sites. Instead of using a specific application or website to access some service,

chatbots are created on messaging platforms to allow users to interact with companies’ products

and also give assistance as needed. In this project, we designed and implemented a chatbot

Framework for Yioop. The goal of the Chatbot Framework for Yioop project is to provide a

platform for developers in Yioop to build and deploy chatbot applications. A chatbot is a web

service that can converse with users using artificial intelligence in messaging platforms. Chatbots

feel more like a human and it changes the interaction between people and computers. The

Chatbot Framework enables developers to create chatbots and allows users to connect with them

in the user chosen Yioop discussion channel. A developer can incorporate language skills within

a chatbot by creating a knowledge base so that the chatbot understands user messages and reacts

to them like a human. A knowledge base is created by using a language understanding web

interface in Yioop.

 5

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my project advisor, Dr. Chris Pollett, for

his guidance, motivation and immense knowledge during this project. Without his precious

support, this project would have not been possible. I want to take this opportunity and extend my

appreciation to everyone who helped me in this project secondarily.

I sincerely thank my committee members, Dr. Robert Chun and Dr. Leonard Wesley, for their

valuable suggestions and encouragement. Thank you all for the support.

 6

Table of Contents

INTRODUCTION .. 9

BACKGROUND ... 11

2.1 Facebook bot framework ..11
2.2 Microsoft bot framework ..13

DESIGN AND ARCHITECTURE .. 15

IMPLEMENTATION .. 20

4.1 Chatbot API ...20
4.2 Language Understanding API ..22

4.2.1 Plan bot story ..23
4.2.2 Create a Bot Story ..23
4.2.3 Add Intents ...23
4.2.4 Add Entities ..25
4.2.5 Add Expressions ...25

4.3 How the Language understanding API works ..28
4.3.1 Classifying intent ...29
4.3.2 Extracting Entities ..33

TESTING ... 36

CONCLUSION AND FUTURE WORK .. 41

REFERENCES .. 43

 7

List of Figures

Fig. 1. Data Flow of Facebook Bot Framework ... 12	

Fig. 2. Control Flow of Microsoft Bot Framework .. 14	

Fig. 3. Yioop's Chatbot Framework Design ... 15	

Fig. 4. Architecture of Yioop’s Chatbot Framework .. 16	

Fig. 5. Control Flow between two main components of Yioop’s chatbot Framework 17	

Fig. 6. Schema of a Bot Knowledge Base .. 18	

Fig. 7: Sample Knowledge base .. 19	

Fig. 8. Web interface to create a bot user account .. 21	

Fig. 9. Authentication flow of a bot web service .. 22	

Fig. 10. Web interface to create a Bot story and add an Intent ... 24	

Fig. 11. Web interface to add an Entity .. 25	

Fig. 12. Web interface to edit an entity and add new entity values .. 26	

Fig. 13. Web interface to add an Expression and label it ... 27	

Fig. 14: Execution flow of language processing ... 29	

Fig. 15. Function to classify intent .. 30	

Fig. 16. Function to extract entities .. 34	

Fig. 17. Knowledge base of weather bot for experiment 1 ... 37	

Fig. 18. Conversation between a user (John) and a weather bot (wbot) in experiment 1 38	

Fig. 19. Entity knowledge base of weather bot after experiment 1 .. 38	

Fig. 20. Conversation between a user (John) and a weather bot (wbot) in experiment 2 39	

Fig. 21. Expression Knowledge base of weather bot after experiment 2 40	

Fig. 22. Entity knowledge base after experiment 2 .. 40	

 8

List of Tables

Table 1. Expression ... 32

Table 2. Term Frequency .. 32

 9

CHAPTER 1

INTRODUCTION

A chatbot is a computer program that can converse with humans using artificial

intelligence in messaging platforms. The goal of the project is to design and develop a chatbot

framework which provides a facility for developers to create chatbots for Yioop. Yioop is an

open source, PHP search engine that can be configured to allow users to create discussion

groups, blogs, wikis…, and so forth. Yioop provides all the basic features of web search portal. It

has its own account management system with the ability to set up groups that have discussions

boards. Groups are collections of users that have access to a group feed. The user who creates a

group is set as the initial group owner. Posts are grouped by thread in a group containing the

most recent activity at the top [6].

Chatbots are created using two powerful APIs in Yioop. One is the chatbot API, that acts

as a connecter and routes messages between users and chatbot. By default, a chatbot is simple. A

developer needs to program a bot service to define their behavior and make them intelligent. An

artificially intelligent bot can understand the meaning of a user request and converse on

messaging platforms. We offer an API called Language understanding API that makes bots more

like a human by providing functionalities that recognize a user’s intent by using machine

learning concepts and allow bot to perform required action. The entities are key information to

perform an action. These entities are extracted from user’s message by using matching keywords

or the similar wording pattern, from an existing database.

A developer must have expertise and special knowledge in a few areas like machine

learning and artificial intelligence to create a chatbot and connect it with users in a

 10

conversational interface. To make it easier, companies like Facebook and Microsoft introduced

bot frameworks.

The rest of the report is organized as follows. Chapter 2 provides background information

on Facebook bot framework and Microsoft bot framework. Chapter 3 outlines the architecture

we designed to build the chatbot Framework for Yioop. Chapter 4 describes high level

implementation of Yioop Chatbot Framework and outlines approaches and algorithms used to

build this system. Chapter 5 discusses integration of required components by providing an

example chatbot created on Yioop called Weather bot and experimental results. Chapter 6

concludes the topic.

 11

CHAPTER 2

BACKGROUND

In this chapter, we discuss the famous bot frameworks which are available to public to

get an idea of a chatbot framework. The bot frameworks are developed to solve the problems met

by the developers while writing bots. Those are: Bots require language understanding skills; and

they must connect to the users in a conversation interface, the user chooses. It is difficult to deal

with these requirements by developers. Bot framework provides tools and services which makes

a developer's job easier.

Facebook and Microsoft have large-scale bot frameworks designed and developed to

produce a mass number of chatbots. These frameworks provide tools that help developers to

build bots and define their behavior using a programming language.

2.1 Facebook bot framework

Billions of users use Facebook Messenger, so Facebook bot uses Messenger as the

messaging platform. Facebook Messenger platform provides Receive and Send API that allows

developers to create bots in order to interact with businesses [2]. These APIs not only support

text conversations, but also multimedia conversations like sending images, gifs, videos, and so

forth. To enable developers to create more complex bots and make use of machine learning

which helps bot understand intent of a user’s message, Wit.ai, a Facebook’s Bot Engine can be

incorporated [1]. This bot engine relies on the idea of machine learning, therefore, makes

Facebook bots more powerful. Sample conversations must be provided to train Wit.ai’s intent so

that the bot can handle many different variations of a sentence. These sample conversations are

called Stories, and include bot actions. Bot Engine builds a machine learning model that works

 12

with stories in the dataset. As the dataset grows, the model becomes better. Bot Engine predicts

the next action of a bot at every conversation. The prediction depends on the stories, the bot has

trained. The definition of the action must be in the application code. The code can be written in

any programming language and call any external API as you need.

Fig. 1. Data Flow of Facebook Bot Framework

The Facebook bot interaction with other components is shown in Figure 1 and explained

below. A user sends a message “what is weather in Seattle” to Chatbot service through Facebook

Messenger (a Chat Client). The Chatbot service posts the message to Wit.ai (a Machine

Learning, Natural Language Processing Engine). Wit.ai extracts user’s intent “getWeather” and

entities “Seattle” from the message and sends them back to Chatbot service. An Intent is used to

call upon external data service if required to find desired data. Chatbot service builds data into a

proper response “The weather is 49 degrees and rain in Seattle” and sends to Facebook

Messenger for display.

 13

2.2 Microsoft bot framework

Microsoft announced its Bot Framework roughly at the same time as Facebook. As with

the Facebook’s offering, Microsoft provides an SDK that can be viewed as two components:

1. Bot Connector, the integration component

2. LUIS.ai, the natural language understanding service

These two components are independent to each other. Bot Connector allows bots to send

and receive messages to messaging platforms. This component helps to associate with various

conversational channels like Facebook Messenger, Slack, Skype, Email, GroupMe and SMS [3].

Microsoft Bot Framework is a comprehensive offering to build and deploy chatbots for users to

enjoy conversation experiences.

The diagram below shows how each component interacts. A user chooses a channel to

send a message to a bot. The message is directed through the Microsoft Bot Connector, which

sends a POST request to a bot web Service. The request sent by a bot connector to a bot service

has a user’s message. Once the bot service receives the request, it performs necessary action and

reply back to the user. A bot is not intelligent itself. The intelligence comes when we incorporate

Language Understanding Intelligent Service LUIS, Natural Language Processing as a Service is

one of the Cognitive Services provided by Microsoft. When a bot is integrated with LUIS, the

message received from the user is sent to LUIS to understand what user’s intention and then

reply back accordingly.

 14

Fig. 2. Control Flow of Microsoft Bot Framework

We have discussed two different bot frameworks. Both of these bot frameworks provide

tools to train and build bots. Chatbots created using Microsoft Bot Framework can be published

over various communication platforms as compared to the chatbots created using Facebook Bot

Framework, only work on the Facebook Messenger platform. The Facebook bot Framework uses

Wit.ai and the Microsoft bot Framework uses Luis.ai as a natural language processing engines

respectively. Both wit.ai and luis.ai are external web services which are consumed as a backend

service in chatbot applications using a REST call. This makes interactions between users and

bots slower.

The aim of our project is to create a Chatbot Framework for Yioop, with a similar kind of

end goal in mind. It is advisable to minimize the external API calls; therefore, we created our

own Language processing API in Yioop to make conversations faster between users and bots,

which we will discuss further. In the next chapter, we will discuss about the design and

architecture of this project.

 15

CHAPTER 3

DESIGN AND ARCHITECTURE

As we have already discussed, Bots require keywords for processing and taking action

based on given keywords or conversation context. They must also have language skills for

communication, and they should also interact with users over some channel. The Yioop’s

chatbot framework provides chatbot API and language understanding API to solve these

problems.

Fig. 3. Yioop's Chatbot Framework Design

Figure 3 shows design of the Yioop’s Chatbot Framework we implemented. The user

requests or chats with bot in a message interface. Like Facebook, Yioop provides a

conversational interface to connect users with bots called Yioop discussion group, which is the

 16

presentation layer. The two APIs that are responsible to send and receive messages, process

user’s request and apply language processing skills are in the service layer. The bot web service

handles the POST requests and performs the respective action. Data layer has the bot knowledge

base (See Figure 7).

The integration and control flow between the components of Yioop is shown in the

Figure 4 and explained below.

Fig. 4. Architecture of Yioop’s Chatbot Framework

 The User converses with a chatbot using Yioop discussion group as a messaging

platform. The user’s message is routed through the chatbot framework. The Framework contains

two APIs which receives the user’s message, requested user details and bot details. These APIs

process the message and invokes the bot by sending a POST request to the bot web service with

the processed message. The Control flow between these two APIs is shown in the Figure 5.

 17

Fig. 5. Control Flow between two main components of Yioop’s chatbot Framework

 The Chatbot API allows developers to create chatbots and configure them in Yioop

groups to send and receive messages to thread. Users can interact with a chatbot from any group

thread that a bot is configured to work for. A developer can create a knowledge base using

language understanding web interface to make bots understand and react to natural language

interactions more like a human. Language Understanding API helps bot to understand the user’s

intent and extract knowledge from the messages which helps to improve bot’s capability.

The Schema of a Bot Knowledge storage is shown in the Figure 6. The Bot Knowledge

Storage contains intents, entities and the respective set of expressions which are specific to the

bot domain/story. This knowledge base is like a brain for a bot which has the knowledge what

bot already learnt or trained from developers and it helps the bot to deal with new conversations.

The new conversations are continuously stored in the knowledge base because they are the new

learnings for bot.

 18

Fig. 6. Schema of a Bot Knowledge Base

INTENT

ENTITY

 19

EXPRESSION

Fig. 7. Sample Knowledge base

The functionalities of the two APIs and use of the knowledge base are explained in the next

chapter in more detail.

 20

CHAPTER 4

IMPLEMENTATION

 In this chapter, we discuss the high-level implementation of the two APIs of the Yioop

Chatbot Framework and the integration between them.

4.1 Chatbot API

The chatbot API is a service that allows bot users connect easily with the users on a

group discussion only when the bot users already joined the group. This service receives

messages from the thread and passes them to chatbot application and then sends responses back

to the thread. This service calls Language understanding API to generalize the user request so

that bot understand it.

To configure a bot, as a first step, the administrator must enable bot users feature in

server settings of Yioop. The next step is to create accounts for bots. The procedure of creating a

bot user is similar to creating a normal user. Bot users have many of the similar features as the

normal users in Yioop. They have profile photos, names, and passwords, they can be specified in

a post, they can reply to the post messages, and they can be invited to and removed out of

groups. The main difference is that the bot users are controlled programmatically by a bot unique

token and bot callback URL. The Callback URL represents the chatbot application endpoint.

When the user sends a message, the chatbot API posts the request to Callback URL, so a bot

Callback URL should be specified when you create a bot user (see Figure 7).

 21

Fig. 8. Web interface to create a bot user account

Yioop supports group conversations with multiple users, including other bots. In the

group thread, a user starts the conversation and bots simply responds to messages that the user

sends. In order to converse with a bot in a group, the bot users must have joined the group. To

converse with the bots, a user has to mention the bot name with ‘@’ in the message

(@bot_name). The message is processed to get the values of the required properties like the

username, bot callback URL, bot unique token, and conversation. If the requested bot already

joined the group, the message is sent to bot web service (Bot Callback URL).

All of the requests sent to a bot’s endpoint must include the user’s message and a bot

unique token. A cryptographic hash signature is used for the bot unique token and sends it to

endpoint for authentication. To ensure that posts made to the bot’s endpoint by chatbot API

actually came to the requested bot, it is highly recommended that chatbot application verifies the

authenticity of the requests. To verify the authenticity of the token sent by the chatbot API, the

bot application has a procedure that extracts the token from the HTTP POST request, parses the

token, verify its contents, and verify its signature (see Figure 8). The application checks whether

 22

token has not expired and has a valid cryptographic signature. If the token does not meet these

required conditions, bot terminates the request by returning “There was a configuration issue

with the query” message.

Fig. 9. Authentication flow of a bot web service

4.2 Language Understanding API

The main problem is the capability of the computer to understand what a user wants in

human-computer conversations. Language Understanding API is designed and developed to

allow developers of Yioop to create chatbot applications that can understand natural language

and react to user requests accordingly. This API will take the sentences sent by user in a

conversation and interpret intents (the intentions user convey) and extract entities (key

information relevant to the intent) using knowledge base.

By using the Language Understanding web interface, a user can create a knowledge base

for a chatbot with a set of intents, entities and the respective set of expressions that are relevant

to chatbot story’s domain. For example, for a travel agent chatbot, a user might say “Book me a

flight from San Jose to New York.” In this expression, the user’s intention is to “BookFlight”,

“San Jose” and “New York” are the entities. An Intent is defined as the necessary action and

 23

usually contain a verb, in this case “Book”. The entity is information relevant to the intent, in this

case “San Jose” and “New York” are the source and destination location entities. Example

expressions has to be provided for every intent and label the entities, which helps to predict

intent for new expressions and operates the respective action.

The following sections discusses on how to create a knowledge base for a chatbot.

4.2.1 Plan bot story

All Chatbot stories are focused on a domain-specific subject, for example, booking of

flights, get weather updates or get stock prices, etc. It is preferable to plan a bot story before

creating it in Yioop.

Consider an example of a weather chatbot, user should determine the intents and entities

that are significant to weather chatbot task. In a weather chatbot story, users would like to get an

update of the weather at specific location. Thus, “getWeather” would be the relevant intent. For

weather updates, some key information is needed such as the location, date and time and these

are considered as entities. A user should create a bot story with an outline of intents and entities

and define these intents and entities for example expressions in the interface.

4.2.2 Create a Bot Story

A user can create and manage a bot story in the respective bot user account. One can

create bot story by clicking Bot Story on the left navigation bar of the Yioop web page. The

Figure 9 shows an example weather bot story. Start the bot story by adding intents.

4.2.3 Add Intents

An Intent is the intention or necessary operation that is conveyed by the user through the

sentences. Language understanding API service matches the user request with Intents of the bot

 24

story to determine the action that should be performed by a chatbot. So, the intents must be

added with example expressions to help chatbot understand user requests and respond to users

properly.

The chatbot should be taught to identify user request that are relevant to the bot story. For

example, a weather chatbot has learnt “What is weather in San Jose” with “getWeather” intent, if

a user requests “Get me weather info of Seattle” to a weather chatbot, the bot should recognize

the statement and matches to “getWeather” intent and perform necessary operation.

A user who operates the bot account can add and manage intents from the Intents tab in

the bot story page. The following is the procedure for adding intent in a Weather bot story page.

To add an intent:

1. Open a bot user account (e.g. Weather Bot) and click Bot story in the left panel of

the web page, and then click Intents tab.

2. Type in the Intent box and click save.

One can edit or delete intents from the chatbot’s intents list (see Figure 9).

Fig. 10. Web interface to create a Bot story and add an Intent

 25

4.2.4 Add Entities

Entities are the key information for a domain-specific chatbot. An entity is a collection of

similar objects like a location, person’s name, number. Entities are the key data relevant to an

intent and they are necessary for a bot to perform a specific task. For example, in a weather bot,

the entities may include “location”, “date” and “time”, which are key parameters to the

“getWeather” intent. In a flight booking bot, the “location”, “date”, “airline”, “travel class” and

“tickets” are key information to the “BookFlight” intent. Therefore, these parameters are added

as entities in a bot story (see Figure 10). A user should create entities that are relevant to the

intent and required by a chatbot to perform a task.

To add an entity:

1. Login to the chatbot account and click Bot Story in the left panel.

2. Go to the Entity tab in the page and type in Entity box and then click Save.

Fig. 11. Web interface to add an Entity

One can edit or delete entities from the Entity list of a chatbot story on the Entity tab.

Figure 11 shows the web interface to edit an entity and add new entity values for an entity. Entity

values are like instances of a class. For example, location is an entity and San Jose, Chicago,

 26

Seattle are the entity values of location entity. One can add any number of entity values for an

entity.

Fig. 12. Web interface to edit an entity and add new entity values

4.2.5 Add Expressions

Expressions are example sentences of user requests that a chatbot is expected to grasp

and understand. For each intent, there must be example expressions added in a bot story. The

Language Understanding API uses these expressions to teach chatbot understand similar

contexts. Adding more example expressions and labeling them improves the ability of a chatbot.

Including as many sentence variations as user tend to say or request to a specific bot,

enhances the chatbot’s language understanding experience. Also, adding more relevant example

expressions to an intent for a bot story helps the language understanding API in predicting the

relevant intent for a new expression. For example, the expression “what is weather in Seattle”

may have variations such as “Get me weather forecast of Seattle”, “Is it sunny or rainy in

 27

Seattle”, “Tell me the weather in Seattle”, “How is weather in Seattle”, and “Is it raining in

Seattle”.

Expressions are added by selecting the relevant intent on the Expression tab of the bot

story page. The following steps describe how to add example expressions to an intent (e.g.

“getWeather” intent for the Weather bot).

To add an expression:

1. Login to the chatbot account and click Bot Story in the left panel.

2. Go to the Expression tab in the page and Select getWeather from the Intent list.

3. Type the expression in Expression box.

4. Label Seattle as entity value to the entity name location (see Figure 12). If there is no

entity name to label, then add entity name in the Entity tab (Check Add Entities section,

to add an entity).

Fig. 13. Web interface to add an Expression and label it

 28

4.2.5.1 Label Expressions

 Expressions are labeled in terms of intents and entities. It can be done before or after

adding expressions. The web interface to add and label expression is shown in Figure 12.

Intent label

Selecting an intent while adding an expression means that it is labeled under this intent.

That is how an expression gets an intent label. A user can change the intent label of one or more

expressions. To do this, select the expression that needs to be edited, click edit expression, and

then select a different intent from the list of intents.

Entity label

Entities need to be added in Entity tab in order to label them on an expression in a bot

story. We map the word that needs to be labelled from an expression to an existing entity. For

example, the expression “What is weather in Seattle” is mapped to the “getWeather” intent in

Weather bot story, map “Seattle” to the “Location” entity. “Location” must be added as the

entity in the Entity tab.

4.3 How the Language understanding API works

There are two things that the Language understanding API can possibly do — Intent

Classification and Entity Extraction. We will discuss them below.

 29

Fig. 14: Execution flow of language processing

4.3.1 Classifying intent

Given a sentence, this API classifies the sentence into one of the trained intents. The way

we achieve this is by defining the intents and training with example sentences and manually

classifying them which is explained above. This type of learning is called supervised learning

and the algorithm used to classify is TF-IDF, term frequency-inverse document frequency. The

function implemented to classify intent is shown in Figure 13 and discussed in detail below.

The first step is to break a user request into tokens to classify the intent in the Language

Understanding API. For the most part, English tokens are delimited by whitespace. The goal of

the tokenizer is to break the character sequence into a list of words. The example sentence “What

is the weather in Seattle” of a weather bot is converted into tokens as shown below.

[What, is, the, weather, in, Seattle]

Note how most tokens are words you would find in the dictionary. The next step is to remove

stopwords from the list of tokens which helps in generalizing the context. Stop words include

 30

words which are prepositions, articles, pronouns and conjunction. These are usually most

occurring words. The list becomes after removing stopwords [weather, Seattle].

Fig. 15. Function to classify intent

4.3.1.1 Stemming

 The next step is to apply stemming process to the list of terms that we have after

removing stopwords. Stemming is the process of removing the ends and makes the set of words

to its root word [7]. For example, the words like stems, stemming, stemmer and stemmed

reduces to its root word stem. This process helps in generalizing the words in a sentence.

4.3.1.2 TF-IDF

The algorithm used to classify intent is described here. First, we assign a weight to each

term in a set of sentences of an intent, which represents sum of number of occurrences of that

term in each sentence ‘s’. We evaluate a score between a query term ‘t’ and intent sentences ‘S’,

based on the weight of ‘t’ in ‘S’. This procedure is denoted as term frequency tft, S where

 31

subscripts signifying term t and set of sentences S, which is equal to summation of tft, s where

subscripts referring term t and a sentence s all together [6].

𝑡𝑓#,% = 	S(e%𝑡𝑓#,(

The intent frequency dft defined to be number of intents containing a term t in chatbot

story. The total number of intents per chatbot is denoted as N, we define the inverse document

frequency idf of a term t as

𝑖𝑑𝑓# = 𝑙𝑜𝑔	(
𝑁

1 + 𝑑𝑓#
)

In simple words, 𝑖𝑑𝑓# = 𝑙𝑜𝑔		(#3#45	6789:;	3<	=6#:6#(
>?#3#45	6789:;	3<	=6#:6#(@4A=6B	#:;8	#

)

To get a composite weight for each term in set of sentences of each intent, we combine

term frequency and inverse document frequency. The tf-idf is defined as the product of term

frequency and inverse document frequency.

𝑡𝑓 − 𝑖𝑑𝑓#,% = 𝑡𝑓#,%´	𝑖𝑑𝑓#

tf-idft, S assigns a weight to term t in all the sentences of an intent. The weight is highest

when term t occurs many times within a small set of sentences and lower when term t occurs few

times in a set of sentences [6]. The idea is each intent is viewed as a vector with one component

having each term with a corresponding weight that is given by tf-idf. For query terms that do not

occur in any set of sentences, the weight is given 0.

The score of each intent is the sum of tf-idf weight of each query term in set of sentences.

𝑆𝑐𝑜𝑟𝑒 𝑞, 𝑆 = 	å#eI𝑡𝑓 − 𝑖𝑑𝑓#,%

The scores of each intent is calculated and returns the intent which has highest score. The TF-

IDF model is explained with an example below.

 32

Suppose the tables shown below are knowledge storage tables for a chatbot, the user

requesting. EXPRESSION table having intents and respective Expressions and TERM

FREQUENCY table having terms per intent and their frequencies which are calculated by using

term frequency formula 𝒕𝒇𝒕,𝑺

Table 1. Expression

Intent Expression

getWeather What is weather in &location

getWeather How is weather in &location

getWeather Is it rainy in &location

BookFlight Book flight from &source to &destination

Table 2. Term Frequency

Intent Term Frequency

getWeather weather 2

getWeather rainy 1

BookFlight Book 1

BookFlight flight 1

When a user requests “Tell me the weather in Seattle”, the tf-idf value is calculated for all the

intents with respective to chatbot by considering each valuable term in query (stopwords are

removed).

As we can see the Expression table has two unique intents, so value of N is 2 (N=2).

Terms of a query are [weather, Seattle] after removing stopwords.

 33

For term weather, the total number of Intents with this term is one i.e., getWeather. Therefore,

idf (weather) = 1 + log(P
>?#3#45	6789:;	3<	=6#:6#(Q=#@	#:;8	𝒘𝒆𝒂𝒕𝒉𝒆𝒓

)

 = 1 + log	(W
>?>

) = 1

tf (weather, getWeather) = frequency of term weather in Term Frequency table = 2

tf (weather, getWeather) = 0

Now the tf-idf’s of the term weather for each intent are calculated as:

tf-idf (weather, getWeather) = tf (weather, getWeather) * idf (weather) = (2*1) = 2

tf-idf (weather, BookFlight) = tf (weather, BookFlight) * idf (weather) = 0

tf-idf’s of term Seattle for both intents are 0, as it never occurred in any expression.

Scores of each intent for query ‘weather Seattle’ is calculated below:

Score (query, getWeather) = sum of tf-idf’s of getWeather intent = 2

Score (query, BookFlight) = sum of tf-idf’s of BookFlight intent = 0

Since the score of getWeather Intent is highest, getWeather is returned as intent for new query.

4.3.2 Extracting Entities

The Language understanding API helps us by extracting words called entities from the

given sentence. This API uses pattern matching algorithm to detect entities. This is achieved by

training multiple sentences for each intent and labelling respective entities manually. The

function implemented to extract entities is described in Figure 14.

Pattern matching

We use pattern matching and regular expressions heavily in our framework to extract the

entities from the sentences. The entities which are special information in sentences are then used

 34

to perform specific actions based on the use case. We rely on PHP language’s regex capabilities

to achieve this task. Regex is like a mini syntactical language which dictates how the overall

structure of the sentence should be and then we could specify the relative position of entities

inside those sentences.

Fig. 16. Function to extract entities

In this API, we provide a regular expression implementation that generalizes the

sentences that are trained. The sequence of tokens that are labelled while adding an expression

above are replaced with regular expressions in the form of groups.

This API matches the user’s message with a similar wording pattern and apply pattern

matching. Based on the sub-patterns which are specified in the form of groups, it can extract

what characters/words have been matched out of the sentence. The extracted words are called

entity values.

 35

For example, the expression we trained is “what is weather in Seattle” and we labelled

the “Seattle” to the “location” entity. So, the expression generalizes to “what is weather in

&location”. When a user asks, “How is the weather in San Jose”, the classification algorithm

gives the user’s intent as “getWeather” and then the API replaces labels in the sentences of the

predicted intent in the knowledge storage to the regular expression in the form of groups. The

trained sentence becomes “what is weather in (.*)”. The pattern matching technique is applied on

the trained sentence and the user’s message and extracts “San Jose” as an entity value for the

“location” entity. These extracted entities are sent as a POST request to the bot web service to

perform “getWeather” action. The result of this action is sent as a response to the user. The

experimental results of these functionalities are shown in the testing section.

 36

CHAPTER 5

TESTING

The main purpose of this project is to provide a chatbot framework for Yioop that helps

developers to create and develop chatbots. After integrating the chatbot framework in the Yioop

search engine, we performed some experiments to see how chatbot works and how they interact

with users in Yioop discussion groups.

We created sample chatbot accounts for weather bot user as wbot and stock bot user as

StockBot using bot configuration settings. To evaluate the chatbot framework, we need to create

chatbot applications. We created a Weather Bot and Stock Bot services with unique bot token for

authenticity. These bot service URL’s and bot tokens must be provided as bot token and bot

callback URL’s in respective bot accounts in order to have a conversation with users in Yioop

discussion groups. These bots must be added to the Yioop groups the user chosen to interact.

These chatbots are focused entirely on providing information and completing tasks for

the humans they interact with. When a user requests a bot, the message is routed through chatbot

API and language understanding API which recognizes the user’s intent and extract entities by

using existing knowledge base. This intent and entities are used to perform required action.

The Weather Bot service performs action that intend to give weather updates for user

requested location. This bot service calls the yahoo weather service which is an external API to

get weather information. The Stock Bot service calls the yahoo finance, an external API to get

the current stock price of the user asked stock symbol.

Suppose the Weather Bot is trained with two sentences. The knowledge base of the

weather bot is shown in the figure below. The bot has learnt two expressions with getWeather

intent.

 37

Fig. 17. Knowledge base of weather bot for experiment 1

In the Experiment 1, a user interacts with weather bot in a weather updates thread as

shown in the figure below. Here, the user named john is requesting weather updates for a couple

of locations by tagging weather bot as @wbot in the message and weather bot is responding with

the weather information.

 The bot recognized ‘Seattle’ and ‘San Jose’ as entity values for location entity and

performed respective actions. Experiment 1 is passed as the bot responded with weather

information for the requested location as shown in Figure 16. The Entity knowledge base is

updated with new entity values ‘Seattle’ and ‘San Jose’ as shown in Figure 17.

 38

Fig. 18. Conversation between a user (John) and a weather bot (wbot) in experiment 1

Fig. 19. Entity knowledge base of weather bot after experiment 1

 39

In the Experiment 2, a user tried querying the Weather Bot with a different variation of a

sentence which is not in the bot’s knowledge base. The conversation between the bot and the

user in Experiment 2 is shown in Figure 18.

Fig. 20. Conversation between a user (John) and a weather bot (wbot) in experiment 2

 The bot recognized intent and entities for the new expression and performed getWeather

action and responded with weather information. The Expression knowledge base is updated with

the new expression, see Figure 19. And new entity values are stored in Entity knowledge base,

see Figure 20.

 40

Fig. 21. Expression Knowledge base of weather bot after experiment 2

Fig. 22. Entity knowledge base after experiment 2

 41

CHAPTER 6

CONCLUSION AND FUTURE WORK

This project is an attempt to design and implement a chatbot framework for Yioop. We

have seen how the bot framework is useful for developers to add new chatbots, train them

quickly in the Yioop social site. The ultimate aim is to help Yioop developers to create chatbots

which are more human like when it interacts with users and make conversational experience

more enjoyable.

The end goal of this project is kind of similar to the Facebook bot framework and

Microsoft bot framework. The chatbot framework is implemented and integrated with Yioop.

This framework provides services to Yioop developers to build, configure and connect bots that

can interact with users in a Yioop discussion channel. The development of bots using this

framework is so easy, that every developer without understanding of machine learning or

artificial intelligence can build more sophisticated bots. Whenever a user sends a message to our

bot, he has an intent. For instance, if user types “I want to order a pizza” his intent is

“OrderPizza”, “I want to rent a car” intent is “RentCar” etc. Given a sentence, Language

understanding API will classify the sentence into one of the trained intents and predicts the top

scored intent. The way we achieve this is by defining the intents and training some sentences

(called expressions) by manually classifying them using a web based console. The bots can be

trained with new scenarios whenever it is required. This API uses Term Frequency and Inverse

Document Frequency (TF-IDF) classification algorithm to classify intent. The entities which are

necessary information to perform an action, are extracted from the given sentence by using

pattern matching technique.

 42

We have tested this framework by creating two example bots: weatherbot and stockbot.

The results show that tf*idf can be used effectively to identify words that typically describe

intent of user’s request. This outcome shows that the words in the sentence reveals useful

information on user’s intention. To test the effectiveness, we asked several users to try our

chatbot framework and give their opinion. All the users were satisfied and gave a positive

feedback by seeing bot learning from the conversations.

As newspapers market, bots are the new apps, chatbots will take over the world in the

future and how humans interact with the internet. In the future, every website would have a bot

assistant and provide a new way to expose information per need basis of user.

We are excited to provide a preliminary availability of the chatbot Framework for Yioop.

This framework can be extended and improved by adding tools or facilities like conversation

state management, scheduled conversations, language specific bots and a bot search.

 43

REFERENCES

[1] Wit.ai, “docs,” 2016. [Online]. Available: https://wit.ai/docs

[2] developers.facebook.com, “docs,” 2016. [Online]. Available:

https://developers.facebook.com/docs/messenger-platform

[3] docs.botframework.com, “core-concepts,” 2016. [Online]. Available:

https://docs.botframework.com/en-us/core-concepts/overview/#navtitle

[4] docs.microsoft.com, “LUIS,” 2017. [Online]. Available:

https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/Home

[5] api.slack.com, “bot-users,” [Online]. Available: https://api.slack.com/bot-users

[6] Seekquarry.com, “Resources,” 2015. [Online]. Available:

https://www.seekquarry.com/p/Resources. [Accessed: 09- Sep- 2015].

[7] C. Manning, P. Raghavan and H. Schütze, Introduction to information retrieval, 1st ed.

Cambridge: Cambridge University Press, 2009. [Online]. Available:

https://nlp.stanford.edu/IR-book/

[8] Pattern matching. (2017). Retrieved from https://en.wikipedia.org/wiki/Pattern_matching

