
On-the-fly Map Generator
for Openstreetmap Data

Using WebGL

Advisor: Dr. Chris Pollett

Committee Members: Dr. Chun and Dr. Khuri

Presented By

Sreenidhi Pundi Muralidharan

Agenda

• Project Idea

• History of online maps

• Background about Online Maps

• Technologies Used

• Preliminary Work

• Design of On-the-fly Map Generator

• Implementation

• Experiments and Results

• Questions to Ask!

• Conclusion

• Future Work

• Demo

• Q&A

Project Idea

• Render navigational browser maps using WebGL for

Openstreetmap data

• Comparison of HTML5 graphics technologies to

render maps in browser vs. traditional approach of

rendering map tiles

• More on this later...

Project Idea (contd…)

Over the next few slides, we will explain our idea in detail as well as

traditional approaches.

Traditional tile servers On-the-fly Map Generator

History of online maps

• Evolution of online maps

o First online map was in 1989 – Xerox PARC Map viewer, produced

static maps using CGI server, written in Perl

o Mapquest – 1996, was used for online address matching and

routing - navigation

o Openstreetmap – 2004, crowd-sourced

o Google Maps – 2005, used raster tiles, data loading was done

using XHR requests

o Other maps are being used now – Yahoo, Bing, Apple maps

Background about Online Maps

• Static Maps

o Were used initially, with no interaction

o Example: Initial topological survey maps, weather maps

• Dynamic Maps

o User interactivity

o Traditionally used tile servers that store tiles – 256 X 256 PNG images

o Image tiles for each zoom level, for all over the world

o Created beforehand, but rendered on-demand, fetched from a

DB/tile server

Background about Online Maps

(contd…)
• Why tiling system?

o Initial mapping techniques used WMS – an oldest standard

o Each request - single large image

o Continuous map image at street level would be millions of pixels

wide

o Rendering pre-generated tiles on the browser is computationally

faster than having to compute, generate and render map

images

o So maps tiles are fetched from a map server

o Tiles - cache efficiently, load progressively and are simple to use

Background about Online Maps

(contd…)

• Raster and Vector data maps- the differences

o Raster Maps– image tiles are used, mostly represented as z/x/y

coordinate system

• Storing tiles for all zoom levels, all over the world is

cumbersome.

• Rebuild the whole image tile if a certain topological feature

changes

• Rendering tiles now faster with high speed systems and

caching

• http://www.opencyclemap.org

http://www.opencyclemap.org

Background about Online Maps

(contd…)

Raster Maps - Tiled

Background about Online Maps

(contd…)

o Vector Data – data in the form of points, lines, etc.

• Data represented in its original form

• Still, tiling is used in almost all of today’s vector-based maps

• The need to re-render or rebuild the topology when data

changes – still faster than having to regenerate a whole raster

image tile.

• Elevations can’t be effectively represented with vector

geometry

Background about Online Maps

(contd…)

Mapzen’s vector data tiling

Background about Online Maps

(contd…)
• Initially, rendering these pre-generated tiles was

time-consuming.

• Latest maps cache map tiles – called seeding

o Reduces communication between server and client

o Disadvantages – purging cached tiles is cumbersome when map

data often changes

Background about Online Maps

(contd…)

• Present day maps use a combination of both –

vector data on top of raster maps

• Nowadays, can draw on browser canvas

• GPU acceleration on browser

• Hope – do more on browsers than traditional way

Background about Online Maps

(contd…)

Vector Data on top of Raster Maps

Technologies Used

• OSM – open source, crowd-sourced

• OSM Data Format

o Primitives – Tags, Nodes, Ways, Relations

o Data storage format:

• Several dumps available, with mirrors

• Common ones are XML and PBF. Others include SHP, SHX, DBF, etc.

• Postgresql Database

o Open-source-relational

o PostGIS – extension that helps store geospatial data

o pgAdmin 3 – GUI tool for Postgres

Technologies Used (contd…)

• WebGL - Introduction

o Web Graphics Library, designed and maintained by the Khronos Group

o Rendering of two and three dimensional objects on the web browser

o No external plugin required

o Rendering of effects and animations of objects on top of a HTML5 canvas

o Can mix WebGL with normal JavaScript code

o Several libraries available now for extended functionality support –

facilitates easy lighting, fixing camera/viewing angle

• E.g., include three.js, CopperLicht, etc.

o Used in gaming industry for rendering 3D game designs, aerospace

industry, particle analysis, rendering human face models

Technologies Used (contd…)

• WebGL – shaders
o Everything is in terms of vertices of a geometry

o No fixed pipeline – to manipulate vertices out of the box

o WebGL offers programmable pipeline – we are responsible for

manipulating vertex positions, colors, etc.

• This is done by GLSL (OpenGL shading Language)

• Has C-language bindings

o Shader source code is either defined in HTML <script> tags or as

variables in JavaScript

Technologies Used (contd…)

• Two Main types of shaders

o Vertex shader

• Operate on vertices specified by buffers

• Passed to a variable called gl_Position – specifies the position

of each vertex

o Fragment shader

• Defines the color of each pixel, hence each vertex

• R,G,B,A values defined

• Can interpolate different colors between vertices

Technologies Used (contd…)

• Compiling and linking C-like shaders

o Mostly repeating boilerplate for almost all WebGL programs

o Shader functions are called in WebGL and compiled using the

WebGL context

o The compiled program is linked and the program is made available

• WebGL Buffers

o Send vertex information to the GPU

• Draw Objects

o Use draw() calls to draw

o Draw either as lines, points or other geometry modes

Preliminary Work

• Database Setup

o Installed Postgres.app (PostgreSQL DB server)

o Added extension – “PostGIS”, for storing geospatial data

• PostGIS adds a table spatial_ref_sys by default

• Added Google’s spherical mercator projection, 900913 to

spatial_ref_sys

o Downloaded a .pbf file for North America, imported to Postgres

DB

o Installed pgAdmin 3 - a GUI developmental platform for Postgres

Preliminary Work (contd…)

• Local Server Setup

o Written and tested in Mac OSX, which has Apache and PHP

bundle

• A machine with high-end Graphics Processing Unit

• A browser that supports WebGL

Design of On-the-fly Map

Generator

Implementation

• Idea – get current positional coordinates

• Create bounding box

• All geometry within this bounding box is drawn

Implementation (contd…)

• HTML5 canvas

o Defined using the <canvas> tag

o Canvas width and height is defined

• Viewport

o Rectangular viewport

o WebGL defines the placement of vertices and colors

• Database Query

o Two separate queries, one for drawing polygons(buildings) and the other for

drawing lines(roads)

o Their results are stored in separate arrays

Implementation (contd…)

• Use of spatial geometry constructors – PostGIS

extension provides them for spatial geometry

o For creating a bounding box, used ST_MakeEnvelope()

o Creates an invisible rectangular bounding box specified by

the minimums and maximums of latitudes and longitudes

o The spatial referential ID (SRID) is used along with this to tell

what type of projection is used.

Implementation (contd…)

o ST_Transform()- transforms the coordinates into a system of points

that can be understood

• The coordinate points are in the form of long, unreadable

strings

• SRID 4326 is used which transforms coordinate data into lat-

long coordinate points

• Example: ST_Transform(way, 4326)

o ST_AsText() – converts vector data into Well-Known Text (WKT)

representation

Implementation (contd…)

Bank of America’s coordinate geometry

0130002031BF….

01300020E61….

POLYGON(-121.3442325 37.9985757)

ST_Transform, SRID = 4326

ST_AsText

Implementation (contd…)

• The resulting data is sent to WebGL as a set of

object arrays using json_encode()

o Each object contains a set of latitude-longitude points for the

geometry to be drawn

• Convert objects into a format that WebGL

understands- pixels

o Use mathematical formulae, which is written in JavaScript

Implementation (contd…)

Lat-long points

Lon: -121.3442325

Lat: 37.9985757

X:41.254921

Y: 99.1307931

Converted to pixel (x,y)

Implementation (contd…)

• The Map

o Scale pixel coordinates according to zoom levels

o Vertex buffer now has the vertices to be drawn

o Used “index buffers” that were helpful in rendering “nothing”

between the end point of the first polygon and start point of the

next polygon

• Index buffers are mainly used to hold indices for each

polygon drawn

o Used different colors that specify polygons and lines

• These colors were defined in the color buffer

Implementation (contd…)

• Now draw!

o Use drawElements() call of the WebGL

o gl.LINES does not produce continuous lines, but with index buffers

defined, it connects the vertices of a geometry

o Thus, two dimensional geometry is drawn

Implementation (contd…)

Final Map drawn for OSM data using WebGL

Implementation (contd…)

• Zoom levels

o HTML <input> tags with type = button

o Zoom-in shows more finer details

o Zoom-out shows an overview of all data drawn

Map zoomed out at zoom level 12

Zoom controls

Implementation (contd…)

• Panning around

o Pans around- top, bottom, left, right, created with HTML <input>

tag

o Increments/decrements current positional coordinates by a

“step” value

• Resizing the map

o Map canvas resizes itself when the browser window is resized

Panning controls

Experiments and Results

• Set up my own tile server on my local machine

o Generates tiles according to zoom levels and bounding box coordinates

specified

o Used “mapnik” – a Python-based open source toolkit for rendering maps

o Installed mapnik tools – generate_xml.py, generate_image.py,

generate_tiles.py

• Tested with: Zoom level 13, bounding box, closer to Newark, CA

o This script generates tiles is a special hierarchy of folders, identified by the

zoom level

o Used OpenLayers to render these tiles generated

o Finally, tiles are reassembled and rendered in client’s browser

Experiments and Results

(contd…)
• Timing tests

o Test bench used

• Mac OS X Yosemite

• 1.8 GHz dual core CPU

• 4GB memory

• a high speed Intel HD Graphics 3000 GPU (Boost) MHz with 12

unified pipelines

• Google Chrome version 47.0.2526.73 (64-bit), with WebGL 1.0

enabled

Experiments and Results

(contd…)

Experiments and Results

(contd…)

Experiments and Results

(contd…)
• Real-world setting results are different

Traditional tile servers On-the-fly Map Generator

Experiments and Results

(contd…)

• The data returned initially was heavy

o Converted the data to floats (because of the math involved!)

o Truncated after the first 8 digits

o Compressed data further using gzhandler – gzip

• Resulting data was reduced from a whopping 5 MB

(Newark, CA) to 684 KB.

• Did a comparison the tiles size and the queried

data size

Experiments and Results

(contd…)

Experiments and Results

(contd…)

Experiments and Results

(contd…)

Questions to Ask!

• Wait a minute! Isn’t Google’s MapsGL something

similar?

o Yes, but Google uses its own database for vector data

o They have copyright issues, lets only API usage by developers

o Can developers experiment?

o It is still in “beta” stage

• Can WebGL be supported by all browsers?

• Does all hardware support WebGL?

Conclusion

• Pre-computing the bounding boxes and their query

results will yield competitive results.

• Implementing this on a large scale, for the whole

world might considerably reduce network traffic

o Lesser data is sent to the browser

• In short, getting tiles (in terms of size) would be more

than getting data from the query for bounding

boxes.

Conclusion

• On-the-fly geometry rendering

• A novel way to generate online maps

• Bottleneck – browsers without WebGL might not

support this

• With evolving technology, this might not be a big

problem

• Initial stages of project had Google maps

underneath the geometry drawn

Future Work

• Separate colors for water bodies

• Labeling places and roads

• Differentiate between normal streets and freeways

(different colors)

• Filtering feature – search box for the user

• Extend to pre-computing bounding boxes for the whole

world

• All this requires lots of experimentations, trial and error

methods

Demo Time!

Q&A

Thank You!

