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Abstract 

 

The making of a motion picture almost always starts with the script, the written version of a 

story envisioned within the mind of its creator. The script is then broken down into shots. Each 

individual shot is filmed and then they are edited together to create the motion picture. The 

goal of the Movie Script Shot Lister thesis project is to be able to read in a script for a movie or 

television show, and automatically generate a shot list. While a script is text, a shot list is the 

blue print for how to visualize that script, so the shot lister tool will need some sort of 

information about the visuals and how they correspond to text that is written in the script.  The 

basis of the lister is an application of artificial intelligence, a supervised learning algorithm to 

generate the shot list. First, training sets are generated by manually marking up scripts with 

shots. These training sets are fed into the program in order to give it a basic understanding of 

how to choose shots. The thesis project is composed of a few basic parts: 

 a parser for procedurally breaking down a script into its components, which the rest of 

the program can use and understand;  

 a lining tool for creating the training sets as well being a viewer for the final output;  

 a vector populator tool for processing the training sets and storing the data;  

 the lister tool itself which outputs a lined script;  

 and a comparer tool for comparing different outputs. 
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Chapter: Introduction 

 

During the early phases of making a motion picture, writing a script that will lay the framework 

of the complete motion picture is usually one of the first steps taken. (Although, in often less 

successful ventures, writing the script takes place after actors are hired and sets are built). The 

writer envisions locations, characters, props, dialogue. She builds a story structure that she 

hopes will be filmed. Once the story is written, it is usually passed off to a director or producer 

who begins the next phase of pre-production. Pre-production includes all kinds of things from 

building sets to hiring actors and crew. It also includes the very important step of taking the 

script that the writer has written and breaking it down into a shot list. This is a list of shots that 

take the written word in chunks and bring them to the screen. The shot list is often also drawn 

into pictures called storyboards, but even without the drawings, that first step of creating what 

exactly to film is very important. Describing a shot can be done with just words as long as the 

description paints a picture in one’s mind. The shot list denotes when a new shot should begin 

and when an old shot should end in the form of a cut. It specifies what type of shot each shot 

should be from close up to wide shot. It should specify how many characters should be in a 

shot. It may even specify what kind of camera motion might be wanted for a shot. 

 

Typically the shot list is created as a collaboration between the director and the 

cinematographer also known as the director of photography. Together, they break down the 

script based on emotional beats or actions. They attempt to decide the best types of shots to 

show off each moment in the most appropriate way possible. They want to use camera work 
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and cutting to emphasize and/or define subtext and show the deeper meaning of the script. 

There are no right or wrong ways to create a shot list, but different ways can give different 

meanings and even represent a very different movie. Sometimes, you can even identify a 

cinematographer or director by nothing other than the shots themselves. 

 

The idea behind my project is to have a computer use artificial intelligence to take a script and 

create a shot list of its own. This will be done using supervised learning. That means taking 

scripts that already have shot lists and using them as a basis for the algorithm when deciding 

shot lists for scripts for which the program does not have shot lists yet. These scripts with shot 

lists already attached are called training sets. 

 

There are many different artificial intelligence algorithms. For this project, Naïve Bayes was 

chosen. It is known to not typically have the “best” outcomes, but when it comes to creating a 

shot list, it is very difficult if not impossible to recognize if the output is actually the best as that 

is a matter of opinion better left to film critics. It is even difficult to judge if the output is 

“correct” or viable as there are a virtually infinite number of interpretations for a given script. 

We shall look at the outputs more as we get to the end of this paper. 

 

To begin, it will help to look at what others might have done in the realm of artificial 

intelligence related to art and data collection. 
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Chapter: Previous Works 

 

In researching this topic, I was unable to find any project, research paper or piece of software 

that matches or attempts to do what this project aims to attempt. That is, specifically, using 

artificial intelligence to create a shot list based on a film script. I found an article about using 

artificial intelligence to help create a script with the intention of making a hit 

(http://www.nytimes.com/2013/05/06/business/media/solving-equation-of-a-hit-film-script-

with-data.html), but not breaking down a script into shots. I found many fine resources on how 

a human might go about breaking down a script into shots (a really good one here: 

http://nofilmschool.com/2013/10/cinematographers-process-part-1-breaking-down-the-

script), but not a computer. There is also a recent proliferation of mobile apps providing tools 

for recording, scheduling, and using the shot list (http://www.shotlister.com/, 

https://itunes.apple.com/us/app/shotlist-movie-shoot-planning/id424885833?mt=8, 

http://nofilmschool.com/2012/10/diagram-shotlist-and-pocket-block-with-the-shot-designer-

app, http://www.hollywoodcamerawork.com/sd_index.html).  Film making, at least creating 

shot lists, and artificial intelligence are two concepts that do not seem to intertwine currently, it 

would seem. This could be indicative that it cannot be done, or it could be that no one with a 

background like myself, both in filmmaking and computer science has ever attempted it. I 

discussed this project in detail with various professional film makers (who are not computer 

scientists), and it was exactly their belief and conclusion that it could not be done. One even 

angrily pointed out that it shouldn’t be done. He said, how on Earth could a computer ever be 

able to understand the nuances of what is going on in a scene? 

http://www.shotlister.com/
https://itunes.apple.com/us/app/shotlist-movie-shoot-planning/id424885833?mt=8
http://nofilmschool.com/2012/10/diagram-shotlist-and-pocket-block-with-the-shot-designer-app
http://nofilmschool.com/2012/10/diagram-shotlist-and-pocket-block-with-the-shot-designer-app
http://www.hollywoodcamerawork.com/sd_index.html
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Indeed, it is difficult to imagine a computer coming up with any piece of art from a painting to a 

poem, to a song, to even something like a shot list from out of nothing. Sure, a computer could 

randomly generate a bunch of numbers that produce something new. It is also said that if you 

leave monkeys in a room with typewriters long enough, they will type out the complete works 

of Shakespeare. A computer could also randomly generate a shot list, but it wouldn’t be very 

good. So, this project does not attempt to spontaneously generate art out of nothing. The shot 

list comes from something, more than just the words written in the script. It wants to 

procedurally transform the creativity of others into something new. It wants to take the shot 

lists of others and extract characteristics from that during the training phase to apply to a new 

script. Now, this is certainly something we’ve all seen done before. 

 

For example, a program like Photoshop can take a photograph and apply a filter to 

automatically make it look like a painting. You could probably even specify what artist you want 

the painting to look like. In a paper entitled “A Neural Algorithm of Artistic Style” (Gatys, Ecker, 

& Bethge, 2015), researchers at the University of Tubingen in Germany did a project exactly like 

that. You give their program a picture, specify the artist from a list they generated and it will 

render out a painting, and in the style of that artist. This isn’t exactly what I am doing, but it 

shares some elements. What they do is achieved by studying the patterns of the various artists 

and capturing the elements mathematically. They then apply this math to the photograph to 

create an artistic output. In its essence, my project will be doing the same type of thing. 

Although the way I collect, process and apply the data will be different. You give my program 



 

11 
 

the script as its input, along with the artistic essence derived from the movies of previous 

filmmakers which are combined together to create an artistic output. 

 

My project uses humans as the data collectors, who watch the movie that corresponds to a 

particular script and apply written notes to its script in a systematic way based on what they 

artistically discover in the movie. Although my Shot Liner tool used to make these notes is 

different, applying qualities to text has been done before for a long time with qualitative data 

analysis. Examples of software that do this include MAXQDA 

(https://en.wikipedia.org/wiki/MAXQDA) or Nvivo (https://en.wikipedia.org/wiki/NVivo). I 

chose to write my own software because I can control exactly how the data is going in and how 

it is coming out. 

 

The relevant previous work which is most common is actually many examples and applications 

in the literature of Naïve Bayes. I could note any number of pre-existing papers on the subject, 

however, I think the most relevant is the one from the Artificial Intelligence textbook I used at 

San Jose State University, Artificial Intelligence a Modern Approach (Russell & Norvig, 2010). 

Most examples are simple, and what I am attempting to do is actually fairly complex. Most 

examples have a binary output. I actually seek several outputs, and only one of them is binary. 

The rest have several possible outputs. We will get more into how all this works later. 

 

https://en.wikipedia.org/wiki/MAXQDA
https://en.wikipedia.org/wiki/NVivo
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Before we get into discussing the algorithms and the more technical aspects of the project, it 

helps to go back and get a little bit of history about film making and the components that the 

lister tool will be working with during the course of the project. 

Chapter: Of Scripts and Shot Lists 

 

To help understand what this project is trying to achieve, it helps to start with a basic 

understanding of both how scripts and shot lists work and the components they are made of or 

built upon. Writing scripts, also known as screenplays, is an art and a creative process. 

Nevertheless, best practices for screenplay writing, also called scriptwriting or screenwriting, 

includes following the established standards for screenplay structure. This structure is taught in 

film-school and generally mimicked by people teaching themselves to write screenplays. There 

even exists industry standard screenplay writing software that thankfully enforces the 

established structure. Like any other profession, it is beneficial to follow the standards set up by 

the industry. This is beneficial to us in this project, because it means that our program can 

follow this structure too when procedurally breaking down a script. The guidelines are used by 

the parser to break down the script into classes and fields which are easily turned into JSON 

files for storing and furthering processing.  

 

In its most basic form, a script is just a series of scenes. Each scene usually takes place in a 

single location and can be of variable length. Scripts have characters and other objects like 

props which each appear in one or more scenes. Each scene starts with an easily recognizable 

header. This is followed by a series of text blocks which I have called action blocks and dialogue 
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blocks. All blocks are separated by blank lines. An action block describes what is happening in 

the scene. It may tell us which characters are there and what they are doing. It could describe 

scenery, or props. It may even tell us what the camera is doing. Dialogue blocks share with us 

what the characters are actually saying in a scene. 

 

Figure 1 Script Breakdown 

Scene headers in most cases follow a fairly strict format. Here is one sample: 

“EXT. TRAIN STATION – DAY” 

 

They are supposed to be all upper case letters. (Although, in some cases, a stray lower case 

letter may appear and the parser has to take this into consideration). They always start with a 

binary marker stating that the scene is interior or exterior. The most common markers are 

“EXT.” or “INT.” but these can vary somewhat. This is followed by the actual location, like 

“SAMMY’S BEDROOM”, “MOVIE AUDITORIUM” or “PARK”. Finally, you have a marker indicating 
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the time of day, such as “DAY” or “NIGHT” but it could something like “EVENING”, “DAWN” or 

“DUSK”. Some scripts or scenes might leave this off if it is not important. It is also pretty 

common that the scene number will be written at the front of the header, or at the beginning 

and end. 

 

Action blocks do not necessarily follow any sort of standard, although it is generally accepted 

that important things are written in all upper caps. For example, the first time a character is 

introduced, good screenwriting practice has the character name all written in uppercase with 

subsequent references written normally. People, just like parsing programs, like to have 

markers so they can make mental notes. Props when introduced are typically uppercase also. 

Sounds and scenery may be uppercase. Instructions for camera motion are almost always 

uppercase. In some cases, important actions the characters take will be uppercase. It can be 

anything the writer deems important enough to bring special attention to the reader, or the 

person creating a shot list. 

 

Dialogue blocks, like new scene headers also tend to have a pretty rigid formatting. Although, it 

is not just contained all on one line like a scene header. First of all, they always start after a 

blank line. Next, the first line is always written in all uppercase. In fact, this first line is the name 

of the character speaking the dialogue. i.e., DARTH VADER. The next line must not be a blank 

line and can be written normally in upper/lower case words and letters. You may also have 

descriptions in parentheses, both on the line with the character name as well as sprinkled 

throughout the dialogue. A common thing to see in parentheses is (O.S.) which means off-
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screen or (V.O.) which means voice-over. But it can be lots of things including mood, direction 

or even actions the character is doing. The dialogue block ends when it is followed by a blank 

line. Unlike action blocks, dialogue blocks are also supposed to be indented a certain amount 

typically with a certain number of tabs. The number of spaces is not always standard, and as it 

turns out, counting these tabs or spaces wasn’t necessary information for the parser to have. 

 

There is much more subtlety to writing a script, but these are the basic fundamentals which 

allow us to move forward. With this greater knowledge of what scripts are made of, and their 

standard formatting, it is possible to begin writing the program that breaks them down, i.e., the 

parser. 

 

The overall output of this project is a shot list based on the input script. A shot list is the series 

of shots that bring the screenplay to the visual medium. Each shot covers a certain portion of 

the script. It may be something like a close-up or a wide-shot. It may have just one character in 

it. It could be two or more. These characters could be standing next to each other or at 

different depths. The camera could be static or moving in many different ways.  

 

While a movie is being planned, they actually typically plan several different alternative shots 

which could be used for each line of script. This is called coverage. Sometimes you do not know 

until you reach the editing room exactly which angle is the best for any given moment. 

Although, many different shots may be filmed, when the film is complete, there is exactly one 

shot covering any given moment, and every moment has exactly one shot. For practical 
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reasons, this project takes the point of view of creating a shot list of a finished film, not a shot 

list to use for filming, although it could be adapted in future iterations. Given this condition, 

what we are really after is figuring out when a cut takes place in the script. 

 

Figure 2 Lined Script 

A cut is a moment when one shot ends and another begins. This name was presumably given 

because while editing actual film stock, the physical film was cut at the beginning and end of 

the shot and then the shots were spliced together with something akin to scotch tape. So, once 

we mark where the cuts are on the script, we know where the shots are. Then, we just need to 

figure out what the content of the shot should be given our other conditions which we call shot 

type, clean type and motion. This makes up an entire shot. In the context of this project, I am 

calling these the target features. Here are the options for the target features: 
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Cut ShotType CleanType Motion 

NoCut 
Cut 

ECU – Extreme Close Up 
CU – Close Up 
MCU – Medium Close Up 
MS – Medium Shot 
MWS – Medium Wide 
Shot 
WS – Wide Shot 
VWS – Very Wide Shot 
EWS – Extreme Wide Shot 
None 
Other 

Single – 1 person 
SingleOTS – Single over the shoulder 
Two shot – 2 people 
Multi – more than 2 people 
MultiOTS – multiple over the shoulder 
Empty – nobody there 

Static – camera doesn’t move 
Loose – camera moving a little 
Tilt – tilting up and down 
Pan – panning side to side 
Zoom – lens in and out 
Dolly – camera moves 
Steadicam – camera carried 
Crane – camera booms up/down 
Aerial – camera in air 
Handheld – held in hands 
DutchTilt – side rotate 
DollyZoom – zoom and dolly 
Circle – circler around 
Other 

 

So, with the broken down script, and a sense of what shots are, we can begin to create the 

necessary programs and algorithms which together will make the Shot Lister tool. 

Chapter: The Parser 

 

The first tool created for this project was the parser. Parsing the raw script is the first step in 

creating a shot list, however, the parser itself does not provide the decision making logic for 

picking the shots. The parser is automatic. It is not interested in creating the shot list, only in 

breaking down the script into a data structure that can then be used by other programs and 

components of the overall project.  

 

As all parsers do, it reads in plain text and based on the content, breaks it down into pieces and 

categorizes them. This parser has been programmed with the rules of how a screenplay is 

supposed to be structured. It categorizes several things at the same time. It keeps a list of both 

scenes as well as objects that may appear in different scenes. It is mainly interested in objects 
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that are characters, but it will pick out anything that is deemed in important. As such, the main 

data structure is called “script” and it contains lists of data structures called “scene” and 

“scriptobject”. It starts by reading one line at a time, but as it discovers different things, it will 

consider reading in several lines and process them all at once. 

 

The parser knows what the header of a new scene is supposed to look like. Different scripts 

have different variations, but as many variations as could be found have been included into its 

logic. (I downloaded many different scripts during the course of this project, and used them to 

discover these sort of variations.) As mentioned earlier, the header should have an interior or 

exterior, the location itself and a time of day. Once the parser has found one of these headers, 

it will create a new scene data structure and add it to the script structure. It then makes this 

new scene the current scene. Any previous scene will be considered finished for now. 

 

Then, it will continue down, checking a line, figuring out what it is. 

 

There are many blank lines in a script, and these actually give useful information. For example, 

a header is supposed to have a blank line before and after it. Action blocks and dialogue blocks 

also are supposed to have blank lines before and after them. And later on, when the parser is 

running the artificial intelligence algorithm, knowing about blank lines is useful too, so the 

parser records all of them. 
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Dialogue blocks are a little harder to detect but there are still standards. The parser has been 

set up to look for three things when it comes to dialogue: a blank line followed by a line with all 

uppercase letters followed by a line which is not blank. Once a dialogue block has been 

discovered, it will actually take all the remaining lines of the block until another blank line is 

found and concatenate them into one string which represents the dialogue. Another important 

thing happens when a dialogue block is discovered. It means that a character has been 

discovered too. This character is both added to the list of characters in the overall script data 

structure as well as added to the list of characters that appear in the current scene. If the 

character already exists in either of these lists, it is of course, not added twice, although new 

references may be added. This character is also ultimately linked to the created dialogue block. 

The scene itself keeps a list of all its own objects such as blank lines, dialogue blocks and action 

blocks. 

 

If the parser cannot identify a block of text as any of the above, such as new scene header, 

dialogue block or a blank line, it assumes it is an action block, concatenates all the following 

text until a blank line is reached, and labels it as an action block. This is not quite the final step, 

however. The action block is scanned for words that are all uppercase. These are considered to 

be important objects. They may be characters, sounds, camera directions, actions, etc. The 

parser may later identify them as characters, which it will keep track of. 

 

When the parser finishes parsing the script once, it scans through it again, and checks to see if 

any characters it identified later on were not included in scenes that mention them in their 
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action blocks. If it finds them, it will include them during this stage. This is pretty rare, but there 

have been some cases.  

 

In addition to creating the script structure, the parser also creates stubs for the placement of 

the final output of the lister tool, once it has completed its decision. Specifically, it stores each 

line of script, along with a Boolean operator to represent whether a cut takes place on that line 

or not. It also has an integer field for each shot type, clean type and motion type. Each integer 

represents a respective string. It made more sense to store them as integers to save space and 

make referencing easier. In a similar way, objects in a scene are stored as numbers, which all 

can be looked up in the main script data structure. 

 

The parser populates the stubs with default data. The default for a cut is to say there is a cut for 

a new scene, and otherwise no cut. It defaults to medium shot for shot type, single for clean 

type and static for motion. These values are what you will see when you open a fresh script, 

and on average, they may be about right, but we do later need to be careful not to include 

them in lister algorithm. 

 

With this, the parser’s work is complete. The output it has created will be used both by the liner 

described in the next chapter, as well as the lister tool itself, when it is ready to make decisions 

about cuts, shot types, etc. 
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Chapter: Liner 

 

Figure 3 Liner Tool 

The liner tool is in many ways the viewport into this project. It was the genesis of this project 

too, as it started with the idea of lining film scripts. Why is it called a liner? In film-making, one 

of the very important jobs is script supervising. The script supervisor carries a copy of the script 

around the set and marks on it with a pen the shots that have been filmed. She draws a vertical 

line down the script from the point the shot starts until the point the shot ends. She then labels 

it at the top of the line with the type of shot it is, such as medium shot, extreme wide shot, etc. 

If the shot changes, she will mark that at the point it changed. She can also add information 

about the type of motion or if it’s clean. This process is called lining a script. In essence, the shot 

liner tool is a way of marking the script in a similar way, but with a program instead of a pen to 

physical script. 
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The liner produces a GUI representation of the script. Each page of the script is represented as a 

page on the liner tool. Each individual line of the script has info about it, including the scene 

number and what line it is overall. It has a checkbox to represent if a cut happens. It also has 

drop down boxes representing shot type, clean type and motion. To line a script, one merely 

uses these features. 

 

There is also an object window in the liner tool which shows all of the script objects, particularly 

the characters. Of course, people aren’t objects, but in a computer science sense, it makes 

sense to call them objects in order to categorize them. Each object has a drop down box next to 

it saying what it is such as character, prop, sound, action, etc. There is also a list of the scenes 

the object appears in. 

 

The liner tool serves two main purposes. These are either to line a brand new script, or to view 

a script that has already been lined. This latter feature is very useful for either viewing a script 

that someone else has lined or for viewing the output of the lister tool itself which is described 

in more detail later. As such, the liner tool can be started in two ways, either to begin a new 

script, or load up a previously lined script. In actuality, it is not necessarily opening a completely 

lined script, but rather a script that is in the lined format. 

 

Entering a new script takes a script in text format, and assumes it is properly formatted within 

the guidelines of screenplay writing as described earlier. It actually starts by running the parser. 
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The parser transforms it into a data format that the liner tool can then use. In fact, once it is 

parsed, it will look no different in format to the liner tool than an already lined script. It may 

assume that the parser’s default values are in fact the correct values for the script. 

 

The liner naturally allows saving the lined script. It saves it in whatever state it is, whether the 

script is fully lined, partially lined or even if it was just read in by the parser. This is beneficial as 

it allows lining the script in parts or as time allows. It can be saved, the liner tool closed, and 

then reloaded back up to continue work where it was left off. It has actually been programmed 

to save output in two different file formats. One is the native JSON. The entire data structure is 

actually serialized as a JSON. This is merely saved to an external JSON file. The other file option 

is a zip. The zip file is just the compressed JSON. Having it as a zip saves space. In fact, every 

program in this series will accept either a JSON or a zip, including the liner, the vector 

populator, lister and comparer tools. 

 

There is a little bit more finesse to the liner tool that I will describe in detail. I added many 

hotkeys that allow quicker lining of scripts. It has tips and hints built in to the different features 

to guide the user along. There is a place to put an optional timecode to help keep your place.  

 

With the liner tool complete, the next phase of the project was ready to begin: collecting 

training sets. 
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Chapter: Training Sets 

 

All supervised artificial intelligence learning algorithms use training sets to make themselves 

“smarter” or at least capable of the task. The more training sets the tool has, in theory, the 

better the results it will output. Training sets can take on many forms depending on the 

application. In our case, a training set is a lined script. 

 

Lined scripts com in a variety of forms. It can be a script lined by an expert movie maker who 

merely looked at the script and picked out the shots he felt most appropriately suited the story 

he saw unfolding before him. It could be an inexperienced film maker who just lined as he saw 

it. In fact, a script could be lined in countless different ways and still look like a valid film. It 

could also be lined by watching a finished movie and marking up the script exactly the same 

way as it appears in the film. For the most part, this is the approach taken on this project. 

 

Several films were picked as candidates to be lined. First and foremost, a script had to be 

available for any chosen movie. Almost as importantly, it had to be properly formatted so that 

it could be read by the parser and loaded into the liner tool. I even took it one step further, and 

saved the parser output and loaded it back in again because in a few cases, a script had strange 

characters that couldn’t be read back in. (I used these opportunities to update the tool).  

 

After that, a movie was checked to see how closely the finished film actually matched the 

script. The scripts available were usually shooting scripts, meaning they were written before 
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making the movie. Not many scripts are available in proper format that are transcripts written 

after the movie was made. So, in many cases, the director just uses the script as a rough blue 

print, and ends up changing many things including dialogue and scene order. Sometimes 

characters are removed or their names are changed. In extreme cases, the entire plot might 

have drastically changed. It’s normal for there to be little changes, and almost rare for a final 

movie to exactly match its shooting script. Still, I tried to come up with a selection that had a 

script that matched the movie as closely as possible. 

 

Once a wide selection of approximately 100 suitable movies was complete, I picked the actual 

movies to use for the training sets based on the sort of output I might want, such as a type of 

film, a genre, or a shooting style.  

 

I took it upon myself to line the scripts, with an initial intention of trying to get all 100 scripts 

lined by the end of the thesis project. The first script I lined was Ghostbusters, and it was quite 

an undertaking. I most certainly was not able to do it all in one sitting. It took me over a week of 

working on it in chunks at a time to finish lining this single script. I did not actually time how 

long it took, but my estimation was that it took between sixteen and twenty hours. I quickly 

realized that I was not going to be able to get a hundred scripts done in total. Certainly not by 

myself, and probably not even with help from other people. 

 

I set out to find other people to help with the process. Several ideas were thrown out, including 

crowdsourcing, or paying people, but at the end of the day, neither seemed to be an effective 



 

26 
 

solution as it was just too time consuming. Not too many people were interested in devoting 

the amount of free time required to finish and it would have been too costly to pay people. In 

addition to myself, my father lined several scripts, and my girlfriend lined one too. A few other 

family members and friends agreed to line scripts, but once they tried, soon realized it was a 

daunting task.  See Appendix XX for my father’s description and thoughts on his time spent 

lining! 

 

Lining the script, although extremely difficult and time consuming, turns out to be very 

interesting. I could probably write an entire paper myself on just that, but suffice to say, it is 

extremely interesting to see up close and personal the decisions a director, cinematographer, 

editor, etc. made when shooting and selecting the shot choices that they did. It is also with a 

certain sense of wonder that these lined scripts are ultimately fed into the lister program to see 

what sort of results it can come up with based on them. 

 

As of this writing, ten scripts have been completely lined, with at least one more coming up. 

This is a far cry from the hundred originally hoped for, but given the amount of time and work 

required to get even that many, it comes with a certain sense of pride. And, as it turns out, it is 

still likely enough to come up with some interesting results. Keep in mind that even one script 

has thousands of lines. Each of those lines provides useful data to the training algorithm. Each 

script has dozens if not hundreds of scenes to provide good data. 
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With even just one script lined, the next step of the project was able to be started, constructing 

the algorithm for outputting a shot list for a brand new script. 

 

The Naïve Bayes Algorithm: In two parts. 

The Naïve Bayes Algorithm is actually executed in two parts that is two separate programs were 

written, each to do one task. They were written in tandem and use many of the same 

components and methods. The first program is the vector populator tool for creating the vector 

file. The second is the lister tool which takes the vector file and an unlined script and creates 

the final lined script as its output. 

Chapter: The Vector Populator Tool 

 

Naïve Bayes works by creating vectors from the training sets. What we ultimately desire is to 

know for each line whether we have a cut or not, what is the shot type, what is the clean type 

and what is the motion. Each of these four categories, I have mentioned we call the target 

features. And each target feature has a vector associated with it. The vector is basically a set of 

probability data. At its heart, what a vector is doing, is storing the conditions that took place 

during the various possible outcomes of a target feature. For example, it looks at all the times 

there was a cut, and records all the other events that took place on or around that line too 

while there was that cut. These other things that happened are called features. They are 

features of the script. One simple example of a feature might be, what scene object is a given 

line? Is it a scene header? Is it a blank line? Is it an action block or a dialogue block? What it is 
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will play into the calculation of the target feature. When you have enough different features, 

you start to be able to paint a picture of what the target features should or might be. 

 

For sanity sake, I will use the word option in this document when referring to target features 

and selection when referring to feature. So the option picked for the cut target feature might 

be cut or not cut. The selection of the scene object feature might be an action block or dialogue 

block. 

 

What does a vector look like exactly? It is called a vector because it is supposedly a one 

dimensional array of data. However, each component itself has an array or mapping. A vector 

for a target feature is populated with all the features. Like a target feature has at least two 

options of what it could be, a feature also has a selection of options. Like target features, they 

are predefined as well as capped. With scene object type, for example, we know it has to be a 

new scene, blank line, action block, dialogue block. So for each target feature, the array 

contains all features, each of which contains all the possible selections of that feature, and then 

each of these contain an array of all of the options of the original TargetFeature. If that sounds 

confusing, here is a programmatic representation: 

 

targetFeature[].feature[].selection[].option[] 

 

When the vector is first created. It is initialized with all values at zero. This is important because 

as we populate the vector we want to be able to continue increasing the counts by one. 
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So in order to actually populate the vector we start by scanning the script line by line. Keep in 

mind that it’s not the same as scanning the script line by line the way the parser does because 

in this case, the parser has already processed the data, so it’s in a form the vector populator can 

easily use to get the data it needs to put in the vector. And because it’s already a marked 

training script, we already know about what each target feature is set to. And, we can see, 

calculate or keep track of the selected options for each feature depending on what it is. Now, as 

an example, say we hit a line that is new scene. And say that it has a cut. In the new scene (cut) 

vector, we select the scene object feature. In the selection of that feature, we select “new 

scene”. And then under that selection, we pick the option of “cut”. Finally, we reach an ordinary 

integer counter. We increase this number by one. 

 

There are many different features, each of which has its own way of calculating its value. Some 

are simple like the scene object type which was calculated by the parsing and stored in the 

lined script. Things like the scene number or the number of characters in the scene are similarly 

pretty simple to come up with. Others begin to become a bit trickier, like measuring the 

number of lines that have passed since something happened, like maybe a new scene or a cut. 

 

For my own sanity, I came up with a concept of two different kinds of features. One is pure and 

the other is non-pure. A pure feature is any feature that you can glean from the parsed script 

itself regardless of the lining of the script or the output of the lister tool. A non-pure feature is 

one that is based somehow on the target features, or may even be a target feature itself. (All 
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four target features are also stored as features as well). Calculating something like how many 

lines have passed since a cut is non-pure because it is dependent on the last time a cut was 

calculated. If the tool decided the previous line was a cut, only one line has passed, whereas if it 

decided on one twenty lines earlier, that may change the outcome. I mention this now, because 

later on when utilizing the vectors, we need to be mindful of the non-pure features. 

 

Aside from some book-keeping with calculating the feature selections, it’s basically that simple 

to populate vectors. We do have to keep track of a lot of numbers and be careful in doing so. 

Increasing just by one may not seem like a lot, but this will add up over time. For every line, 

every target feature must be considered. And for every target feature, every feature must be 

considered. So, right there, if we have four target features and twenty features, that’s eighty 

variables we’re manipulating just for one line. 

 

The beauty of populating a vector is that you can have as much or as little data as you want. 

The more lines you use to train, the richer it will become. And, you can mix and match any 

training sets that have been created. For convenience, I created the shell of the vector 

populator tool as a GUI much like the liner tool. It has a file system which allows selection of the 

various training sets. It checks to make sure they are valid training sets, and it will also make 

sure a particular training set is only added once. Finally, it allows you to save the vector file with 

a custom name. This will allow creating different vector files with different combinations of 

training sets in order to compare their outputs from the lister tool. We’ll discuss that more in 

the experiments and results chapters towards the end. 
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Chapter: Features 

 

In this section we will list out all the features that are used in the vector and lister tool and 

briefly what they mean. It is important to note that the order of the features does matter, at 

least for the ones that are also target features, as what each target feature is determined to be 

affects what might be selected for the next features. 

 

First the non-pure features: 

 cut 

o One of the target features. Simply, describes if there is a cut or not on this line. 

o Whether there is a cut or not should play heavily into deciding the other target 

features. For example, no cut means it is more likely that a shot type would 

remain the same as the last line, however, a cut can mean shot type could be 

anything. 

 shotType 

o The shot type that has been determined for the line. 

o This is an important consideration for clean type. For example, a wide shot may 

be more indicative of say “multi” whereas close up may be indicative of “single”. 

 cleanType 

o The clean type determined for the line. 

 motions 

o The motion determined for the line. 



 

32 
 

 linesSinceCut 

o A counter that keeps track of how many lines of script have passed since the last 

time a cut was determined. 

 linesSinceShotTypeChange 

o A counter that keeps track of how many lines have passed since there was a 

change in shot type. 

 lastShotTypeNoCut 

o The shot type chosen on the last line.  

o This feature is only included when there is no cut on the current line. 

 lastShotTypeWhenCut 

o The shot type chosen on the last line only when there is a cut on the current line. 

 linesSinceCleanChange 

o A counter for the number of lines since clean type changed. 

 lastCleanType 

o The clean type that was chosen on the last line. 

 linesSinceMotionChange 

o A counter for the number of lines since motion changed. 

 lastMotionType 

o The motion that was chosen for the last line. 

 tiltCount 

o A counter for how many lines have passed while tilt was selected for motion. 
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o Tilt should not happen too many times so this feature is in place primarily to 

prevent that. 

 zoomCount 

o A counter for how many lines have passed while zoom was selected. 

o Like tilt, zoom should be limited. 

 panCount 

o A counter for how many lines have passed while pan was selected. 

o Like tilt and zoom, pan should be limited. 

Non-Pure features added after separating each Target Feature into its own iteration: 

 dialogueCountInShot 

o the number of dialogue blocks in the shot of the current line 

 uniqueDialogueCountInShot 

o the number of unique dialogue blocks, not counting a character more than once 

 actionCountInShot 

o the number of action blocks in the shot 

 lineCountInShot 

o the length of a shot in lines 

 

The pure features: 

 sceneObjectType 

o This feature checks to see what the scene object type is on the line. 

o This may be a new scene header, a dialogue block or action block. 
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 linesSinceObjectChange 

o A counter for how many lines passed since the last time the scene object 

changed. 

 linesSinceNewScene 

o A counter for how many lines have passed since the scene started. 

 intExt 

o Returns whether the current scene is either interior or exterior. 

 scriptObjectsInScene 

o The count for the number of script objects that have been found in the current 

scene. 

 actionBlocksInScene 

o The total number of action blocks in the scene. 

 dialogueBlocksInScene 

o The total number of dialogue blocks in the scene. 

 sceneLength 

o the length of the scene in lines 



 

35 
 

Chapter: Lister Tool 

 

Figure 4 Lister Tool 

The lister tool is in many ways the culmination of the entire project. It is what creates the lined 

script output. The lister tool takes two files as input, a vectors file as created by the vector 

populator tool and a raw unlined script just like the liner tool starts with. 

 

The lister tool uses the parser the same way that the liner tool does. In fact, it creates a file that 

starts out exactly the same as what the parser hands the liner tool. It has the same data 

structure, with all the same stubs. This makes sense, because it is outputting a file that is the 

same. The difference begins here. Instead of a GUI which can be used to make the selections of 

the target features, like the liner tool, the lister tool now dives into the Naïve Bayes algorithm in 

order to come up with the shot list. 
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The Naïve Bayes algorithm of course uses the inputted vector file in order to come up with the 

shot list. This is where the ideas of probability come in to play. The Naïve Bayes algorithm is 

based off the idea of Bayes Rule (or Bayes Theorem). This rule is written like this: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 

What this means is that the probability of A given that B happens, is equal to the probability of 

B given that A happens times the probability of A divided by the probability of B. Basically, if we 

have any three of these probabilities, we can calculate the fourth. 

 

Here’s a very simple example that applies to the data we already have. What if we know that a 

given line is a new scene? We want to find out what is the probability of a cut given that it is a 

new scene. We know the probability of a cut over all. From the training sets, the total number 

of cuts over the total number of lines is the probability of a cut. We also know the probability of 

a new scene. That is the total number of lines with a new scene over the total number of lines. 

We also had counted up all the number of times there was a new scene when there was a cut. 

This number divided by the total number of cuts gives us the probability of a new scene given a 

cut. We can put all that together to find the probability of a cut given a new scene using Bayes 

Rule. But, how does this help us decide whether we should have a cut or not? 

 

This is where it gets interesting. We do the same calculation but instead of cut, we do it for not 

cut. So, we figure out, what is the probability of no cut, given a new scene. We find the 
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variables the same as before, and we will get a number. Now, we have come up with two 

probabilities. One is the probability of a cut given new scene and the other is the probability of 

no cut given a new scene. Now, I will tell you from my experience that there were on very rare 

occasions times when there was no cut on a new scene, but almost always, there was a cut on a 

line that was a new scene. This makes sense because a new scene almost always switches to a 

new location, and unless you do an intricate camera movement or have your characters cross 

over in a unique way, you have to cut to get there. So, with almost all training sets, you will get 

a result that the probability of a cut on a new scene is higher.  

 

That, in a very basic way, is what Naïve Bayes does. It calculates the probability for each option 

of the target feature. It goes with the probability that is the highest. It’s easier for cut, because 

there are only two options, cut or no cut. For others like shot type, it has to calculate the 

probability for each of the possible options. 

 

And of course, there isn’t just one feature as in our example. We have to use all of the 

probabilities for each feature, given the feature selection chosen. This is where it expands from 

Bayes Rule to the full Naïve Bayes algorithm. It is written like this: 

 

𝑂𝑝𝑡𝑖𝑜𝑛 =  argmax
𝑘 ∈{1,…,𝐾}

𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

  

 



 

38 
 

In English, that means we’re taking the max of each of the options from 1 to K, as indicated 

above. Each option’s probability is calculated by multiplying the probability of the selection 

given k times all the probabilities of each option given that selection. If you have a keen eye, 

you’ve probably noticed we dropped the probability of each option itself which would be in the 

divisor in Bayes rule. Since this same value would be in the divisor in all the products, i.e. for 

both the calculation of cut and not cut, it doesn’t change how the outputs compare, so the 

extra calculation can be dropped. 

 

That in essence is how Naïve Bayes works. The vectors have collected all the probabilities. So, 

now, much like the way the vector populator had to go down each line, the lister tool goes line 

by line too. It doesn’t know the option for the target features yet, but just like the vector 

populator it can figure out which selection has been selected for each feature. It uses the vector 

like a look up table, plugging in the selections, and the probabilities pop out for each of those 

options given those selections. The product of all those probabilities gives the total probability 

and the comparisons can be made. With that, the option is filled in for each target feature on 

the line. 

 

There are some known issues with Naïve Bayes. Probably the most well-known is that if there 

are zero occurrences of a picked option in a selected feature then you will have a probability of 

zero. Zero multiplied by any number is zero which would skew the entire results. To prevent 

this, some sort of smoothing needs to take place. Laplace smoothing should probably work. In 
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theory, we also want all the features to be independent, but it does not necessarily matter too 

much. 

 

That is basically it, but a little bit of care does have to be taken about how the features are 

examined and even which features should be considered when calculating the product for final 

probabilities. The next chapter goes more into feature settings. 
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Chapter: Feature Settings: Enhancing the Lister Tool 

 

Figure 5 Feature Settings Form 

Not satisfied to just use the feature probabilities at their face value, I went a few steps further 

and added customization for the settings. First and foremost, I added the concept of skipped 

features. These are features that I specifically don’t want used in the product to calculate the 

overall probability. Secondly, I added the ability to give weights to the features. 
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There are definitely some cases where you don’t want a feature being included in the 

calculation of a target feature. The most important case is when the target feature is a feature 

itself. Indeed, all of the target features are also features, and in some cases, this is appropriate. 

It is not appropriate however, to have a target feature use itself in a calculation. The reason this 

is a problem is twofold. Let us consider the simple cut as an example. If the feature is cut and 

the target feature is cut then you have selections of cut and no cut as well as options of cut and 

no cut, respectively. What will happen though, is that every time feature is cut, target feature 

will also be cut. And similarly for no cut. This could end up skewing values greatly. The 

probability of a cut when there is no cut is effectively 0 percent. You don’t want to multiply zero 

times other probabilities because you will most certainly end up with zero. For this reason, it is 

important to skip a feature when it matches the target feature. 

 

There are certainly cases where you would want to use a target feature as a feature though, 

and that’s why they are included. For example, when deciding on what the shot type might be, 

whether it was a cut or not on that exact same line is actually pretty important. As a matter of 

fact, if there is no cut, the likelihood that the shot type would be the same on this line as the 

last line is pretty high, since you would expect that unless the camera moved or a character 

moved, things that do happen but not necessarily frequently, then the shot would be the same. 

On the other hand, if there is a cut, it might still be the same shot type on this line, like if you 

were cutting back and forth between two close-ups, but it is also just as likely that it would be a 

different shot type. Likewise, once you know the shot type, you might want to use that for the 

clean type. These are reasons why target features are included as features. Furthermore, each 
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target feature on each line is calculated completely before moving on to the next, so that it can 

purposely be used in calculating the next.  

 

The order of calculating target features has been decided on as cut, then shot type, then clean 

type and finally motion, each calculation being included in the next. This order was decided 

starting with what instinctually feels like the most independent down to the most dependent. 

Meaning, you would really want to know if it’s a new shot before trying to decide what the shot 

should consist of. 

 

Another example of needing to include a skip feature is with features like 

“lastShotTypeWithCut” or “lastShotTypeNoCut”. If there actually isn’t a cut, you’d want to skip 

the first one. If there is a cut, you would want to not include the no cut variation. The last shot 

type to the new one as inferred above is very different when there is a cut or not which is why 

they were separated and skip feature is used here to make sure each one doesn’t skew the 

other’s data and input. 

 

The skip feature concept is strictly enforced by the program and hard coded in. But variations 

on features’ impact on the output are also soft coded with the introduction of feature settings. 

The feature settings are an extension of the Lister tool. Like the training scripts, and the vectors, 

they are saved into their own specially formatted file of type JSON. They have their own GUI 

window which is brought up from the lister where the settings can be changed, loaded or 
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saved. They generally work by manipulating the impact each feature has on the output 

calculations. 

 

Each target feature contains its own settings for all of the features. So, given there are four 

target features, each feature actually appears four times. But each feature figures into 

calculating each of the four target features differently, and this is the reason they are each 

shown separately. Each feature is associated with two values, a Boolean and a double. The 

Boolean indicates whether the feature should be used at all in calculating the target feature. 

This is just like the skip feature mentioned above except it is soft instead of hard coded. This 

means it can be changed easily which is extremely useful during testing to see which features 

ultimately should be included in the calculations of each target feature.  

 

The double represents the weight that the feature should have. The default is 1.0 which means 

it will be used normally. Keep in mind that each feature represents a probability that is being 

multiplied with other probabilities, so the weights are not actually being multiplied times each 

probability like as if you were trying to weight an average. Multiplication is commutative so 

multiplying one of the values by a number would be no different than multiplying any of the 

numbers by the same value. Instead, the probability is raised to the power of the weight. 

Keeping this in mind, a number lower than 1 will cause the probability to have less impact. Any 

number to the power of 0 equals 1, so a weight of 0 is the same as not using that feature at all. 

A number greater than 1 for weight will cause the probability of that particular feature to have 

a much higher weight. 
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It is important to note that regardless of how random the output appears or of what features 

are being used, the results are always deterministic. If the exact same raw script is entered with 

the exact same vector file with the exact same feature settings, the output will be the same 

every time. 

 

Having the ability to manually change the settings of the features allows looking at the output 

to decide which features actually help in providing good results and which features seem to 

make it worse. In the next chapter, we dive into the refinement phase, where we actually pick 

which features to use, and what weighting to have on them. 

Chapter: Refinement 

 

Perhaps the biggest refinement I made was when I noticed there was a definite skewing of the 

results toward the first option of each Target Feature. As I mentioned in an earlier section what 

was happening was an issue with zero probabilities. If a newly inputted script has a selection of 

a feature that never occurred in any of the training sets, it will produce a probability of zero. For 

example, say the linesSinceCut feature comes up with a case where there’s a 100 lines since a 

cut while running the Naïve Bayes on a script, but in all training the training sets, there was 

always a cut by the 99th line. (In actuality, there were many times where there were no cuts for 

over 100 lines, but for this example, let us assume that we always had a cut by the 99th line.) In 

the vector, all the options for 100 or over, would have 0 cases for any of the options of this 

feature. So the probability then would be 0 that this selection happens given any option. 
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Multiplying this probability times all the other probabilities would cause it to go to 0. This is not 

what you really want. Imagine if for all the options, it went to 0. Instead of comparing them 

against each other to pick the one with highest value, it would just default to the first one. 

 

To solve this issue, I implemented Laplace smoothing. That means taking the probability and 

adding a small number to it so that it is never as low as zero, although numbers that would 

have been zero will be very small. This is appropriate because it will make the overall 

probability go way down which it should since we have clearly seen from the vector set that this 

outcome is rare if not unique. What is recommended is to add a Laplace constant on the top of 

the probability, typically the number 1, which is what I did. Multiply this same constant times 

the number of possible outcomes for the target feature, that is the options, and add that 

number to the bottom. This will ensure that if you are creating probabilities and if they are all 

added up with their complementary probabilities, it would still equal a total of 1 as before. This 

smoothing will affect the ratios of the probabilities slightly, but it is a small price to pay for 

ensuring the zero issue is taken care of. 

 

Another major refinement came with adjusting the features. The very early versions of the 

lister tool, only had a very limited number of features on which to train. Of course, it had the 

four target features as features. What became apparent, was as features were added, the 

results really started to change, sometimes for the better, and sometimes for the worse. What 

is desired is to find the exact right configuration of features, i.e. which should be used for which 

target features, and what sort of weighting should be used for each. 
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Ultimately, certain features may seem like a good idea to add into the program, but it may turn 

out, they not only do not help, they make the output worse. And some features will help, but 

only when the weighting is shifted.  

 

The final improvement I made to the algorithm was actually separating the picking for each 

target feature into its own iteration. Originally, I went through the script line by line only once, 

picking all four target features as I scanned each line. I realized that I was actually better off 

finding doing them separately, each with its own complete pass. Since each target feature 

already scans through all the features individually on each line, separating them into different 

passes actually doesn’t add much time. What it did allow was to get more complete data on 

one target feature before processing the next. This was particularly important with cuts. 

Calculating cuts first meant that when calculating shot type, etc., the program would know 

where the shot started, ended and its duration. This meant being able to add new features like 

counting the number of dialogue blocks in a shot. For example, if a shot has one dialogue block, 

it is more likely to be a close up and a single. Whereas, if it has several dialogue blocks it is more 

likely to be a wide shot and a multi. Of course, making this change meant that choosing the 

order of calculating target features was even more important, and earlier target features 

couldn’t use any of the results of later ones. The previous way allowed cut to see what the last 

shot type was, and now that is not possible. However, overall this change made for a great 

improvement in the results. 
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With enough tinkering, we can get results that visually may look pretty good. This brings up an 

excellent point though, how do we know if the results are better or worse and this brings us to 

our next chapter. 

Chapter: The Comparer 

 

How do we know if the results the lister has produced are good, or to use a different idea, how 

do we know if they are correct? This is a somewhat difficult question to answer, because as we 

already stated, creating a shot list is a bit of a work of art, and good art is always a matter of 

taste and opinion. So, it depends completely on interpretation. Still, we can make some 

comparisons.  

 

To test the output of a shot list generated by the lister tool, we can compare it to the same 

script that was lined by a human while watching the actual movie, which is what the training 

scripts are. Remember, the training script is in the exact same format as the lined script as 

outputted by the lister tool. 

 

The simplest way to compare the two scripts is procedurally with a program that compares how 

closely, line by line the two scripts match. To start, I wrote a program called comparer that uses 

the idea of edit difference between the two scripts. Take for example, the cut edit difference.  

 

The comparer tool goes down the first script line by line. If there is a cut on one line, it will 

check to see if there is a cut on the same line of the other script. If there is not a cut, it will 
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begin to scan the other script until it does find a cut. It will first count the number of lines up 

from there until it finds a cut and then count the number of lines down until it finds a cut. It will 

return the smaller of these two values as the edit difference for that particular cut, adding that 

to a total. Note that if they both have a cut on the same line, a zero is added to the total. It then 

continues down the first script, adding up all these discrepancies. Now, it’s not good enough to 

just scan down one script and compare it to the other. Say that the first script has very few cuts 

while the second script has a cut on every single line. This will actually return a total of zero 

even though the scripts are actually very different. In order to thwart skewed results such as 

these, the comparer does the same process again but starts by scanning the second script line 

by line and comparing it to the first. By the time the scanning has been done twice, there will be 

two totals values and these can either be added or averaged together. I chose to average them. 

The lower the number, the closer the scripts match. If you compare the same script against 

itself, the number will be zero. 

 

The other target features use a similar technique, although they are a little more complicated. 

It scans down line by line, but instead of looking to compare only lines that have a cut, it will 

actually compare every line to the corresponding line of the other script. So, for example, if the 

target feature is shot type, and on the given line, the shot type is close up, it will check to see if 

the other script is a close up on the same line. If it is not, it will scan both up and down on the 

other script until it finds a close-up, and report back the short distance whether up or down. 

This is added to a total. If the other script actually never has a close up, it will scan all the way to 

the beginning of the script, as well as to the end, and return the minimum of one of those 
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distances. Since it does a similar scan on every line, you can imagine that the difference number 

will grow quickly, and it does. The differences for shot type, clean type and motion are much 

larger than cut type. Cut edit difference comes back often in the thousands where the others 

may come back in the tens or hundreds of thousands. 

 

The comparer tool returns the edit differences for the four target features separately, as well as 

one combined number. 

 

Now, results like these are not very good on their own. If you get back a number around 3000 

for cut difference that does not mean much unless you compare it against something else. So, 

you may want to compare several different lister outputs against the original training set. 

(Different outputs are a result of using vectors with different training sets, and/or changing the 

weight and use of the different features.) The script that comes out with a lower number could 

be considered closer to correct, or a better output. Although, not necessarily, as again, there 

can be a lot of variation among what is considered acceptable output. Still, this provides a 

starting point. Perhaps one of the biggest faults of the comparer tool is that you need at least 

three inputs for it to work. You need the training script, and two other outputs. Each output 

using either different training sets or feature settings. In this way, you can really only judge the 

other two outputs against each other, which is better and not truly against the training script 

itself. Of course, that is what we really want: judging how good the output is against the original 

training set. All we know is that a low number is good. So, the comparer is not really a complete 

metric. Using the comparer gives us some data, but we really need another method of 
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comparison to get better insight. And moreover, to compare output against the training set 

itself. 

 

It is worth pointing out however that the comparer tool had other uses. There was more than 

one occasion that I wished to refactor the much of the code, both to tighten and clean up, while 

still desiring the exact same output. When I did this, I would output a lined script before doing 

the refactor and then output another lined script afterwards. I could then use the comparer 

tool to compare them. If it returned a 0, then I knew that my refactor successfully still 

outputted the same results despite all the changes in the code. 

Chapter: Human Judgement 

 

In addition to using the comparer tool to examine the outputs, it was decided that using human 

eyes was also a good idea. Humans can instinctually sense art better than a computer can. Of 

course, we did not want to overburden the generous humans who volunteered to examine the 

outputs, so, we decided to do only 100 line chunks of any given script. 

 

In order to make it reasonably easy for humans to judge the material, I wrote another program 

called HumanJudge. It takes the lined scripts and creates a simple CSV file with the lines of 

script, as well as the picked options for the target features. It requires a minimum of two lined 

scripts, but will take three or more as well. Each line of the CSV file has the text of one line of 

the script, followed by the target features that were picked for that line according to each 

sample.  
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The HumanJudge program picks the sample randomly. So, it will likely grab a different set every 

time it is executed. It finds the length of the script, and selects a start line from 0 to the length 

of the script minus the sample size, which we decided would be 100. It then iterates through 

the same lines on all the input lined scripts and exports the options picked to the CSV file. 

 

Figure 6 Human Judge Output 

The HumanJudge takes something like a double blind approach. That means although I know 

which scripts I am feeding the HumanJudge program, it strips that information before 

presenting the data to the human subject. There are no references to the lined script file names 

in the CSV file or indicators to the human which script is which other than the content itself. 

Each sample is labelled “Sample 1”. “Sample 2”, etc. The program also actually randomizes the 

orders of the samples. So, if I were to insert the same three scripts, on different occasions, it 
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would output the samples in a different order. Then, when I pass the CSV file to the human 

subjects, even I do not know the order. The HumanJudge program also outputs a simple text 

file that has a legend stating which sample belongs to which lined script file. I do not send this 

along to the human. I just use it is as a reference to know which files are which after they send 

back their preferences about the samples. 

 

The program runs on the assumption that the lined scripts being inputted are all actually the 

same script, albeit with different picked target features. It needs to go by this assumption 

because it is only printing the lines from the scripts once, which means it is assuming that the 

lines are the same in all the scripts. Without that, the data is useless because the second or 

third sample would be referencing some different lines of script and we would have no 

comparison. This assumption is also important because it is pulling the same datalines from 

both scripts. If the scripts are not the same, and do not have the same length, it may try to pull 

a line from the second script that is out of bounds and could throw an exception. 

  

Now, the HumanJudge program also has a fault in that it is only sending a sample to the human 

judgers. To truly judge the output, it should be sending the entire script. In this way, the human 

could judge the output as a whole. Like, does output follow a style all the way through? Does it 

get the subtly of what is happening from one scene to the next? This would be nice, but like in 

any statistical analysis, we really only can afford to get a certain amount of data, which we 
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assume is representative of a larger which. In other words, we take what we can get and go 

from there. 

 

With this program complete, it was relatively easy to create human judgement samples to send 

to people that they could quickly go over and get back to me with their findings. Of course, in 

order to do that, I first needed to come up with what the actual experiments would be. 

Chapter: Experiments 

 

In order to test the output of the lister program, several experiments were conducted. What 

follows are descriptions of the experiments. Some of the experiments only have two things to 

compare, the training set and the lister output. In these cases, the human subjects were asked 

to say which version they preferred or which version seemed more natural. Some of the 

experiments have three or more different outputs in which case, the human subject was asked 

to rank them from best to worst. Also in the cases of three or more, the comparer tool could be 

used as well. 

 

I had over a dozen human judgers who were willing to participate. Below the description of the 

experiments are the results. I actually looked at the numbers first before I looked at the files to 

see if I could guess which numbers corresponded to the original training set. When I could not 

guess, I saw that as a positive. The human choosing the lister output over the training set is not 

necessarily the goal. The goal is that they are chosen an even amount, or at the very least the 
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training set is not always preferred. If the lister output is chosen about the half time, I 

concluded that the output is reasonable. 

 

Experiment: Basic 

 

The most basic experiment is to take all of the training sets except one, and use them as input 

into the vector populator. Then, take the script only version correlating to the unused training 

set and feed it into the lister tool. So the system will be trained with n-1 of the available training 

scripts and then will produce its shot list for the nth movie which can be compared with the 

training script produced by a human for that movie.  How good of a job does it do? Naturally, a 

human may be interested in looking at the results. Does it appear to do a good job on visual 

inspection? What other ways can we examine its output? 

 

Experiment: Control Sample 

 

A couple of the scripts that were used to create training sets by watching the movie and closely 

lining the script to match the actions on the screen where also used to make control samples. 

The control sample gives a third sample to compare against the standard training set in addition 

to whatever output the liner tool might give. The idea is that a person will once again mark up 

the script, but this time, instead of watching the movie, they will only have the script, and they 

will use their own insight into the script and artistic judgement to line the script. 
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With that complete, the lister outputs its own version of the same script. Like above, we will 

probably want to use all the training sets as input except for this particular script. The lister 

output is compared to the original training set and the control sample is compared to the 

training set. The question is, is the lister output as good as or better than what the human came 

up with. Now, this will vary greatly depending on the sort of training sets the lister uses or the 

features settings, but as far as the comparer tool is concerned, for the most part the lister’s AI 

did about as good a job as the human. 

Experiment: Training Set compared to Same Script 

 

This is a little bit more of a devious test. What happens if we feed in a single training set, and 

then use the exact corresponding script as the input? One would imagine that in an ideal world, 

the lister tool having the exact training set that goes with the raw movie, it would be able to 

line it perfectly. Although, in practice, this is not the case. This particular experiment gives us an 

idea of how good a job we might have done in picking our features. Better more refined 

features should inch us ever closer to ultimately getting a well-tuned set of features and 

settings. 

 

Experiment: Feed Lister Output in as Input 

 

This is a similar experiment as above, although, it should hit the nail even closer to the head. 

What happens if instead of feeding a training script into the vector populator tool, we actually 

feed in the output of the lister tool? This is possible since the output and training sets are 
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exactly the same format. The idea again is that if you feed in the raw script corresponding to 

the raw script you feed in to create that output, you should get results again that match almost 

exactly the same. And again, if the features are picked well, and tuned well, this would be the 

case. 

 

Experiment: Many Training Sets vs Few Training Sets 

 

In this experiment, we want to create several vectors, one which has a single script Training Set, 

one which uses several, maybe half the available Training Sets, and another which uses most if 

not all of the Training Sets. Then we want to feed the different vectors into the Lister tool with 

the same raw script each time. Then we compare the different outputs. The goal is to see if 

more training sets produces a better output or if we actually want fewer. 

 

Experiment: Comparing Different Films by Same Director 

 

This test is done to see how close the outputs are if the films involved are done by the same 

director. In order to complete this test, two different films by Quentin Tarantino were lined, 

Reservoir Dogs and Pulp Fiction. These are Tarantino’s first and second movies and as such, 

have pretty similar styles. Here is exactly how the test works. We actually create two different 

vector files. One is based on a random set of the Training Sets that don’t include one of 

Tarantino’s films. The other vector is created with the first Tarantino Training Set. The lister tool 

is then fed the other Tarantino film in its raw script form along with each of the two vector files 
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in turn. We compare these two outputs against the Training Set of the second film and see 

which gets a better score.  

 

Our hope is that the output that used the vector from the Tarantino Training Set will do better. 

This would indicate that the lister tool really can be influenced by the sort of Training Sets you 

feed it, and with a much larger number of Training Sets, one could be choosy enough to request 

a kind of output, and the lister would pick its own Training Set selection accordingly. 

 

Round 1 

 

Thirteen people ultimately participated in the Round 1 experiment. I created a table in an excel 

spread sheet, with columns representing the raters, and rows representing the experiments, 

and each cell representing the rater’s top pick for each experiment. I pasted this data into the 

following website: 

http://www.statstodo.com/CohenKappa_Pgm.php#Cohen%27s%20Kappa%20from%20rating%

20scores 

This gave me a Fleiss Kappa score of 0.2647 which according to 

https://en.wikipedia.org/wiki/Fleiss'_kappa indicates “fair agreement”. 

 

I also tallied up the scores, and found that 111 out of 156 times, the human lined scripts were 

picked over the lister outputted scripts, for a percentage of 71.1538462% 

 

Basic: 

http://www.statstodo.com/CohenKappa_Pgm.php#Cohen%27s%20Kappa%20from%20rating%20scores
http://www.statstodo.com/CohenKappa_Pgm.php#Cohen%27s%20Kappa%20from%20rating%20scores
https://en.wikipedia.org/wiki/Fleiss'_kappa
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Unfortunately, the majority of the time, the human observers picked the sample from the 

training set (that is the shot list of the original movie) over the output of the lister tool. 

Although, a few people chose the lister output so it was not a complete failure. My theory on 

the original film preference is that having too many training sets in the creation of the vector 

file is what caused this outcome. Too many training sets from movies with different styles 

creates a sort of overly even affect. The shot list created is bland without too much variation. 

The humans picked up on this quickly and preferred the original film’s output. 

 

Control Sample: 

The results of this experiment are slightly more encouraging. We really have two things going 

on here. One is, how well does the shot list of the actual movie fare against the shot list created 

by another person. And this was a very even split among the human judgers. The results do not 

say much about the shot lister tool, but it does reinforce the idea that good art is completely 

subjective. That is an important thing to keep in mind when reviewing the shot lister tool. The 

output may not at all resemble the original shot list of the actual movie, but as long as people 

see it as viable, that is what matters. With that in mind, the second thing is the output of the 

lister tool was not ranked last in enough cases to feel a certain amount of confidence about the 

output. Keep in mind, like the basic experiment, the output was created with a vector file 

containing all the training sets except the one for the movie tested, so, a more limited selection 

may have actually produced a better outcome. 

 

Training Set Compared to Same script: 
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For the most part, the humans favored the training set over the shot lister output, but there 

were enough cases where the human favored the lister output to still have hope in the process.  

 

Feed Lister Output in as Input: 

This test actually had much more mixed results. It was in fact about half and half. The results of 

the training set may actually be viable enough as to use as a new training set themselves. 

 

Many Training Sets vs. Few Training Sets: 

These are actually some of the most encouraging results. Very few people actually picked the 

training set itself as their favorite. This could be that having four options made it more 

confusing, but on the other hand, it could also mean they all looked viable, and they decided to 

just go with any of them, also a good result. Also, on the whole, people seemed to prefer the 

outputs of the scripts that had less training sets going into the vector file. 

 

Comparing Different Films by Same Director: 

The training set was almost always preferred over the two lister outputs of this test, however, 

the lister produced by the vector with the same director was almost always preferred over the 

one created with mixed training set vector. This could be because the mixed one had more 

training sets which for the most part seem to water down the results, but it could also be that 

the one created by the same director training set actually does do a better job. 
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Round 2 

 

I ran the experiment a second time after improving the algorithm by isolating each target 

feature and adding new features that pertained to shots. I tried as best as possible to replicate 

the first experiment with choices of scripts to use in the vector files and the output files. 

Unfortunately, only nine people participated the second time, however the results were 

encouraging.  

 

This time, the Fleiss Kappa score was 0.1915 which indicates “slight agreement”. This is lower 

than the first round of “fair agreement” and could mean that it was more difficult for people to 

pick their favorite samples since they seemed to agree less. The tallied number of times a 

human lined script was picked was 72 out of 108, which is 66.66%, less than round 1’s 

percentage. Both this lower percentage and the lower Fleiss Kappa score suggest that the 

changes done to the algorithm between Round 1 and Round 2 of the experiments were an 

improvement. 

 

Chapter: Conclusion 

 

Although the main stated goal of this project was to create a program for generating shot lists 

from raw files, the portion of the project I truly found myself drawing a sense of satisfaction 

from was actually the Liner tool.  I toiled over making the liner tool as good as possible, even to 



 

61 
 

the point of staying up many nights to improve it, well past the point that it was more than 

good enough to get the job done of creating Training Sets. It felt to me like a real tool I could 

actually use later on while actually making films. If I were to take anything away from this 

project, it would be to continue developing the liner tool into a professional grade app for use 

by film makers. 

 

However, I do not mean to say all this as to diminish the final product of this project which is 

the lister tool. Although it may not truly measure up to artistic grade shot lists, it still produces 

both viable and worthwhile results. Throughout the experiments, the output was typically quite 

reasonable. Who is to say that an entire scene with six characters might not be one single static 

shot that is extreme close up? I have certainly seen movies do things just like that even 

stranger. Certainly, my refinement of splitting up the target feature calculation helped 

immensely. Although someone may not want to use this tool to create a final shot list, I do feel 

it creates something which someone could use as a starting place, and then use their own 

judgement to refine their shot list. 

 

Which Training Sets are used as input really does make a difference too. In fact, using fewer 

Training Sets seems to have better results. Too many seems to sort of even out the melting pot 

so that no values are that unique creating a bland lined script output. And the set of features 

used also really makes a difference. Like using too many Training Sets, it appears that using too 

many features also watered down the results. This caused a sort of smoothing effect which 

tended to make every line the same. 
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In addition to further refining the features, adding new ones, with good weighting, the thing 

that would really improve this project would be something we knew from the beginning but did 

not have the time for and that would be having many more training sets. In the beginning, we 

even talked about thousands. With thousands of training sets, completely customized vectors 

could be created to suit many different styles of movie, genres. It could be filtered by director, 

actor, and cinematographer even. This sort of variation could really allow outputting shot lists 

that suit the human inputter’s opinion of the movie, which at the end of the day, is really the 

most important thing. 
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