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ABSTRACT 

A CHATBOT FRAMEWORK FOR YIOOP 

by Harika Nukala 

Over the past few years, messaging applications have become more popular than Social 

networking sites. Instead of using a specific application or website to access some service, 

chatbots are created on messaging platforms to allow users to interact with companies’ products 

and also give assistance as needed. In this project, we designed and implemented a chatbot 

Framework for Yioop. The goal of the Chatbot Framework for Yioop project is to provide a 

platform for developers in Yioop to build and deploy chatbot applications. A chatbot is a web 

service that can converse with users using artificial intelligence in messaging platforms. Chatbots 

feel more like a human and it changes the interaction between people and computers. The 

Chatbot Framework enables developers to create chatbots and allows users to connect with them 

in the user chosen Yioop discussion channel. A developer can incorporate language skills within 

a chatbot by creating a knowledge base so that the chatbot understands user messages and reacts 

to them like a human.  A knowledge base is created by using a language understanding web 

interface in Yioop.  
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CHAPTER 1 

INTRODUCTION 

A chatbot is a computer program that can converse with humans using artificial 

intelligence in messaging platforms. The goal of the project is to design and develop a chatbot 

framework which provides a facility for developers to create chatbots for Yioop. Yioop is an 

open source, PHP search engine that can be configured to allow users to create discussion 

groups, blogs, wikis…, and so forth. Yioop provides all the basic features of web search portal. It 

has its own account management system with the ability to set up groups that have discussions 

boards. Groups are collections of users that have access to a group feed. The user who creates a 

group is set as the initial group owner. Posts are grouped by thread in a group containing the 

most recent activity at the top [6].  

Chatbots are created using two powerful APIs in Yioop. One is the chatbot API, that acts 

as a connecter and routes messages between users and chatbot. By default, a chatbot is simple. A 

developer needs to program a bot service to define their behavior and make them intelligent. An 

artificially intelligent bot can understand the meaning of a user request and converse on 

messaging platforms. We offer an API called Language understanding API that makes bots more 

like a human by providing functionalities that recognize a user’s intent by using machine 

learning concepts and allow bot to perform required action. The entities are key information to 

perform an action. These entities are extracted from user’s message by using matching keywords 

or the similar wording pattern, from an existing database. 

 
A developer must have expertise and special knowledge in a few areas like machine 

learning and artificial intelligence to create a chatbot and connect it with users in a 
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conversational interface. To make it easier, companies like Facebook and Microsoft introduced 

bot frameworks.  

The rest of the report is organized as follows. Chapter 2 provides background information 

on Facebook bot framework and Microsoft bot framework. Chapter 3 outlines the architecture 

we designed to build the chatbot Framework for Yioop. Chapter 4 describes high level 

implementation of Yioop Chatbot Framework and outlines approaches and algorithms used to 

build this system. Chapter 5 discusses integration of required components by providing an 

example chatbot created on Yioop called Weather bot and experimental results. Chapter 6 

concludes the topic. 
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CHAPTER 2 

BACKGROUND 

In this chapter, we discuss the famous bot frameworks which are available to public to 

get an idea of a chatbot framework. The bot frameworks are developed to solve the problems met 

by the developers while writing bots. Those are: Bots require language understanding skills; and 

they must connect to the users in a conversation interface, the user chooses. It is difficult to deal 

with these requirements by developers. Bot framework provides tools and services which makes 

a developer's job easier. 

Facebook and Microsoft have large-scale bot frameworks designed and developed to 

produce a mass number of chatbots. These frameworks provide tools that help developers to 

build bots and define their behavior using a programming language.  

2.1 Facebook bot framework 

Billions of users use Facebook Messenger, so Facebook bot uses Messenger as the 

messaging platform. Facebook Messenger platform provides Receive and Send API that allows 

developers to create bots in order to interact with businesses [2]. These APIs not only support 

text conversations, but also multimedia conversations like sending images, gifs, videos, and so 

forth. To enable developers to create more complex bots and make use of machine learning 

which helps bot understand intent of a user’s message, Wit.ai, a Facebook’s Bot Engine can be 

incorporated [1]. This bot engine relies on the idea of machine learning, therefore, makes 

Facebook bots more powerful. Sample conversations must be provided to train Wit.ai’s intent so 

that the bot can handle many different variations of a sentence. These sample conversations are 

called Stories, and include bot actions. Bot Engine builds a machine learning model that works 
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with stories in the dataset. As the dataset grows, the model becomes better. Bot Engine predicts 

the next action of a bot at every conversation. The prediction depends on the stories, the bot has 

trained. The definition of the action must be in the application code. The code can be written in 

any programming language and call any external API as you need.   

 

Fig. 1. Data Flow of Facebook Bot Framework 

The Facebook bot interaction with other components is shown in Figure 1 and explained 

below. A user sends a message “what is weather in Seattle” to Chatbot service through Facebook 

Messenger (a Chat Client). The Chatbot service posts the message to Wit.ai (a Machine 

Learning, Natural Language Processing Engine). Wit.ai extracts user’s intent “getWeather” and 

entities “Seattle” from the message and sends them back to Chatbot service. An Intent is used to 

call upon external data service if required to find desired data. Chatbot service builds data into a 

proper response “The weather is 49 degrees and rain in Seattle” and sends to Facebook 

Messenger for display.      
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2.2 Microsoft bot framework 

Microsoft announced its Bot Framework roughly at the same time as Facebook. As with 

the Facebook’s offering, Microsoft provides an SDK that can be viewed as two components: 

1. Bot Connector, the integration component 

2. LUIS.ai, the natural language understanding service 

These two components are independent to each other. Bot Connector allows bots to send 

and receive messages to messaging platforms. This component helps to associate with various 

conversational channels like Facebook Messenger, Slack, Skype, Email, GroupMe and SMS [3]. 

Microsoft Bot Framework is a comprehensive offering to build and deploy chatbots for users to 

enjoy conversation experiences.   

The diagram below shows how each component interacts. A user chooses a channel to 

send a message to a bot. The message is directed through the Microsoft Bot Connector, which 

sends a POST request to a bot web Service. The request sent by a bot connector to a bot service 

has a user’s message. Once the bot service receives the request, it performs necessary action and 

reply back to the user. A bot is not intelligent itself. The intelligence comes when we incorporate 

Language Understanding Intelligent Service LUIS, Natural Language Processing as a Service is 

one of the Cognitive Services provided by Microsoft. When a bot is integrated with LUIS, the 

message received from the user is sent to LUIS to understand what user’s intention and then 

reply back accordingly. 
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Fig. 2. Control Flow of Microsoft Bot Framework 

 
We have discussed two different bot frameworks. Both of these bot frameworks provide 

tools to train and build bots. Chatbots created using Microsoft Bot Framework can be published 

over various communication platforms as compared to the chatbots created using Facebook Bot 

Framework, only work on the Facebook Messenger platform. The Facebook bot Framework uses 

Wit.ai and the Microsoft bot Framework uses Luis.ai as a natural language processing engines 

respectively. Both wit.ai and luis.ai are external web services which are consumed as a backend 

service in chatbot applications using a REST call. This makes interactions between users and 

bots slower.  

The aim of our project is to create a Chatbot Framework for Yioop, with a similar kind of 

end goal in mind. It is advisable to minimize the external API calls; therefore, we created our 

own Language processing API in Yioop to make conversations faster between users and bots, 

which we will discuss further. In the next chapter, we will discuss about the design and 

architecture of this project. 
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CHAPTER 3 

DESIGN AND ARCHITECTURE 

As we have already discussed, Bots require keywords for processing and taking action 

based on given keywords or conversation context. They must also have language skills for 

communication, and they should also interact with users over some channel.  The Yioop’s 

chatbot framework provides chatbot API and language understanding API to solve these 

problems. 

 

Fig. 3. Yioop's Chatbot Framework Design 

Figure 3 shows design of the Yioop’s Chatbot Framework we implemented. The user 

requests or chats with bot in a message interface. Like Facebook, Yioop provides a 

conversational interface to connect users with bots called Yioop discussion group, which is the 
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presentation layer. The two APIs that are responsible to send and receive messages, process 

user’s request and apply language processing skills are in the service layer. The bot web service 

handles the POST requests and performs the respective action. Data layer has the bot knowledge 

base (See Figure 7). 

The integration and control flow between the components of Yioop is shown in the 

Figure 4 and explained below. 

 

Fig. 4. Architecture of Yioop’s Chatbot Framework 

 

  The User converses with a chatbot using Yioop discussion group as a messaging 

platform. The user’s message is routed through the chatbot framework. The Framework contains 

two APIs which receives the user’s message, requested user details and bot details. These APIs 

process the message and invokes the bot by sending a POST request to the bot web service with 

the processed message. The Control flow between these two APIs is shown in the Figure 5. 
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Fig. 5. Control Flow between two main components of Yioop’s chatbot Framework 

 
 The Chatbot API allows developers to create chatbots and configure them in Yioop 

groups to send and receive messages to thread. Users can interact with a chatbot from any group 

thread that a bot is configured to work for. A developer can create a knowledge base using 

language understanding web interface to make bots understand and react to natural language 

interactions more like a human. Language Understanding API helps bot to understand the user’s 

intent and extract knowledge from the messages which helps to improve bot’s capability. 

The Schema of a Bot Knowledge storage is shown in the Figure 6. The Bot Knowledge 

Storage contains intents, entities and the respective set of expressions which are specific to the 

bot domain/story. This knowledge base is like a brain for a bot which has the knowledge what 

bot already learnt or trained from developers and it helps the bot to deal with new conversations. 

The new conversations are continuously stored in the knowledge base because they are the new 

learnings for bot.  
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Fig. 6. Schema of a Bot Knowledge Base 

INTENT 
 

 
 
ENTITY 
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EXPRESSION 
 

 
 

Fig. 7.  Sample Knowledge base 

 

The functionalities of the two APIs and use of the knowledge base are explained in the next 

chapter in more detail. 
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CHAPTER 4 

IMPLEMENTATION 

 In this chapter, we discuss the high-level implementation of the two APIs of the Yioop 

Chatbot Framework and the integration between them. 

4.1 Chatbot API 

The chatbot API is a service that allows bot users connect easily with the users on a 

group discussion only when the bot users already joined the group. This service receives 

messages from the thread and passes them to chatbot application and then sends responses back 

to the thread. This service calls Language understanding API to generalize the user request so 

that bot understand it. 

To configure a bot, as a first step, the administrator must enable bot users feature in 

server settings of Yioop. The next step is to create accounts for bots. The procedure of creating a 

bot user is similar to creating a normal user. Bot users have many of the similar features as the 

normal users in Yioop. They have profile photos, names, and passwords, they can be specified in 

a post, they can reply to the post messages, and they can be invited to and removed out of 

groups. The main difference is that the bot users are controlled programmatically by a bot unique 

token and bot callback URL. The Callback URL represents the chatbot application endpoint. 

When the user sends a message, the chatbot API posts the request to Callback URL, so a bot 

Callback URL should be specified when you create a bot user (see Figure 7).   
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Fig. 8. Web interface to create a bot user account 

Yioop supports group conversations with multiple users, including other bots. In the 

group thread, a user starts the conversation and bots simply responds to messages that the user 

sends. In order to converse with a bot in a group, the bot users must have joined the group.  To 

converse with the bots, a user has to mention the bot name with ‘@’ in the message 

(@bot_name). The message is processed to get the values of the required properties like the 

username, bot callback URL, bot unique token, and conversation. If the requested bot already 

joined the group, the message is sent to bot web service (Bot Callback URL). 

All of the requests sent to a bot’s endpoint must include the user’s message and a bot 

unique token. A cryptographic hash signature is used for the bot unique token and sends it to 

endpoint for authentication. To ensure that posts made to the bot’s endpoint by chatbot API 

actually came to the requested bot, it is highly recommended that chatbot application verifies the 

authenticity of the requests. To verify the authenticity of the token sent by the chatbot API, the 

bot application has a procedure that extracts the token from the HTTP POST request, parses the 

token, verify its contents, and verify its signature (see Figure 8). The application checks whether 
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token has not expired and has a valid cryptographic signature. If the token does not meet these 

required conditions, bot terminates the request by returning “There was a configuration issue 

with the query” message. 

 

Fig. 9. Authentication flow of a bot web service 

 

4.2 Language Understanding API 

The main problem is the capability of the computer to understand what a user wants in 

human-computer conversations. Language Understanding API is designed and developed to 

allow developers of Yioop to create chatbot applications that can understand natural language 

and react to user requests accordingly. This API will take the sentences sent by user in a 

conversation and interpret intents (the intentions user convey) and extract entities (key 

information relevant to the intent) using knowledge base. 

By using the Language Understanding web interface, a user can create a knowledge base 

for a chatbot with a set of intents, entities and the respective set of expressions that are relevant 

to chatbot story’s domain. For example, for a travel agent chatbot, a user might say “Book me a 

flight from San Jose to New York.” In this expression, the user’s intention is to “BookFlight”, 

“San Jose” and “New York” are the entities. An Intent is defined as the necessary action and 
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usually contain a verb, in this case “Book”. The entity is information relevant to the intent, in this 

case “San Jose” and “New York” are the source and destination location entities. Example 

expressions has to be provided for every intent and label the entities, which helps to predict 

intent for new expressions and operates the respective action.  

The following sections discusses on how to create a knowledge base for a chatbot. 

4.2.1 Plan bot story 

All Chatbot stories are focused on a domain-specific subject, for example, booking of 

flights, get weather updates or get stock prices, etc. It is preferable to plan a bot story before 

creating it in Yioop. 

Consider an example of a weather chatbot, user should determine the intents and entities 

that are significant to weather chatbot task. In a weather chatbot story, users would like to get an 

update of the weather at specific location. Thus, “getWeather” would be the relevant intent. For 

weather updates, some key information is needed such as the location, date and time and these 

are considered as entities. A user should create a bot story with an outline of intents and entities 

and define these intents and entities for example expressions in the interface. 

4.2.2 Create a Bot Story 

A user can create and manage a bot story in the respective bot user account. One can 

create bot story by clicking Bot Story on the left navigation bar of the Yioop web page. The 

Figure 9 shows an example weather bot story. Start the bot story by adding intents. 

4.2.3 Add Intents 

An Intent is the intention or necessary operation that is conveyed by the user through the 

sentences. Language understanding API service matches the user request with Intents of the bot 
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story to determine the action that should be performed by a chatbot. So, the intents must be 

added with example expressions to help chatbot understand user requests and respond to users 

properly. 

The chatbot should be taught to identify user request that are relevant to the bot story. For 

example, a weather chatbot has learnt “What is weather in San Jose” with “getWeather” intent, if 

a user requests “Get me weather info of Seattle” to a weather chatbot, the bot should recognize 

the statement and matches to “getWeather” intent and perform necessary operation. 

A user who operates the bot account can add and manage intents from the Intents tab in 

the bot story page. The following is the procedure for adding intent in a Weather bot story page.  

To add an intent: 

1. Open a bot user account (e.g. Weather Bot) and click Bot story in the left panel of 

the web page, and then click Intents tab. 

2. Type in the Intent box and click save. 

One can edit or delete intents from the chatbot’s intents list (see Figure 9). 

 

Fig. 10. Web interface to create a Bot story and add an Intent 
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4.2.4 Add Entities 

Entities are the key information for a domain-specific chatbot. An entity is a collection of 

similar objects like a location, person’s name, number. Entities are the key data relevant to an 

intent and they are necessary for a bot to perform a specific task. For example, in a weather bot, 

the entities may include “location”, “date” and “time”, which are key parameters to the 

“getWeather” intent. In a flight booking bot, the “location”, “date”, “airline”, “travel class” and 

“tickets” are key information to the “BookFlight” intent. Therefore, these parameters are added 

as entities in a bot story (see Figure 10). A user should create entities that are relevant to the 

intent and required by a chatbot to perform a task. 

To add an entity: 

1. Login to the chatbot account and click Bot Story in the left panel. 

2. Go to the Entity tab in the page and type in Entity box and then click Save. 

 

Fig. 11. Web interface to add an Entity 

One can edit or delete entities from the Entity list of a chatbot story on the Entity tab. 

Figure 11 shows the web interface to edit an entity and add new entity values for an entity. Entity 

values are like instances of a class. For example, location is an entity and San Jose, Chicago, 
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Seattle are the entity values of location entity. One can add any number of entity values for an 

entity. 

 

Fig. 12. Web interface to edit an entity and add new entity values 

4.2.5 Add Expressions 

Expressions are example sentences of user requests that a chatbot is expected to grasp 

and understand. For each intent, there must be example expressions added in a bot story. The 

Language Understanding API uses these expressions to teach chatbot understand similar 

contexts. Adding more example expressions and labeling them improves the ability of a chatbot. 

Including as many sentence variations as user tend to say or request to a specific bot, 

enhances the chatbot’s language understanding experience. Also, adding more relevant example 

expressions to an intent for a bot story helps the language understanding API in predicting the 

relevant intent for a new expression. For example, the expression “what is weather in Seattle” 

may have variations such as “Get me weather forecast of Seattle”, “Is it sunny or rainy in 
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Seattle”, “Tell me the weather in Seattle”, “How is weather in Seattle”, and “Is it raining in 

Seattle”. 

Expressions are added by selecting the relevant intent on the Expression tab of the bot 

story page. The following steps describe how to add example expressions to an intent (e.g. 

“getWeather” intent for the Weather bot). 

To add an expression: 

1. Login to the chatbot account and click Bot Story in the left panel. 

2. Go to the Expression tab in the page and Select getWeather from the Intent list. 

3. Type the expression in Expression box. 

4. Label Seattle as entity value to the entity name location (see Figure 12). If there is no 

entity name to label, then add entity name in the Entity tab (Check Add Entities section, 

to add an entity). 

 

Fig. 13. Web interface to add an Expression and label it 

 



 28 

4.2.5.1 Label Expressions 

 Expressions are labeled in terms of intents and entities. It can be done before or after 

adding expressions. The web interface to add and label expression is shown in Figure 12. 

Intent label 

Selecting an intent while adding an expression means that it is labeled under this intent. 

That is how an expression gets an intent label. A user can change the intent label of one or more 

expressions. To do this, select the expression that needs to be edited, click edit expression, and 

then select a different intent from the list of intents. 

Entity label 

Entities need to be added in Entity tab in order to label them on an expression in a bot 

story. We map the word that needs to be labelled from an expression to an existing entity. For 

example, the expression “What is weather in Seattle” is mapped to the “getWeather” intent in 

Weather bot story, map “Seattle” to the “Location” entity. “Location” must be added as the 

entity in the Entity tab. 

4.3 How the Language understanding API works 

There are two things that the Language understanding API can possibly do — Intent 

Classification and Entity Extraction. We will discuss them below. 
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Fig. 14: Execution flow of language processing 

4.3.1 Classifying intent 

Given a sentence, this API classifies the sentence into one of the trained intents. The way 

we achieve this is by defining the intents and training with example sentences and manually 

classifying them which is explained above. This type of learning is called supervised learning 

and the algorithm used to classify is TF-IDF, term frequency-inverse document frequency. The 

function implemented to classify intent is shown in Figure 13 and discussed in detail below. 

The first step is to break a user request into tokens to classify the intent in the Language 

Understanding API. For the most part, English tokens are delimited by whitespace. The goal of 

the tokenizer is to break the character sequence into a list of words. The example sentence “What 

is the weather in Seattle” of a weather bot is converted into tokens as shown below.  

[What, is, the, weather, in, Seattle] 

Note how most tokens are words you would find in the dictionary. The next step is to remove 

stopwords from the list of tokens which helps in generalizing the context. Stop words include 
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words which are prepositions, articles, pronouns and conjunction. These are usually most 

occurring words. The list becomes after removing stopwords [weather, Seattle]. 

 

Fig. 15. Function to classify intent 

4.3.1.1 Stemming 

 The next step is to apply stemming process to the list of terms that we have after 

removing stopwords. Stemming is the process of removing the ends and makes the set of words 

to its root word [7]. For example, the words like stems, stemming, stemmer and stemmed 

reduces to its root word stem. This process helps in generalizing the words in a sentence. 

4.3.1.2 TF-IDF 

The algorithm used to classify intent is described here. First, we assign a weight to each 

term in a set of sentences of an intent, which represents sum of number of occurrences of that 

term in each sentence ‘s’. We evaluate a score between a query term ‘t’ and intent sentences ‘S’, 

based on the weight of ‘t’ in ‘S’. This procedure is denoted as term frequency tft, S where 
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subscripts signifying term t and set of sentences S, which is equal to summation of tft, s where 

subscripts referring term t and a sentence s all together [6].     

𝑡𝑓#,% = 	S(e%𝑡𝑓#,( 

The intent frequency dft defined to be number of intents containing a term t in chatbot 

story. The total number of intents per chatbot is denoted as N, we define the inverse document 

frequency idf of a term t as 

𝑖𝑑𝑓# = 𝑙𝑜𝑔	(
𝑁

1 + 𝑑𝑓#
) 

In simple words, 𝑖𝑑𝑓# = 𝑙𝑜𝑔		( #3#45	6789:;	3<	=6#:6#(
>?#3#45	6789:;	3<	=6#:6#(	@4A=6B	#:;8	#

) 

To get a composite weight for each term in set of sentences of each intent, we combine 

term frequency and inverse document frequency. The tf-idf is defined as the product of term 

frequency and inverse document frequency. 

𝑡𝑓 − 𝑖𝑑𝑓#,% = 𝑡𝑓#,%´	𝑖𝑑𝑓# 

tf-idft, S assigns a weight to term t in all the sentences of an intent. The weight is highest 

when term t occurs many times within a small set of sentences and lower when term t occurs few 

times in a set of sentences [6]. The idea is each intent is viewed as a vector with one component 

having each term with a corresponding weight that is given by tf-idf. For query terms that do not 

occur in any set of sentences, the weight is given 0.  

The score of each intent is the sum of tf-idf weight of each query term in set of sentences. 

𝑆𝑐𝑜𝑟𝑒 𝑞, 𝑆 = 	å#eI𝑡𝑓 − 𝑖𝑑𝑓#,% 

The scores of each intent is calculated and returns the intent which has highest score. The TF-

IDF model is explained with an example below. 
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Suppose the tables shown below are knowledge storage tables for a chatbot, the user 

requesting. EXPRESSION table having intents and respective Expressions and TERM 

FREQUENCY table having terms per intent and their frequencies which are calculated by using 

term frequency formula 𝒕𝒇𝒕,𝑺 

Table 1. Expression 

Intent Expression 

getWeather What is weather in &location 

getWeather How is weather in &location 

getWeather Is it rainy in &location 

BookFlight Book flight from &source to &destination 

 

 

Table 2. Term Frequency 

Intent Term Frequency 

getWeather weather 2 

getWeather rainy 1 

BookFlight Book 1 

BookFlight flight 1 
 
When a user requests “Tell me the weather in Seattle”, the tf-idf value is calculated for all the 

intents with respective to chatbot by considering each valuable term in query (stopwords are 

removed). 

As we can see the Expression table has two unique intents, so value of N is 2 (N=2). 

Terms of a query are [weather, Seattle] after removing stopwords. 
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For term weather, the total number of Intents with this term is one i.e., getWeather. Therefore, 

idf (weather) = 1 + log( P
>?#3#45	6789:;	3<	=6#:6#(	Q=#@	#:;8	𝒘𝒆𝒂𝒕𝒉𝒆𝒓

) 

        = 1 + log	( W
>?>

) = 1 

tf (weather, getWeather) = frequency of term weather in Term Frequency table = 2 

tf (weather, getWeather) = 0 

Now the tf-idf’s of the term weather for each intent are calculated as: 

tf-idf (weather, getWeather) = tf (weather, getWeather) * idf (weather) = (2*1) = 2 

tf-idf (weather, BookFlight) = tf (weather, BookFlight) * idf (weather) = 0 

tf-idf’s of term Seattle for both intents are 0, as it never occurred in any expression. 

Scores of each intent for query ‘weather Seattle’ is calculated below:  

Score (query, getWeather) = sum of tf-idf’s of getWeather intent = 2 

Score (query, BookFlight) = sum of tf-idf’s of BookFlight intent = 0 

Since the score of getWeather Intent is highest, getWeather is returned as intent for new query. 

4.3.2 Extracting Entities 

The Language understanding API helps us by extracting words called entities from the 

given sentence. This API uses pattern matching algorithm to detect entities. This is achieved by 

training multiple sentences for each intent and labelling respective entities manually. The 

function implemented to extract entities is described in Figure 14. 

Pattern matching 

We use pattern matching and regular expressions heavily in our framework to extract the 

entities from the sentences. The entities which are special information in sentences are then used 
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to perform specific actions based on the use case. We rely on PHP language’s regex capabilities 

to achieve this task. Regex is like a mini syntactical language which dictates how the overall 

structure of the sentence should be and then we could specify the relative position of entities 

inside those sentences.  

 

Fig. 16. Function to extract entities 

In this API, we provide a regular expression implementation that generalizes the 

sentences that are trained. The sequence of tokens that are labelled while adding an expression 

above are replaced with regular expressions in the form of groups.  

This API matches the user’s message with a similar wording pattern and apply pattern 

matching. Based on the sub-patterns which are specified in the form of groups, it can extract 

what characters/words have been matched out of the sentence. The extracted words are called 

entity values.  
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For example, the expression we trained is “what is weather in Seattle” and we labelled 

the “Seattle” to the “location” entity. So, the expression generalizes to “what is weather in 

&location”. When a user asks, “How is the weather in San Jose”, the classification algorithm 

gives the user’s intent as “getWeather” and then the API replaces labels in the sentences of the 

predicted intent in the knowledge storage to the regular expression in the form of groups. The 

trained sentence becomes “what is weather in (.*)”. The pattern matching technique is applied on 

the trained sentence and the user’s message and extracts “San Jose” as an entity value for the 

“location” entity. These extracted entities are sent as a POST request to the bot web service to 

perform “getWeather” action. The result of this action is sent as a response to the user. The 

experimental results of these functionalities are shown in the testing section. 
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CHAPTER 5 

TESTING 

The main purpose of this project is to provide a chatbot framework for Yioop that helps 

developers to create and develop chatbots. After integrating the chatbot framework in the Yioop 

search engine, we performed some experiments to see how chatbot works and how they interact 

with users in Yioop discussion groups.  

We created sample chatbot accounts for weather bot user as wbot and stock bot user as 

StockBot using bot configuration settings. To evaluate the chatbot framework, we need to create 

chatbot applications. We created a Weather Bot and Stock Bot services with unique bot token for 

authenticity. These bot service URL’s and bot tokens must be provided as bot token and bot 

callback URL’s in respective bot accounts in order to have a conversation with users in Yioop 

discussion groups. These bots must be added to the Yioop groups the user chosen to interact.  

These chatbots are focused entirely on providing information and completing tasks for 

the humans they interact with. When a user requests a bot, the message is routed through chatbot 

API and language understanding API which recognizes the  user’s intent and extract entities by 

using existing knowledge base. This intent and entities are used to perform required action. 

The Weather Bot service performs action that intend to give weather updates for user 

requested location. This bot service calls the yahoo weather service which is an external API to 

get weather information. The Stock Bot service calls the yahoo finance, an external API to get 

the current stock price of the user asked stock symbol.  

Suppose the Weather Bot is trained with two sentences. The knowledge base of the 

weather bot is shown in the figure below. The bot has learnt two expressions with getWeather 

intent. 
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Fig. 17. Knowledge base of weather bot for experiment 1 

 

In the Experiment 1, a user interacts with weather bot in a weather updates thread as 

shown in the figure below. Here, the user named john is requesting weather updates for a couple 

of locations by tagging weather bot as @wbot in the message and weather bot is responding with 

the weather information.  

 The bot recognized ‘Seattle’ and ‘San Jose’ as entity values for location entity and 

performed respective actions. Experiment 1 is passed as the bot responded with weather 

information for the requested location as shown in Figure 16. The Entity knowledge base is 

updated with new entity values ‘Seattle’ and ‘San Jose’ as shown in Figure 17.   
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Fig. 18. Conversation between a user (John) and a weather bot (wbot) in experiment 1 

 

Fig. 19. Entity knowledge base of weather bot after experiment 1 
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In the Experiment 2, a user tried querying the Weather Bot with a different variation of a 

sentence which is not in the bot’s knowledge base. The conversation between the bot and the 

user in Experiment 2 is shown in Figure 18. 

 
Fig. 20. Conversation between a user (John) and a weather bot (wbot) in experiment 2 

  
 The bot recognized intent and entities for the new expression and performed getWeather 

action and responded with weather information. The Expression knowledge base is updated with 

the new expression, see Figure 19.  And new entity values are stored in Entity knowledge base, 

see Figure 20. 
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Fig. 21. Expression Knowledge base of weather bot after experiment 2 

 

 
Fig. 22. Entity knowledge base after experiment 2 

 

 



 41 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This project is an attempt to design and implement a chatbot framework for Yioop. We 

have seen how the bot framework is useful for developers to add new chatbots, train them 

quickly in the Yioop social site. The ultimate aim is to help Yioop developers to create chatbots 

which are more human like when it interacts with users and make conversational experience 

more enjoyable.  

The end goal of this project is kind of similar to the Facebook bot framework and 

Microsoft bot framework. The chatbot framework is implemented and integrated with Yioop. 

This framework provides services to Yioop developers to build, configure and connect bots that 

can interact with users in a Yioop discussion channel. The development of bots using this 

framework is so easy, that every developer without understanding of machine learning or 

artificial intelligence can build more sophisticated bots. Whenever a user sends a message to our 

bot, he has an intent. For instance, if user types “I want to order a pizza” his intent is 

“OrderPizza”, “I want to rent a car” intent is “RentCar” etc. Given a sentence, Language 

understanding API will classify the sentence into one of the trained intents and predicts the top 

scored intent. The way we achieve this is by defining the intents and training some sentences 

(called expressions) by manually classifying them using a web based console. The bots can be 

trained with new scenarios whenever it is required. This API uses Term Frequency and Inverse 

Document Frequency (TF-IDF) classification algorithm to classify intent. The entities which are 

necessary information to perform an action, are extracted from the given sentence by using 

pattern matching technique.  
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We have tested this framework by creating two example bots: weatherbot and stockbot. 

The results show that tf*idf can be used effectively to identify words that typically describe 

intent of user’s request. This outcome shows that the words in the sentence reveals useful 

information on user’s intention. To test the effectiveness, we asked several users to try our 

chatbot framework and give their opinion. All the users were satisfied and gave a positive 

feedback by seeing bot learning from the conversations. 

As newspapers market, bots are the new apps, chatbots will take over the world in the 

future and how humans interact with the internet. In the future, every website would have a bot 

assistant and provide a new way to expose information per need basis of user. 

We are excited to provide a preliminary availability of the chatbot Framework for Yioop. 

This framework can be extended and improved by adding tools or facilities like conversation 

state management, scheduled conversations, language specific bots and a bot search. 
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