On-the-fly Map Generator

for Openstreetmap Data
Using WebGL

Advisor: Dr. Chris Pollett
Committee Members: Dr. Chun and Dr. Khuri

Presented By
Sreenidhi Pundi Muralidharan

Agenda

Project Idea

History of online maps
Background about Online Maps
Technologies Used

Preliminary Work

Design of On-the-fly Map Generator
Implementation

Experiments and Results
Questions to Ask!

Conclusion

Future Work

Demo

Q&A

Project Idea

Render navigational browser maps using WebGL for

Openstreetmap data

Comparison of HTMLS graphics technologies to
render maps in browser vs. traditional approach of

rendering map ftiles

More on this later...

Project Idea (contd...)

Address: 36211, Dalewood
Ct

v

Zoom level: 13

hJ

sSenver

A4

cachad tiles return

v

files return

browser draw

Traditional tile servers

Address: 36211, Dalewood
Ct

v

Zoom level: 13

server
pre-compute bounding box
‘/ query results for the whaole

world
cached guery data returmn T
for bounding box ™
1
i lesser
I nfw traffic
]

-
b
b
R

browser draw

On-the-fly Map Generator

Over the next few slides, we will explain our idea in detail as well as

traditional approaches.

History of online maps

« Evolution of online maps

©)

First online map was in 1989 — Xerox PARC Map viewer, produced

static maps using CGl server, written in Perl

Mapquest — 1996, was used for online address matching and

routing - navigation
Openstreetmap — 2004, crowd-sourced

Google Maps - 2005, used raster tiles, data loading was done

using XHR requests

Other maps are being used now - Yahoo, Bing, Apple maps

Background about Online Maps

« Static Maps
o Were used initially, with no interaction

o Example: Initial topological survey maps, weather maps

 Dynamic Maps
o User interactivity
o Traditionally used tile servers that store tiles — 256 X 256 PNG images
o Image tiles for each zoom level, for all over the world

o Created beforehand, but rendered on-demand, fetched from a

DB/tile server

Background about Online Maps

(contd...)

* Why tiling system?e

©)

©)

©)

Initial mapping techniques used WMS — an oldest standard

Each request - single large image

Continuous map image at street level would be millions of pixels
wide

Rendering pre-generated tiles on the browser is computationally

faster than having to compute, generate and render map

images
So maps files are fetched from a map server

Tiles - cache efficiently, load progressively and are simple to use

Background about Online Maps
(contd...)

« Raster and Vector data maps- the differences

o Raster Maps— image tiles are used, mostly represented as z/x/y
coordinate system

 Storing files for all zoom levels, all over the world is
cumbersome.

« Rebuild the whole image tile if a certain topological feature
changes

« Rendering files now faster with high speed systems and
caching

e hitp://www.opencyclemap.org

http://www.opencyclemap.org

Background about Online Maps
(contd...)

Raster Maps - Tiled

Background about Online Maps
(contd...)

o Vector Data — data in the form of points, lines, etc.
« Datarepresented in its original form
o Still, filing is used in almost all of foday’s vector-based maps

« The need to re-render or rebuild the topology when data

changes - still faster than having to regenerate a whole raster

image tile.

« Elevations can't be effectively represented with vector

geometry

Background about Online Maps
(contd...)

X L. B\
_, .

% \

Ca)

Mapzen’s vector data tiling

Background about Online Maps
(contd...)

 |nitially, rendering these pre-generated tiles was
time-consuming.

« Latest maps cache map files — called seeding

o Reduces communication between server and client

o Disadvantages — purging cached tiles is cumbersome when map

data often changes

Background about Online Maps
(contd...)

* Present day maps use a combination of both —

vector data on top of raster maps
 Nowadays, can draw on browser canvas
 GPU acceleration on browser

« Hope — do more on browsers than fraditional way

Background about Online Maps
(contd...)

Vector Data on top of Raster Maps

Technologies Used

OSM — open source, crowd-sourced

OSM Data Format

o Primitives — Tags, Nodes, Ways, Relations
o Data storage format:
« Several dumps available, with mirrors

« Common ones are XML and PBF. Others include SHP, SHX, DBF, etc.

Postgresgl Database

o Open-source-relational
o PostGIS — extension that helps store geospatial data

o pPgAdmin 3 — GUI tool for Postgres

Technologies Used (contd...)

« WebGlL - Introduction
o Web Graphics Library, designed and maintained by the Khronos Group

o Rendering of two and three dimensional objects on the web browser

o No external plugin required

o Rendering of effects and animations of objects on top of a HTMLS5 canvas
o Can mix WebGL with normal JavaScript code

o Several libraries available now for extended functionality support —
facilitates easy lighting, fixing camera/viewing angle

« E.Q., include three.js, Copperlicht, efc.

o Used in gaming industry for rendering 3D game designs, aerospace
industry, particle analysis, rendering human face models

Technologies Used (contd...)

WebGL - shaders

o Everything is in terms of vertices of a geometry
o No fixed pipeline — to manipulate vertices out of the box

o WebGL offers programmable pipeline — we are responsible for
manipulating vertex positions, colors, etc.

« This is done by GLSL (OpenGL shading Language)
« Has C-language bindings
o Shader source code is either defined in HTML <script> tags or as
variables in JavaScript

< ="pointFragmentShader" ='x-shader/x-fragment">
precision mediump float; var myVertexShaderSrc =

varying vec4 vColor; "attribute vec3 pos;"+
"woid main() {"+

uu;r: :?i;([::]:-lir - Color: " gl_Position = vecd4(pos, 1.8);"+
- - ' II}H
}

</ >

Technologies Used (contd...)

« Two Main types of shaders

o Vertex shader
« Operate on vertices specified by buffers

« Passed to a variable called gl_Position — specifies the position

of each vertex
o Fragment shader
« Defines the color of each pixel, hence each vertex
« R,G,B A values defined

« Can interpolate different colors between vertices

Technologies Used (contd...)

Compiling and linking C-like shaders

o Mostly repeating boilerplate for almost all WebGL programs

o Shader functions are called in WebGL and compiled using the
WebGL context

o The compiled program is linked and the program is made available

WebGL Buffers

o Send vertex information to the GPU

Draw Objects

o Use draw() calls to draw

o Draw either as lines, points or other geometry modes

Preliminary Work

 Database Setup

o Installed Postgres.app (PostgreSQL DB server)
o Added extension — “PostGIS”, for storing geospatial data
« PostGIS adds a table spatial_ref_sys by default

 Added Google’s spherical mercator projection, 200913 to

spatial_ref_sys

o Downloaded a .pbf file for North America, imported to Postgres
DB

o Installed pgAdmin 3 - a GUI developmental platform for Postgres

Preliminary Work (contd...)

Local Server Setup

o Written and tested in Mac OSX, which has Apache and PHP
bundle

A machine with high-end Graphics Processing Unit

A browser that supports WebGL

Design of On-the-fly Map
Generator

I
I
I $.ajax ({
AJAX request type:"GET", | rasponse data
1 url: guery.php”
response
0 »:
I
I
I Javascript (jQuery)
OSM !
Data from DB SELECT * from I
planet_osm_line...... I h A
I draws map
i on canvas canvas
PHP query ' \WebGL =
I
! Web browser
: (Client)
I
I vertex fragment
I shader shader
I
I
Postgres database : <HTML=>

(Server) <script> HTML canvas
I shader code
| B
I <[HTML=
I

Implementation

ldea — get current positional coordinates
Create bounding box

All geometry within this bounding box is drawn

Implementation (contd...)

HTMLS canvas

o Defined using the <canvas> tag

o Canvas width and height is defined

Viewport
o Rectangular viewport

o WebGL defines the placement of vertices and colors

Database Query

o Two separate queries, one for drawing polygons(buildings) and the other for

drawing lines(roads)

o Theirresults are stored in separate arrays

Implementation (contd...)

« Use of spatial geometry constructors — PostGIS

extension provides them for spatial geomeftry

o For creating a bounding box, used ST_MakeEnvelope()

o Creates an invisible rectangular bounding box specified by

the minimums and maximums of latitudes and longitudes

o The spatial referential ID (SRID) is used along with this to tell

what type of projection is used.

5T _MakeEnvelope(($lon_min),

($lat_min), ($lon_max),

Implementation (contd...)

o ST_Transform()- transforms the coordinates into a system of points

that can be understood
« The coordinate points are in the form of long, unreadable
strings
« SRID 4326 is used which fransforms coordinate data info lat-
long coordinate points

« Example: ST_Transform(way, 4326)

o ST_AsText() — converts vector data into Well-Known Text (WKT)

representation

Implementation (contd...)

Bank of America’s coordinate geometry
0130002031BF....

lST_Transform, SRID = 4326

01300020E61....

l ST AsText

POLYGON(-121.3442325 37.9985757)

Implementation (contd...)

* The resulting datais sent to WebGL as a set of

object arrays using json_encode()

o Each object contains a set of latitude-longitude points for the

geometry to be drawn

« Convert objects into a format that WebGL

understands- pixels
o Use mathematical formulae, which is written in JavaScript

A+ 180
X =
360

1
1l —sing

1
}r=E|n(1+5inq:I*),

Implementation (contd...

Lat-long points
Lon: -121.3442325
Lat: 37.9985757

Converted to pixel (x,y)

L J

X:41.254921
Y: 99.1307931

Implementation (contd...)

 The Map

©)

©)

©)

Scale pixel coordinates according to zoom levels
Vertex buffer now has the vertices to be drawn

Used “index buffers” that were helpful in rendering *nothing”
between the end point of the first polygon and start point of the
next polygon

« Index buffers are mainly used to hold indices for each
polygon drawn

Used different colors that specify polygons and lines

 These colors were defined in the color buffer

Implementation (contd...)

« Now draw!

o Use drawElements() call of the WebGL

gl.drawElements(gl.LINES, indexArray.length, gl.UNSIGNED_SHORT, @);

o glLINES does not produce continuous lines, but with index buffers

defined, it connects the vertices of a geometry

o Thus, two dimensional geometry is drawn

Implementation (contd...)

Final Map drawn for OSM data using WebGL

Implementation (contd...)

e /00m levels

o HTML <input> tags with type = button
o Zoom-in shows more finer details

o Zoom-out shows an overview of all data drawn

—

o b
e

|
i
|
|
|

Rt .".,

-

N/

Zoom controls

Map zoomed out at zoom level 12

Implementation (contd...)

« Panning around

o Pans around- top, bottom, left, right, created with HTML <input>

tag

o Increments/decrements current positional coordinates by a

“step” value

« Resizing the map

o Map canvas resizes itself when the browser window is resized

Panning controls

Experiments and Results

« Set up my own file server on my local machine

O

Generates tiles according to zoom levels and bounding box coordinates
specified
Used "mapnik” — a Python-based open source toolkit for rendering maps

Installed mapnik tools — generate_xml.py, generate_image.py,
generate_tiles.py

« Tested with: Zoom level 13, bounding box, closer to Newark, CA

This script generates tiles is a special hierarchy of folders, identified by the
zoom level

Used OpenlLayers to render these files generated

Finally, tiles are reassembled and rendered in client’s browser

Experiments and Results
(contd...)

« Timing tests

o Test bench used
* Mac OS X Yosemite
« 1.8 GHz dual core CPU
« 4GB memory
« a high speed Intel HD Graphics 3000 GPU (Boost) MHz with 12

unified pipelines

« Google Chrome version 47.0.2526.73 (64-bit), with WebGL 1.0

enabled

Experiments and Results

(contd...)

Type of data

download

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Time taken
for the query
to execute
and get back
data (query
time)

188 s

1.95s

1.89 s

1.86s

1.79 s

Time taken
to generate
tiles
(Mapnik +
OpenLayers)

3865

3.88 s

391s

3855

3.89 s

Experiments and Results
(contd...)

2500

Pl
=
=
=

1500

1000

Time taken (in seconds)

500

Average data download time (in

seconds)

i

L

Pass 1

s

Pass 2

s

Pass 3

Passes

Pass 4

—

Pass 5

=@=Time taken to draw vector
data objects (WebGL) (in
milliseconds)

ammes'ime taken to render tiles

(Mapnik + OpenLayers) (in
milliseconds)

Experiments and Results
(contd...)

« Real-world setting results are different

Address: 36211, Dalewood Address: 36211, Dalewood
Ct Ct
Zoom level: 13 Zoom level: 13
" l
server server
pre-compute bounding box
- / query results for the whaole
] Y world
: cached guery data retumn s
cached Tl|i returm for bounding box :
|
|
) I |esser
tiles return l i niw traffic
v f'
browser draw browser draw
Traditional tile servers On-the-fly Map Generator

Experiments and Results
(contd...)

The data returned inifially was heavy

o Converted the data to floats (because of the math involved!)
o Truncated after the first 8 digits

o Compressed data further using gzhandler — gzip

Resulting data was reduced from a whopping 5 MB
(Newark, CA) to 684 KB.

Did a comparison the tiles size and the queried

data size

Experiments and Results

(contd...)

Table 6-2 Comparison of tile sizes versus queried data size, for bounding boxes

Places observed,

Size of tiles Size of query data
according to bounding
boxes
Fremont 762 KB 684 KB
San Jose 2.4 MB 1.7 MB

Experiments and Results

(contd...)

Table 6-3 Average Rendering times (in milliseconds) for both methods

Type of

rendering

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Time taken
to draw
vector data
objects
(WebGL)

8 ms

6 ms

T ms

6 ms

O ms

Time taken
to render

tiles

61 ms

63 ms

63 ms

60 ms

76 ms

Experiments and Results

(contd...)

Time to render (in milliseconds)

L . — N T = B o2
e T e R e T e o s R =

=

Average data rendering time(in
milliseconds)

‘!—d—)s/

=== Time taken to draw vector

data objects (WebGL)

smsm=Time taken to render tiles

(Mapnik + OpenLayers)

—

Pass1

Pass 2 Pass 3 Pass 4 Pass 5

Passes

Questions to Ask!

Wait a minutel Isn't Google's MapsGL something
similare

o Yes, but Google uses its own database for vector data

o They have copyright issues, lets only APl usage by developers

o Can developers experiment?e

o Itisstillin “beta” stage

Can WebGL be supported by all browserse

Does all hardware support WebGL?

Conclusion

* Pre-computing the bounding boxes and their query
results will yield competitive results.

* Implementing this on a large scale, for the whole
world might considerably reduce network traffic

o Lesser data is sent to the browser
« |n short, getting tiles (in terms of size) would be more
than getting data from the query for bounding

boxes.

Conclusion

On-the-fly geometry rendering
A novel way to generate online maps

Bottleneck — browsers without WebGL might not
support this

With evolving technology, this might not be a big
problem

Initial stages of project had Google maps
underneath the geometry drawn

Future Work

Separate colors for water bodies
Labeling places and roads

Differentiate between normal streets and freeways
(different colors)

Filtering feature — search box for the user

Extend to pre-computing bounding boxes for the whole
world

All this requires lots of experimentations, trial and error
methods

Demo Timel

Q&A

Thank Youl

