

On-the-fly Map Generator for OpenStreetMap Data

Using WebGL

A CS 298 Project Report
Presented to

The faculty of the Department of Computer Science

San José State University

In Partial fulfillment
of the Requirements for the Degree

Master of Science (Computer Science)

By

Sreenidhi Pundi Muralidharan

December 2015

!

© 2015
Sreenidhi Pundi Muralidharan
ALL RIGHTS RESERVED.

SAN JOSE STATE UNIVERSITY

!

The Undersigned Project Committee Approves the Project Titled

On-the-fly Map Generator for Openstreetmap Data Using WebGL

By

Sreenidhi Pundi Muralidharan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Christopher Pollett, Department of Computer Science Date

Dr. Sami Khuri, Department of Computer Science Date

Dr. Robert Chun, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

!

ABSTRACT

!

This project describes an approach to create an On-the-fly Map Generator for

Openstreetmap Data Using WebGL. The most common methods to generate online

maps generate PNG overlay tile images from a wide range of data sources, like

GeoJSON, GeoTIFF, PostGIS, CSV, and SQLite, etc., based on the coordinates and

zoom-level. This project aims to send vector data for the map to the browser and

hence render maps on-the-fly using WebGL. We push all of the vector computation to

the GPU. This means that less data needs to be sent to the browser. We have

compared existing approaches to our method of generating maps and have been able

to show that our method provides a faster and better solution.

! 1!

ACKNOWLEDGEMENTS

I take this opportunity to thank my mentor, Professor Dr. Chris Pollett for his

useful comments and remarks, which guided me while doing this project. Needless to

say, I engaged myself in learning a lot through this project. Furthermore, I would like to

thank my committee members, Dr. Sami Khuri and Dr. Robert Chun for their feedback,

comments, and time. I would also like to thank my friends and family for their

continuous encouragement and support. Special thanks to my husband Sriram Krishnan,

who is my backbone, who supported me in every single way, channeled my efforts, and

made them fruitful.

! 2!

TABLE OF CONTENTS

1. INTRODUCTION ... 7

2. BACKGROUND ... 11

2.1 Openstreetmap Data .. 11

2.1.1 OSM Data Format .. 11

2.1.2 OSM Data Storage .. 14

2.2 Postgresql Database ... 15

2.3 Raster Data and Vector Data – The Differences ... 16

2.3.1 Raster Data Tiling: .. 16

2.3.2 Vector Data and Vector Tiling: .. 18

2.4 WebGL .. 21

2.4.1 Shader Code: ... 22

2.4.2 Compiling and Linking Shader Code Boilerplate: ... 24

2.4.3 WebGL Buffers .. 26

2.4.4 Drawing the Object ... 27

3. PRELIMINARY WORK ... 29

3.1 Database Setup .. 29

3.2 Local Server Setup ... 31

4. DESIGN OF ON-THE-FLY MAP GENERATOR ... 33

4.1 The HTML5 Canvas .. 34

4.2 The Database and the Query .. 34

4.2.1 Spatial Geometry Constructors ... 35

! 3!

5. IMPLEMENTATION ... 38

5.1 The Data .. 38

5.2 The Map ... 38

5.3 Zoom levels ... 42

5.4 Panning around and Resizing the canvas .. 43

6. EXPERIMENTS AND RESULTS .. 45

6.1 Setting up a Tile Server ... 45

6.2 Timing Tests .. 48

7. CONCLUSION AND FUTURE WORK .. 54

7.1 Conclusion ... 54

7.2 Future Work ... 55

Bibliography………………..……………………………………………………………56

! 4!

LIST OF FIGURES

Figure 1-1: OSM data-based tile generated for 0/0/0 x,y,z values 9!

Figure 2-1: A map rendering OSM data .. 12!

Figure 2-2: A sample screenshot showing the pgAdmin 3’s GUI features 16!

Figure 2-3: Representation of a tiled map ... 17!

Figure 2-4: Mapzen’s Vector Data Tiling ... 19!

Figure 2-5: Initial stages of this project, displaying vector data rendered on top of

Google’s tiled image map. ... 20!

Figure 2-6: WebGL vertex shader that shows 9 vertices being processed 24!

Figure 3-1: pgAdmin 3 showing the tables created by osm2pgsql when importing data

into the Postgres database .. 31!

Figure 4-1 Design of On-the-fly Map Generator ... 33!

Figure 4-3 Using ST_Transform and SRID 4326 ... 37!

Figure 4-4 Geometry coordinates without using SRID ... 37!

Figure 5-1: Converted x,y pixel coordinates ... 39!

Figure 5-2: Map generated for OSM data using WebGL .. 41!

Figure 5-3 Map zoomed out at zoom level 12 ... 42!

Figure 5-4 Controls for zooming in and out .. 43!

Figure 5-5 Controls for Panning around .. 43!

Figure 5-6 Resized browser window with the canvas resized accordingly 44!

Figure 6-1 Special hierarchies of folders that hold images of tiles 47!

Figure 6-2 Map tiles rendered using mapnik and OpenLayers ... 48!

! 5!

Figure 6-3 Average data download times (in seconds) for both methods 50!

Figure 6-4 Average Rendering times (in milliseconds) for both methods 53!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

! 6!

LIST OF TABLES

Table 2-1: RGB values written for each vertex of a triangle ... 24!

Table 6-1 Average data download times (in seconds) for both methods 49!

Table 6-2 Comparison of tile sizes versus queried data size, for bounding boxes 52!

Table 6-3 Average Rendering times (in milliseconds) for both methods 52!

!

! 7!

!

1. INTRODUCTION

Openstreetmap (OSM) is a worldwide geographic database created from public

domain data sources and user created data. It contains a huge amount of data for a wide

variety of features, including administrative boundaries, streets, water bodies, points of

interest, and buildings. Such a large dataset, being difficult to store on servers and render

as-is, is fragmented into smaller chunks of uniform dimensions, say 256 x 256 pixels.

These chunks are referred to as “tiles”, and are bitmap images in essence, which are in

turn the building blocks for online maps. These tiles are placed next to each other in

online maps to create an impression of a seamless map. The tiles thus generated are

stored on a server and are rendered on-demand. Computing tiles on the server during

query time is a lot slower; the user has to wait till the tiles are computed, generated and

rendered. Hence, the tiles are pre-computed for each zoom-levels and are stored on the

server, and rendered on-demand. On the contrary, my project tries to render maps on-the-

fly, without using the concept of “tiling”.

To increase the level of detail seen in each of the tiles, these online maps use the

concept of “zooming in” and “zooming out”. In order to organize these images in a

! 8!

bigger invisible grid-like structure on the browser and to create a perfect map, the maps

use an x/y/z coordinate system, where “x” and “y” describe the x and y coordinates of the

image tile on the grid and “z” describes the zoom level. For example,

http://localhost:8080/osm/0/0/0.png might show an image tile of the entire world, placed

at a (0,0) coordinate position on the invisible browser-grid at zoom level 0 as shown in

figure 1-1. A similar approach as described above is used in

http://www.opencyclemap.org/. Hundreds of thousands of tile images are generated and

stored for each zoom level, which takes up a huge storage space. My project, on the other

hand, draws maps according to the zoom level specified. Thus, each of the points plotted

are calculated based on the zoom level.

There are two ways in which tiles could be generated. The first one, as described

above, is generating tiles as and when the user requests. If a project running on

Geographic Information Systems (GIS) uses its own Web Map Service (WMS) server,

like using Mapnik for instance, then generating tiles using the above-described method,

loading and rendering the map may be time consuming. Latest maps (for example,

Google Maps) use a professional, second way of generating tiles, i.e., “seeding” to cache

the downloaded map tiles to reduce the communication between the server and the client.

! 9!

Though the user experience is greatly enhanced since the user does not have to wait for

tiles to be produced, it is a process that can consume lots of disk space. Further, purging

such cached tiles may be cumbersome when the map data changes often.

Figure 1-1: OSM data-based tile generated for 0/0/0 x,y,z values*

Through this project, I have come up with a solution of neither generating map

tiles according to the users’ requests nor caching the pre-generated tiles beforehand. My

solution, though might seem simple, is effective and efficient in not consuming too much

!!
*!generated!using!TileStache,!a!Python5based!server!application!that!can!serve!map!tiles!based!on!rendered!geographic!data.!

!

! 10!

of disk space and not time-consuming either. This is because of not “pre-computing” and

“generating” images of any kind. Instead, we generate maps on-the-fly, by pushing all of

the vector data computation into the Graphics Processing Unit (GPU). Thus, lesser

communication and data transfer happens between the server and the client (browser

here). The project consists of a backend PHP script that interacts and pulls data from the

database server through an AJAX request and a front-end WebGL-based rendering

engine. By conducting experiments, I have been able to verify that my project provides

better solution to the existing demands.

The rest of this work is organized in the following way. In the chapters following

the introduction, I have discussed about my deliverables, which involves rendering the

OSM data on top of a WebGL canvas; wherein I imported the OSM data into a Postgres

database using osm2pgsql and wrote a postgres query for checking if a specific highway

passes through a given polygon (bounding box) – in my CS 297. Continuing with my CS

298, I have tried to modify the query further to display polygons (buildings and other

geometry) in the map along with lines (roads, streets and trails). I have experimented by

trying to expand the bounding box according to the user’s current location, resize the map

drawn and other zooming functions.

! 11!

2. BACKGROUND

2.1 Openstreetmap Data

The Openstreetmap is an open-source, project that collects huge amounts of raw

geographic information and stores it in a specific format. It is crowd sourced as well,

meaning that it collects the data from volunteers and makes it available for everyone to

use for free, under Open Database License (ODL). Volunteers performing a ground

survey using a handheld device such as a GPS, a camera or a voice recorder collected the

initial OSM data from scratch. Recent data collection strategies include aerial

photography and other government and commercial sources. This has greatly sped up the

process of data-collection and has improved accuracy. This data collected have been used

by many mapping applications such as MapQuest, Geocaching, etc. Figure 2-1 shows

how an Openstreetmap looks.

2.1.1 OSM Data Format

The OSM data uses a topological structure, with four main elements. Though these might

vary in their names with each OSM data source, these four forms the heart of OSM data !

and are called the “data primitives”.

! 12!

Figure 2-1: A map rendering OSM data

2.1.1.1 Tags

! Tags are a way to represent nodes and ways as key-value pairs. They store meta-

data about these objects such as their name, type and properties. Examples of tags

include:

• Highway = residential

• Exit to = Durham Fy

• Cycle way = lane

• Foot = no and so on.

A tag in an OSM XML file could be written like this:

<tag k="highway" v="motorway_junction"/>

! 13!

2.1.1.2 Nodes

Nodes are geographic points with a latitude and longitude reference. These

latitude and longitude points are represented as coordinated points, such as (latitude,

longitude), according to World Geodetic System or WGS84, as it is widely known, which

is a standard coordinate representation system for the earth. Nodes can be used to

represent points of interest such as a mountain peak or a place of tourist attraction. For

example, a bus-stop (node) could be marked as:

highway = bus-stop

2.1.1.3 Ways

! Ways are lists of nodes that are connected, to help form a line (for a road or a

river, for example) or a polygon (for a building or a lake, for example). While lines are

points that are open-ended, polygons are points that form a closed loop. Ways can be

depicted with the same tagging system. For example, a freeway can be depicted as:

 highway = motorway

The order in which the points appear specifies which way or road should be taken. For

example: If you want to move from a node, tagged by amenity = café to another node,

amenity = fuel, we might draw a line representing the way and tag it as highway =

! 14!

primary and name = Main Street. The orders in which the nodes appear also depict the

traffic flow through that way.

2.1.1.4 Relations

! Relations are ordered list of nodes and ways, and represent the “relationship”

between nodes and ways. For example, relations can be used to represent turns on

mountainous roads, long-distance roads connecting several ways, a boundary or a

restriction, and the like.

There are lots of other classifications in OSM and the OSM tag representations.

For example, a highway could be a motorway, or a primary, or a secondary, or a tertiary

highway. Having an account with http://osm.org can help you edit the map and hence

contribute.

2.1.2 OSM Data Storage

OSM data primitives or components can be stored and processed in different

formats. The OSM project’s main database is a Postgresql database, which has a separate

table for each primitive, with numerous rows and columns containing objects for those

primitives. For downloading the OSM data, several dumps are made available in several

formats, the two most used ones being the XML format and the Protocol Buffer Binary

! 15!

Format (PBF). Of late, data in several other formats such as shapefiles (.shp, .shx),

database files(.dbf), project files(.prj) are also being used.

2.2 Postgresql Database

! Postgresql, or Postgres as it is widely known, is an open-source relational

database that is used by the OSM project now. The PostGIS extension that is available

with the Postgresql is used for representing additional geospatial types and functions

which make handling the data more easier. Importing OSM data into the PostGIS-

enabled Postgres database is the basis for this project, which I will explain in the

forthcoming sections.

Along with the database server running on my system, I have also used

“pgAdmin 3” which is an open-source GUI-based development platform for postgres.

Writing and executing queries is a lot easier using pgAdmin’s rich GUI features on the

contrary to executing commands at a “psql” prompt. Figure 2-2 shows the GUI features

of pgAdmin 3.

! 16!

Figure 2-2: A sample screenshot showing the pgAdmin 3’s GUI features

2.3 Raster Data and Vector Data – The Differences

2.3.1 Raster Data Tiling:

Initially, web maps were represented as static images that the user had to see and

cannot be interacted with by the users. Most of the initial topological survey maps were

static images. Later progress in the field of online web mapping used “raster tiles” or

“rasterization of maps” as explained in the introduction. These kinds of maps are quicker

to produce and are used in mathematical modeling and quantitative analysis. In fact,

majority of today’s leading mapping services like Google, Bing, Apple, etc.,use this

! 17!

method of delivering the maps on the client-side, though Google Maps was the first to

use this technique.

Figure 2-3: Representation of a tiled map

! Figure 2-3 shows a tiled-map with lines drawn across to depict a tile. The

geographic location of each tile depends on its position in the tile matrix (tiles belonging

to the grid). There are several advantages to this method of tiling. For example, when the

user pans or zooms, most of the tiles are still displayed while the new tiles are further

fetched[10]. This was thought to improve user-side experience, in contrast to fetching a

whole static map for the entire viewport.

! 18!

The main disadvantage of this method is that each tile size depends on the

resolution in which the data for the tile is presented. Hence, it is very difficult to represent

linear features if image tiles are used. Also, storing tile sets for all the zoom levels for the

entire world would be burdensome. For example, for the Openstreetmap project, a total of

18 zoom levels would produce around 5TB of data for the whole world. Storing data that

is as big as this needs more disk space. Further, the rendering time for the tiles

downloaded from the tile server onto the browser is more; the user has to wait till all the

tiles are rendered. Of course, with high speed systems and larger disk spaces along with

caching techniques[4], rendering tiles has become faster than before[8].

2.3.2 Vector Data and Vector Tiling:

 Further improvements in the web mapping services led to the use of vector data[3].

Vector data for depicting geographic information is in the form of lines, points and other

geometry. For example, GeoJSON† vector tiles use lines to represent roads and polygons

to represent buildings and other bodies of water. In other words, data can be represented

in its original form. Accurate geographical data stored is made available and no explicit

!!
†!GeoJSON!–!An!open!standard!format!(based!on!JSON)!designed!for!representing!geographical!features.!!
Example:!!{!"type":!"Point",!!!!!!"coordinates":![30,!10]!}!!

! 19!

conversions to any other format are needed. Figure 2-4 that follows shows Mapzen’s tiles

for vector data[9].

Figure 2-4: Mapzen’s Vector Data Tiling

 Vector data processing is cumbersome and requires data cleaning at

specific times. Since the topology is static, updating the vector data requires rebuilding or

re-rendering the topology, which is still faster than having to redraw a whole raster image

tile. Often data analysis methods might be processing-intensive, especially for larger data

sets. Though vector data uses geometry such as lines and other geometry to depict actual

geographical data, certain topology such as elevations can’t be effectively represented.

Apart from these, the main bottleneck of using vector data-based maps is performance.

! 20!

Web maps are designed to be faster and existing web maps based on vector data seem to

be slower in performance because of the huge amount of raw data that needs to be

downloaded and rendered. Some vector tiles serve the geometric data as-is. For instance,

a whole building might be included in one requested vector tile even though the building

spans across different tiles. Several other vector tile sources clip the geometry according

to the tile size. Hence, certain geometrical features might be chopped off.

Figure 2-5: Initial stages of this project, displaying vector data rendered on top of

Google’s tiled image map.

 To cover up the disadvantages of both the methods, present rendering techniques

use a combination of both- rendering vector data on top of raster images. Figure 2-5 is an

example of this.

! 21!

There are many formats for representing the vector data, used in GIS software,

most of which are based on XML[1]. Though XML formats are efficient for representing

spatial data, they often carry too much information, which might not support fast

transmission. Hence several data compressions such as JSON compressions for the

GeoJSON data make data smaller and hence transmissions faster.

2.4 WebGL

WebGL, also known as Web Graphics Library, designed and maintained by the

Khronos Group is a Javascript API that helps rendering two-dimensional and three-

dimensional objects and graphics on the web browser. The best part is that, it runs on its

own and does not need any external plugins to be executed. It makes use of the

OpenGLES 2.0 standard[12], which in turn allows GPU-accelerated rendering of effects

on top of a HTML5 canvas. WebGL can also be seamlessly mixed with other javascript

code to create a full-fledged working model.

! Though the initial WebGL API was designed to support graphics rendering, the

functionality that it could support was only minimal. Therefore, various other third-party

libraries were developed which provide many high-level features. Examples of these

libraries include three.js, OSG.js, CopperLicht, etc. WebGL has been used mostly in the

! 22!

game industry for rendering 3D game designs, in aerospace engineering and research for

rendering spacecraft models and flight simulations, particle analysis by simulation in

molecular and cellular analysis, visualization of marine geo-data[2], building simulations

of human face- skin rendering (example, the Lee Perry Smith head simulation) and the

like.

2.4.1 Shader Code:

Though WebGL internally uses JavaScript for rendering geometry, it also has a

way to manipulate the vertices; the programmer has the leverage of computing the

positions, colors and textures of each vertex created in JavaScript. But this can only be

done programmatically, through programmable part of the rendering pipeline mechanism.

This is done by the use of GLSL (OpenGL shading Language), which uses the internal

bindings of C-language programs that run in the GPU. The source code for the shader is

defined in either HTML using the <script> tag or can be defined as strings that can be fed

into variables in the JavaScript.

There are two main kinds of shaders[5]: “vertex shaders”, which operate on the

coordinate positions specified by vertex buffers, and “fragment shaders”, which

determine the color of each vertex (pixel). Two different types of “qualifier” variables,

! 23!

the uniform variable and the attribute variable pass data from JavaScript. The uniform

variables are global variables that remain the same throughout the program. Attribute

variables are used to define properties for a specific vertex point. Attribute variables can

be used only in the vertex shader. Apart from these two, there is also a third category,

called “varying” variables. These variables are declared and set in the vertex shader and

their values are used in the fragment shader. For example, for interpolating the colors

between two different vertices, the color can be defined as varying attribute in the vertex

shader and can be used in the fragment shader. Corresponding color buffers for these

variables have to be defined in WebGL.

The output of each of these shaders is passed into special variables, for which

corresponding buffers have to be defined. The output of a vertex shader is passed into a

variable called gl_Position that specifies the position of each vertex on the screen, which

is shown in figure 2-6.

The color for each of these vertices is defined in fragment shader and the output is

passed to the gl_FragColor variable, which is again a four dimensional vector that

contains the R, G, B, A values for each vertex rendered as a pixel on the screen.

! 24!

Figure 2-6: WebGL vertex shader that shows 9 vertices being processed

!

Table 2-1: RGB values written for each vertex of a triangle

R G B
0.5 0.75 0.5
0.87 0.09 0.5
0.06 0.17 0.5

2.4.2 Compiling and Linking Shader Code Boilerplate:

WebGL creates a rectangular viewport that references the HTML5 canvas. It is in

this viewport, that WebGL defines the placement of the results of the vertex and fragment

shaders. For this purpose, a WebGL context is created, and is fed into a context object[6].

! 25!

 The vertex and fragment shader functions are then called in WebGL and are

compiled using the context object. The compiled program is then linked and is then made

available for further use. In essence, the following sequence of steps are followed:

(i) Get the vertex and fragment shader functions from the HTML script tag, using

getElementById and is fed into a source-code object.

(ii) The type of shader is identified from the type attribute of the script tag. type="x-

shader/x-vertex" identifies that it is a vertex shader and type="x-shader/x-

fragment identifies that it is a fragment shader.

(iii) The objects for the vertex and fragment shaders are created using the

createShader() function, that internally uses the WebGL context object.

(iv) The source code for each of the shaders are added using the source code objects,

passed as parameters to the shaderSource() function.

(v) Both the shaders are compiled using the compileShader() function.

(vi) A shader program object is then created using the createProgram() function. This

shader program object is used for linking the shaders and contains the variables

necessary for passing the data between the CPU and the GPU.

! 26!

(vii) The vertex and fragment shaders are then attached to the shader program object

using the attachShader() function.

(viii) The attached shaders and compiled shaders are now linked to the shader program

object using linkProgram() function.

(ix) The created program object is now made available for use by the current

rendering state using the useProgram() function.

2.4.3 WebGL Buffers

! Buffers are a way of sending data to WebGL; they send vertex information to the

GPU. The following are the steps to create a buffer and insert data into it:

(i) The buffer is initially created using createBuffer() function.

(ii) The buffer is then bound by using bindBuffer() function, that is in turn used by the

program object created earlier. This function also says that the buffer created is

the current buffer to be worked upon.

(iii) The data to be used by the program is then copied into the buffer created by using

the bufferData() function.

! 27!

(iv) Once the data is fed into the buffers, the shader’s attributes are applied to it. The

locations (of the vertices) specified to the attributes must be disclosed to WebGL,

using the getAttribLocation() function.

(v) Next, the data from the buffers must be used. vertexAttribPointer() specifies that

the data must be obtained from the buffer that was bound recently and specifies

certain formats such as number of components per vertex, the stride (how many

bytes of data must be ignored to get from one vertex to the next), the type of data

(Byte, Float, Int, etc.), the offset (how far in the buffer is the data exactly stored)

and so on.

(vi) Lastly, the buffer is enabled using the enableVertexAttribArray() to do all of the

above functions.

The shader linking-compiling and the buffer set-up steps are carried out in almost all of

the programs written in WebGL. Hence, most of the code is boilerplate, except for very

few minor changes.

2.4.4 Drawing the Object

Once the buffers are bound and the shaders are linked, the next step is to draw the

scene or object using draw() calls, either as lines or as triangles. There are many different

! 28!

types of draw calls, the two most important ones being drawArrays() and

drawElements(). While drawArrays() makes use of the buffers created using the above

said steps, drawElements() requires another buffer along with the usual ones, called the

“index” buffer. The index buffer specifies the indices of each of the vertex to be drawn.

The catch here is that, a vertex can be drawn with or without using the indices. It is really

according to the programmer’s needs that an index buffer is created. For each of the

vertex drawn, the corresponding index buffer has an index associated with it. It is with

the help of these indices that the draw call knows which vertex must be drawn after the

current vertex. For example, when drawing a cube with six faces, the index buffer tells

which vertices must be joined together, with the help of the indices.

 The above draw calls can draw geometry like points, triangles, lines, line loops,

line strips and triangle fans. This mode of drawing is specified in the draw call using the

WebGL context object created.

! 29!

!

3. PRELIMINARY WORK

3.1 Database Setup

Initially, I started off with an idea to plot points and draw geometries (places of

interest) within a bounding box. There are many sources that allow downloading OSM

data from them directly or by using mirrors. The most famous among them is the

http://geofabrik.de. This has downloads for each continent, county, state, city,

individually and the whole world at once. As a first step, I downloaded the OSM data for

North America as a .pbf file. PBF is one of the many formats that the OSM data is

available in, as discussed earlier. OSM data, downloaded from the Internet cannot be

used as-is and must be imported into the PostGIS-enabled Postgres database using some

specific tools. I used “osm2pgsql[7]” which is a command-line based program that makes

this import easy. Osm2pgsql runs on most of the operating systems, I have used a Mac

OS X for this purpose. It can be installed either via macports or homebrew, for which I

chose the latter. I installed “postgres.app” and “pgAdminIII”, which is a GUI

development platform for PostgreSQL database.

 I created my database as “osm” and and added “postgis” functionality to the

! 30!

database. Postgis is a database extender for Postgres, which allows support for storing

spatial geometry and also allows running of location-based queries. Finally, I also added

Google’s spherical Mercator projection to the database, 900913 (which is the leet speak

for “google”). Osm2pgsql creates the following tables when data is imported into the

Postgres database, which is also shown figure 3-1.

(i) planet_osm_line: holds all non-closed pieces of geometry (called ways) at a high

resolution. They mostly represent actual roads and are used when looking at a

small, zoomed-in detail of a map.

(ii) planet_osm_nodes: an intermediate table that holds the raw point data (points in

lat/long) with a corresponding “osm_id” to map them to other tables.

(iii) planet_osm_point: holds all points-of-interest together with their OSM tags -

tags that describe what they represent.

(iv) planet_osm_polygon: holds all closed piece of geometry (also called ways) like

buildings, parks, lakes, areas, etc.

(v) planet_osm_rels: an intermediate table that holds extra connecting information

about polygons.

(vi) planet_osm_roads: holds lower resolution, non-closed piece of geometry in

! 31!

contrast with “planet_osm_line”. This data is used when looking at a greater

distance, covering much area and thus not much detail about smaller, local roads.

(vii) planet_osm_ways: an intermediate table which holds non-closed geometry in

raw format.

Figure 3-1: pgAdmin 3 showing the tables created by osm2pgsql when importing data

into the Postgres database

3.2 Local Server Setup

! This project was written and tested on Mac OSX, which comes with the Apache

webserver[11 and the PHP scripting language.

! 32!

The default file location for running on this webserver in a mac is the

/Library/WebServer/Documents folder. Though Apache can be started by typing

http://localhost on a web browser and checking that the “It Works!” message is displayed,

the PHP bundle has to be enabled manually. Checking if PHP is enabled can be done by

creating a phpinfo() document and running it on the local webserver.

Finally, a machine that can be tested on, that needs to have high-end graphics

processing unit is required.

! !

! 33!

4. DESIGN OF ON-THE-FLY MAP GENERATOR

Figure 4-1 illustrates how the map generator draws the geometry for the vector

data fetched from the Postgres database.

Figure 4-1 Design of On-the-fly Map Generator

The flow of creating maps started off with the Postgres database server running.

Data was pulled from the database with the back-end PHP code requesting data from the

! 34!

database using Postgres queries. These queries were carefully created and executed to

return the desired data. The PHP server code was triggered off by an asynchronous

request (AJAX call) that is written using plain JavaScript and jquery. The PHP in turn

returns the data fetched to the WebGL . On the other hand, WebGL also gets the shaders

to be used with the data from the HTML. WebGL internally has buffers that can

manipulate the data. Finally, WebGL draws the required geometry on the HTML5 canvas

which is present on the web browser (the client).

4.1 The HTML5 Canvas

! The canvas is defined using HTML5 <canvas> tag. The canvas width and height

are then defined. It is using this canvas that the WebGL context is created. Once the

canvas is defined and the WebGL context is created, we draw on the canvas.

4.2 The Database and the Query

 The backend is written using PHP which connects to the Postgres database, using

the user credentials. Here, the database to be connected is “osm” which has the data

organized in tables as explained in the previous chapters. The idea is to create a bounding

box, taking the current positional coordinates[13] as the center. All geometry such as roads

and places of interest within this bounding box are drawn. To do this, two separate

! 35!

queries, one for roads (lines) and the other for points of interest (polygons) are executed

one after the other and their results are stored in corresponding arrays. The query is a bit

complicated as it makes use of spatial referential IDs or SRIDs, which are a way of

representing the spatial data. The query makes use of spatial geometry constructors that

can ease the processing of spatial data.

4.2.1 Spatial Geometry Constructors

! The spatial geometry constructors used in the query are explained in this section:

(i) ST_Transform: This returns a new geometry with its coordinates transformed to

the SRID specified. The syntax is:

geometry ST_Transform(geometry g1, integer srid);

(ii) ST_MakeEnvelope: This creates a rectangular bounding box specified by the

minimums and maximums (of latitude and longitude coordinate points), along

with the SRID. The syntax is as follows:

geometry ST_MakeEnvelope(double precision xmin, double precision

ymin, double precision xmax, double precision ymax, integer

srid=unknown);

! 36!

(iii) ST_Intersects: This is used to check if any of the geometry spatially intersect

with the bounding box created. If yes, returns true and false otherwise. The syntax

is :

boolean ST_Intersects(geometry geomA , geometry geomB);

Using the above said constructors, the final query is constructed as follows, for polygons.

A similar query is constructed for representing lines.

SELECT name, ST_AsText(ST_Transform(way,4326))
FROM planet_osm_polygon

 WHERE ST_Intersects(way, ST_Transform(ST_MakeEnvelope(($lon_min),
 ($lat_min), ($lon_max),
 ($lat_max), 94326), 900913))

Here, the MakeEnvelope constructor creates a bounding box using the parameters

specified- they are calculated by getting the current geographical position coordinates

from the browser and adding and subtracting a specific value from them to calculate the

minimums and maximums. The Transform constructor transforms the “way” geometry

into a way that can be read, which is calculated by specifying the SRID for WGS84

projection, which is 4326. The latitude longitude points are now legible as shown in

figure 4-3:

! 37!

Figure 4-3 Using ST_Transform and SRID 4326

By using ST_AsText, the coordinates would be returned as a bunch of geometrical lat-lon

coordinates (Well Known Text or WKT), which is a way to represent coordinate data, as

shown in figure 4-4.

Figure 4-4 Geometry coordinates without using SRID

The resulting data returned is sent to WebGL as a set of object arrays, using

json_encode(). Each object thus contains a set of latitude-longitude points represented for

the geometry to be drawn.

! 38!

5. IMPLEMENTATION

5.1 The Data

 The object arrays thus returned from the server are passed on to the “success”

parameter of the AJAX call. Since the received data is of a raw JSON Object form, it

now has to be processed by WebGL. Moreover, the latitude and longitude coordinates

cannot be plotted directly on a canvas that considers pixels. Hence, a conversion from the

latitude-longitude coordinates to pixels, which the WebGL can manipulate, is done. Each

of the latitude-longitude coordinates corresponds to one or many pixels in WebGL. There

are specific mathematical functions that do this. In particular, the following formula is

used for the conversion of latitude-longitude coordinates to x-y pixel coordinates:

! = ! + 180
360

! = 1
2 ln(!1+ sin! ∗

1
1− sin!)

where x,y are the pixel coordinates, !, ! are the latitude-longitude coordinates.

5.2 The Map

! The converted pixel coordinates have to be scaled and transformed into

coordinates that present accurate places that correspond to the latitude-longitude points,

! 39!

as shown in figure 5-1 (these points are taken from the browser where my map is

generated).

Figure 5-1: Converted x,y pixel coordinates

For this transformation, a scaling and a translation matrix is used. Drawing complex

geometry with hunderds of thousands of lines and polygons needs pretty complex code to

be written. Further, the WebGL draw() calls need to update the points each time!!for all

the points plotted. To make things easier, translation matrices are used. These are defined

once in JavaScript and the translations are done in the shader. Since the shader takes care

of each vertex plotted, the translations are applied to each point(vertex) and have to be

written only once. Scaling is done similar to translation. For example, changing the size

of the point plotted may be done through scaling.

! 40!

 I had also set up an index buffer[6] to draw polygons. Closed lines represent

polygons, since the starting and end points are the same. To differentiate between the end

point of the first polygon and the start point of the next polygon, index buffers seem

helpful here.

 Further, to differentiate between roads and buildings drawn, I had given different

colors; yellow lines represent roads while grey boxes represent building or points of

interest. These colors are defined in JavaScript and are interpolated in the fragment

shader.

 While the colors are represented using RGBA values and hence, is a

Float32Array. The pixel points, after the conversions are also represented using a

Float32Array while the index buffer containing the integer indices to the points (vertices)

are represented using a Uint16Array.

With all the buffers set up, the shaders compiled and linked, WebGL is now ready

to draw. Since index buffers are used, the drawElements() call should be used to draw the

vertices. The drawElements() renders primitive geometry that are indexed by the element

array data which is the index for each vertex. The syntax is as follows:

context.drawElements(mode, count, type, offset);

! 41!

 The mode specifies which mode is to be used (for example, lines, triangles,

points, etc.) to draw the geometry. Since I have the pixel coordinates (converted from

latitude-longitude coordinates) representing vertices and I am trying to draw two-

dimensional shapes of the geographic data, I have used gl.LINES to connect between

vertices. As explained before, since polygons have the same starting and ending point,

they would have lines connected between pixel points, starting at ending at the same

point. Hence, polygons appear as closed, geometrical, rectangular boxes (in 2D).

 The final map drawn looks like this:

Figure 5-2: Map generated for OSM data using WebGL

! 42!

5.3 Zoom levels

Any map drawn must have zooming in and out capabilities available. Minor

details can be looked at while zooming in while an overview of the map is presented to

the user while zoomed out. Here, the initial zoom level is set to 15, from which the zoom

levels are increased and decreased according to the buttons pressed by the user.

Figure 5-3 Map zoomed out at zoom level 12

The buttons from zooming in and out are created using HTML’s <input> tag.

These buttons are placed on the bottom-right corner of the canvas as shown:

! 43!

Figure 5-4 Controls for zooming in and out

5.4 Panning around and Resizing the canvas

 The map also has “panning around” feature, though, shows the map that is drawn

only for the data fetched. When the user pans, a specific value is either incremented or

decremented from the current position’s latitude-longitude values. The map then pans

around according to the button selected. Figure 5-5 shows this.

Figure 5-5 Controls for Panning around

! 44!

 As far as resizing the canvas is concerned, when the user resizes the browser

window, the canvas inside also resizes according to the display width and height. Hence

the map drawn is not distorted. Figure 5-6 explains this.

Figure 5-6 Resized browser window with the canvas resized accordingly

! 45!

6. EXPERIMENTS AND RESULTS

To check the efficiency of the maps drawn, I tested its rendering time with that of

the existing tile generators. To do this, I set my a tile server on my local machine, which

generates tiles according to the bounding box and zoom levels specified, along with a

rendering engine that renders the generated tiles on the browser.

6.1 Setting up a Tile Server

 Since I already have the data imported into my Postgres database using

Osm2pgsql, I installed mapnik[14], which is an open-source toolkit for rendering maps.

Mapnik can be directly downloaded and built from its sources, but Mac OSX versions

have a mapnik bundle that is available through the “homebrew” which is a command-line

tool for installing packages. Hence, I installed the latest version of mapnik using the

following command:

$brew install mapnik

Once mapnik was installed, I also installed the mapnik tools that were released by the

Openstreetmap project, to make effective use of the mapnik rendering library:

$svn co http://svn.openstreetmap.org/applications/rendering/mapnik

! 46!

Mapnik also uses certain prepared files to generate images for coastlines and oceans. This

is thought to be faster than reading the entire database for each of the zoom levels. I

installed these prepared files (shoreline, world boundaries and natural earth data) using

the command-line tool “curl”.

 Mapnik tools has generate_xml.py, along with osm.xml which has the styling

rules for generating tiles. These can be edited and can have our own set of rules. The

following is the command given:

$./generate_xml.py osm.xml --dbname osm --user sreenidhi --port 5432 --extent -
13645007.61 4483388.83,-13540684.11 4587617.36 --accept none

where “extent” is the bounding box defined. After this, the generate_image.py script

should be executed. This script, on successfully executing, generates an image.png file,

which is the image of the tile specified by the bounding box.

 To generate tiles, the generate_tiles.py has to be modified a little. The bounding

box has to be well defined in the python file along with the zoom levels. I had generated

tiles for the above said bounding box (Newark city, CA), for zoom level 13. When this

python script is executed, it generates tiles in a special hierarchy of folders, identified by

the zoom level. For example, the tiles generated for the bounding box specified looked

like this:

! 47!

Figure 6-1 Special hierarchies of folders that hold images of tiles

 Now that the tiles are generated, there must be a means of rendering them. This

entire hierarchy of folders is moved to the web server’s document root folder. I used

OpenLayers[15] to render the generated tiles on the web browser. I downloaded the latest

version of OpenLayers. Further, I had to create a HTML file that calls the OpenLayers.js.

The zoom levels and the bounding box (in WGS84) are specified and the path to the

image files is included in the OpenLayer’s instance. Finally, these images are

reassembled in the client side and are rendered in the browser:

! 48!

Figure 6-2 Map tiles rendered using mapnik and OpenLayers

6.2 Timing Tests

 The whole process of rendering tiles versus rendering vector data using WebGL

was timed, taking into consideration, a particular zoom level and a bounding box of

coordinates. The results are as follows:

Test Bench Used: Macintosh OSX Yosemite, with 1.8 GHz dual core CPU, 4GB

memory, an Intel HD Graphics 3000 GPU with a speed of 350-1350 (Boost) MHz with

12 unified pipelines and a browser that supports WebGL- Google Chrome, version

47.0.2526.73 (64-bit) with WebGL 1.0 enabled. The number of threads was 2, which

! 49!

corresponds directly to the number of CPU cores. Further, to reduce the data size returned

from the query, I had already converted the lat-long values to floats (from string), which

reduced the data size to some extent and further truncated the last 3 digits after the

decimal point. With this data in hand, I further used “gzhandler” in PHP to further

compress the data and reduce its size. The float-converted, truncated, compressed data

was thus reduced to a considerable size of 684 KB.

Comparisons between the data download time for the two methods yielded the following

results:

Table 6-1 Average data download times (in seconds) for both methods

Type of data

download

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Time taken

for the query

to execute

and get back

data (query

time)!

1.88 s 1.95 s 1.89 s 1.86 s 1.79 s

Time taken

to generate
tiles
(Mapnik +
OpenLayers)

3.86 s 3.88 s 3.91 s 3.85 s 3.89 s

! 50!

Figure 6-3 Average data download times (in seconds) for both methods

From the table and the graph, it is evident that the AJAX request used in this project takes

a lesser time than the tile generation process. The average time taken for the former 1.87

seconds while the latter takes 3.71 seconds, which says that using this project has a time

reduction of 38% approximately for data download through AJAX calls.

0!

500!

1000!

1500!

2000!

2500!

Pass!1! Pass!2! Pass!3! Pass!4! Pass!5!

Ti
m
e%
ta
ke
n%
(i
n%
se
co
nd
s)
%

Passes%

Average%data%download%time%(in%
seconds)%

Time!taken!to!draw!vector!
data!objects!(WebGL)!(in!
milliseconds)!

Time!taken!to!render!tiles!
(Mapnik!+!OpenLayers)!(in!
milliseconds)!

! 51!

On a real-world scenario, further comparisons between the two different methods were as

follows. Considering a particular bounding box, for a particular zoom level, say 15, the

traditional way of online maps would opt to get the corresponding tiles from the tile

server and then render them on the browser. If the tiles are cached at different zoom

levels for the whole world, then the cached tiles are returned accordingly. We could then

calculate the tiles sizes (in bytes) for all the tiles returned and check if the data size

returned from the query for the same bounding box and zoom level is lesser or greater.

 In our approach, we could try to cache the query results. If we could pre-compute

the bounding boxes and the corresponding query results for the whole world, just as the

tiles are pre-computed, we could hope that the cached query data would return data that is

lesser in size than the tiles. Then, the data that is sent to the browser to be drawn would

be lesser, and hence would reduce the network traffic. With this argument, I calculated

the byte sizes for both the tiles and the query results. Having the bounding box

parameters for Newark, CA, I was able to find that while the tiles returned from my tile

server were 762 KB in size (in total), the data that my query returned after truncation and

compression was around 684 KB, which is an 86% reduction of data size from the

original 5 MB.

! 52!

Comparing the size of the tiles and the size of the query data returned, the following

results were observed:

Table 6-2 Comparison of tile sizes versus queried data size, for bounding boxes

Places observed,

according to bounding

boxes

Size of tiles Size of query data

Fremont 762 KB 684 KB

San Jose 2.4 MB 1.7 MB

Assuming that the bounding box is pre-computed (just one bounding box), the average

rendering times were also calculated, which were as follows:

Table 6-3 Average Rendering times (in milliseconds) for both methods

Type of

rendering

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Time taken
to draw

vector data
objects
(WebGL)

8 ms 6 ms 7 ms 6 ms 9 ms

Time taken
to render
tiles

61 ms 63 ms 63 ms 60 ms 76 ms

! 53!

Since I am experimenting only for one bounding box (calculated according to current

position), these results are comparable. If this is extended on a larger scale and if

bounding boxes and the corresponding query results are computed for the whole world,

then the results might be competitive. Thus, lesser data would be sent to the browser to

render and hence network traffic would be considerably reduced.

Figure 6-4 Average Rendering times (in milliseconds) for both methods

0!

10!

20!

30!

40!

50!

60!

70!

80!

Pass!1! Pass!2! Pass!3! Pass!4! Pass!5!

Ti
m
e%
to
%r
en
de
r%
(i
n%
m
ill
is
ec
on
ds
)%

Passes%

Average%data%rendering%time(in%
milliseconds)%%

Time!taken!to!draw!vector!
data!objects!(WebGL)!

Time!taken!to!render!tiles!
(Mapnik!+!OpenLayers)!

! 54!

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

 This project aims to show that drawing primitives for the OSM vector data using

WebGL is an on-the-fly approach, without having to store any pre-drawn geometry. The

data, according to the user’s location keeps changing and hence the corresponding

geometry is drawn on-the-fly. While the traditional tile servers rendering raster images

are slowly being changed to tile servers that show images for vector data, my project, if

implemented full-fledged might be a new way of generating web maps. This project, if

implemented in full-scale, might considerable reduce the network traffic and the data

being sent to the browser for rendering. Of course, the users need to have a better system

with WebGL enabled and better hardware that support graphics, but as the world of

technology is evolving, this might not be a big bottleneck and neither might thwart

people from using this system.

 This project in short, helped me learn a lot about online maps and their

functionalities. It helped me analyze their disadvantages and upon discussing with Prof.

Chris Pollett, I was able to provide effective solutions to overcome them. Initial stages

started off with having Google maps underneath, to check if the geometry that I drew is

! 55!

on the right place. Lots of tweaks were then implemented, starting from removing the

Google Maps underneath the canvas to removing all dependencies on third party APIs;

this project is solely written in plain Javascript and WebGL.

7.2 Future Work

 Lots of enhancements can be made, as this is very much in its beginning stage.

For now, even lakes and other water bodies are considered as polygons. Osm2pgsql does

not have a separate table that stores the names of water-bodies. So, as a first extension, I

will try to pull out the geographical coordinates of water bodies by performing a filtering

on the query. These water bodies can then be shown in different colors, perhaps the

standard one, blue. Next, I will also try to implement a filtering mechanism, which

creates bounding boxes according to the user’s search query. For this, I will have an input

text box that the user can use to search. Further, I can also try to differentiate between

normal residential streets, expressways, freeways by performing a filtering on the

available data. Next, I will also try to extend and draw the geometry for bigger bounding

boxes. All this, however requires further experimentations to make sure that the final

product I create is usable by everyone.

! 56!

Bibliography

[1] Behrens, Jan. Segmentation of OpenStreetMap Data: Generating, Merging, and
Distributing Tiles. University of Bremen, September 2011.

[2] Resch, Bernd, Wohlfahrt, Ralf and Wosniok, Christoph. Web-based 4D visualization
of marine geo-data using WebGL. Cartography and Geographic Information Science,
2014.

[3] Gaffuri, Julien. Toward Web Mapping with Vector Data, Geographic Information
Science. Volume 7478, 2012.

[4] Loechel , J. Alexander and Schmid, Stephen. Caching techniques for high-
performance Web Map Services. Proceedings of the AGILE'2012 International
Conference on Geographic Information Science, Avignon, April, 24-27, 2012.

[5] Parisi, Tony. Programming 3D applications with HTML5 and WebGL. O'Reilly
Media, 2014.

[6] Learning WebGL, 3D Programming for the Web. Retrieved on December 30, 2014,
from http://learningwebgl.com/blog/?p=28

[7] LearnOSM, Learn OpenStreetMap Step-by-step. Retrieved on January 4, 2015, from
http://learnosm.org/en/osm-data/osm2pgsql/

[8] MapsGL, by Google Maps team. Retrieved on January 10, 2015, from
http://www.chromeexperiments.com/detail/mapsgl/

[9] Mapzen, Vector Tiles. Retrieved on February 5, 2015, from
https://mapzen.com/projects/vector-tiles/

[10] Opencycle Map, the Openstreetmap Cycle Map. Retrieved on March 25, 2015, from
http://opencyclemap.org/

! 57!

[11] PHP Manual. Retrieved on June 20, 2015, from
https://secure.php.net/manual/en/index.php

[12] WebGL Specification, Khronos Group. Retrieved on July 8, 2015, from
https://www.khronos.org/registry/webgl/specs/1.0/ - 2.2

[13] Pollett, J. Christopher. Maps: Determining Location in HTML5, CS175 Lecture
Notes, from http://www.cs.sjsu.edu/faculty/pollett/175.1.14f/Lec26112014.html - (4)

[14] Building Tiles with PostGIS Openstreetmap Data and Mapnik: Your own
Openstreetmap. Retrieved on November 20, 2015, from
http://www.bostongis.com/PrinterFriendly.aspx?content_name=generating_osm_tiles

[15] Using your own custom built OSM tiles in OpenLayers. Retrieved on November 22,
2015, from
http://www.bostongis.com/PrinterFriendly.aspx?content_name=using_custom_osm_tiles

