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ABSTRACT 

A SCALABLE SEARCH ENGINE AGGREGATOR 

 

 The ability to display different media sources in an appropriate way is an integral part 

of search engines such as Google, Yahoo, and Bing, as well as social networking sites like 

Facebook, etc. This project explores and implements various media-updating features of the 

open source search engine Yioop [1]. These include news aggregation, video conversion and 

email distribution. An older, preexisting news update feature of Yioop was modified and scaled 

so that it can work on many machines. We redesigned and modified the user interface associated 

with a distributed news updater feature in Yioop. This project also introduced a video updater 

feature for Yioop. This feature converts uploaded video into formats that are compatible with 

all browsers. It can quickly convert lengthy videos by splitting and converting them in a parallel 

fashion. It then merges them back into a single video. In this report, we discuss a solution to off-

load the task of sending emails from the Yioop web application to the Yioop media updater by 

aggregating emails over a period of time. We conclude this report by describing experiments 

with these developed features on a cluster setup on an AWS platform. 
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CHAPTER 1 

INTRODUCTION 

 An important aspect of creating a modern search engine is the ability to display various 

media sources in an appropriate way. These media sources include news feeds, videos, images, 

group discussions, blogs, etc. Most of the search engines like Google, Yahoo, and Bing have 

these features incorporated and customized according to the needs of their users. In this project, 

the goal was to scale the existing news updater feature and design and implement a video updater 

feature of an open source search engine Yioop. 

 Yioop had a news updater feature [3] that re-indexes feed on an hourly basis. Users could 

also upload videos. Prior to this project, certain search engine tasks, such as updating news 

feeds, could be carried out by only on a single machine, i.e., a name server. One could upload 

videos, but there was no mechanism in place to convert these videos to a certain format. We 

have explored the media updater feature of the Yioop search engine in this project, and have 

experimented with it in order to scale it and make it distributed. This included thoroughly 

understanding, working with, and experimenting on the already-existing news updater 

functionality. We discussed different approaches to how a news updater feature could be scaled 

and implemented one of them. 

 To make use of these newly added features, we designed a new user interface to include 

the distributed architecture so that one can keep tabs on the status of running processes on 

different machines. Yioop had the ability to upload videos, however, these videos needed to be 
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converted to mp4 format in order to be remain functional on all the browsers. We introduced 

the video updater feature in Yioop. 

  

 The report is divided into seven chapters. Chapter 2 includes summary of background 

work done. Chapter 3 covers the news updater feature of the media updater and the 

experimentation done on the existing design. The details of the implementation are also given. 

Chapter 4 focuses on the web interface that manages machine activity in Yioop, as well as the 

purpose behind redesigning and modifying it. Chapter 5 deals with the video updater feature, 

discussing the approaches / design experiments, and covering their pros and cons in-depth. 

Chapter 6 discusses the mail aggregation solution. Chapter 7 records all the experiments and 

testing done on these features. It also has integration within Yioop. Chapter 8 concludes the 

report.  
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CHAPTER 2 

BACKGROUND WORK IN YIOOP  

 

 Yioop is a PHP search engine developed by Dr. Pollett. In Yioop the user, have control 

over the exact sites which are being indexed with Yioop, you have much better control over the 

kinds of results that a search will return. Yioop provides a traditional web interface to do queries, 

an rss API, and a function API. The Yioop search engine can be used both as a regular search 

engine as well as a search engine that performs searches on a pre-defined set of URL’s given by 

the users i.e., users can customize the search results by performing a crawl and setting the URL’s 

that the user wants as the index to be searched in Yioop. Yioop is written using its own model-

view-controller framework with a user interface that is simple and user-friendly. The Seekquarry 

[2] web site contains all the documentation and resources that are related to Yioop.  
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Figure 1: Yioop Architecture Diagram 

 

As mentioned earlier, modern search engines need the ability to display various media sources 

such as news feeds, videos, and group discussions in an appropriate way. To understand the 

project better and to gain insights as to how to design and implement the media updater features 

in Yioop, I went through the updater features of various social networking such as news feeds, 

and familiarized myself with the high-level working method. Google has a news feeds section 

which categorizes them nicely. They also offer a ‘Suggested for you’ section [12]. Yahoo news 

feeds are popular too. Yahoo has a producer-consumer model [8], which talks about how they 

fetch feeds and minimize the cost by localizing decisions. Facebook [5] mainly uses links and 

connections of a person to choose news feed on his/her personal page. 

 

Table 1: Comparison of news feature in Various Search Engines 

  

Google always maintains secrecy around the algorithms that they use for their popular products 

like YouTube [13]. I went through these popular social networking sites and found out which 

video formats these sites support. 

 Based on Categories Customized for user 
Basis for generating 
customized news 
feed 

Google news 
                YES           YES  

    Google search 
queries and articles 
visited 

Yahoo news 
                YES            NO Trending stories  

Facebook news 
                 YES            YES 

Connections and 
likes, post views etc. 
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Table 2 : Video Formats Supported by YouTube and Facebook 

YouTube Facebook 

 MOV 

 .MPEG4 

 MP4 

 AVI 

WMV 

 WebM 

 FLV 

 3GPP 

 3g2 (Mobile Video)3gp (Mobile Video) 

 3gpp (Mobile Video) 

 asf (Windows Media Video) 

 avi (AVI Video) 

 dat (MPEG Video) 

 divx (DIVX Video) 

 dv (DV Video) 

 

In order to introduce the video updater feature, we wanted to select certain video formats for 

conversion. This included formats that are eligible for conversion, as well as the format they 

will be converted into. To select the formats that are eligible for conversion, we looked at the 

video formats that are usually uploaded by users. The AVI video format is standard for most 

digital video cameras. Mov video formats [15] also are very common, as most Apple devices 

produce mov format videos.  Many different browsers, such as Chrome, Firefox, Safari, etc., 

are used. We did a survey and found out the video formats that are supported by different 

browsers.  

Table 3 : Video Formats Supported by Popular Browsers 

Browsers webm Mp4 mov avi 

Chrome         
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Safari         

Firefox        

Internet explorer       

    

 

  Looking at above table, we can conclude that mp4 and webm are the video formats that 

are supported by the most popular browsers. The rest of the video formats are hit or miss. 50% 

of them might support some formats, while others don’t. We selected the final conversion format 

as mp4. We chose mp4 over webm because if you compare same file in two formats, mp4 

usually occupies less memory. In Yioop’s video updater feature, we finalized the mp4 format 

based on the above observations so that they can be viewed later in any browser without 

disruption. 
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CHAPTER 3 

NEWS UPDATER FEATURE 

 

 Yioop has important processes like queue server, fetcher, media updater etc. Each of 

these processes accomplishes a different task and can be configured on any of the machines 

running the Yioop search engine. In this chapter, the news updater module of the media updater 

process is covered in detail. 

3.1 Existing Architecture and Flow in Yioop 

 Yioop has a media updater [3] process that can be used to automatically update news 

feeds from various news sources. News feeds can either be RSS or Atom feeds, or can be scraped 

from an HTML page using XPath queries and re-indexed. This more timely information can 

then be incorporated into Yioop search results in order to improve the quality of the results. 

Yioop can be configured to work in a single machine setting or a multiple machine setting. The 

media updater process was initially implemented in such a way that it was only running on the 

name server node of the Yioop server machine.  I might alternatively refer to the single machine 

setting as ‘name server mode’, or vice versa. Also, the multiple machine setting is referred to as 

‘distributed mode’ at some places.  

The below diagram depicts the process flow when the news updater is working in name server 

mode.  To summarize the diagram, the single machine/name server will periodically (once an 

hour as per current settings in Yioop) fetch the news feeds from the news sources added into the 

database, then will update the database and rebuild the index shard. These fresh news feeds will 

17 
 



then be shown in news section of Yioop, as well as in the search results for any relevant query. 

 

Figure 2 :A flow diagram for existing news updater feature 

 

A thorough code walkthrough[4] was done in order to understand the news updater activity from 

the ground up. It was implemented using model, controller classes interacting with each other 

and making database trips in order to keep it updated . 
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   Figure 3: Class diagram for existing architecture 

 All the model and controller classes extend from the parent class Model and Controller, 

respectively. MediaUpdater is the main class that interacts with the sourcemodel class, which 

queries the database to get the news sources, then crawls them to download news feeds, update 

the database, and rebuild the index shard. 

3.2 Experiments Conducted on the Existing Setup 

 After gaining a thorough understanding of the existing functionality, experiments were 

conducted to assess the performance of the news updater activity in the single machine setting. 

I downloaded the search engine, installed on the local machine, did a fresh clone of git, and 

created the working directory.  The configuration used for testing is Intel core i5 with CPU 

@1.60 GHz , 6GB RAM and windows platform. 

 In Manage Machines, we added a single machine as local under Add Machine. I then 

restarted my computer to get Yioop working on the localhost. Through the Yioop web 
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interface, I navigated to search sources and added a few news sources in the media section. 

Then, I went to manage machines and started the news_updater that is currently working on 

the name server and let the news_updater crawl and fetch feeds from the news sources.  

I added few news sources (rss and html type) to the media sources and ran the 

news_updater by reducing its update time to 60 seconds (from the initial time of one 

hour).  

 

Figure 4: Line Chart for Existing News Updater Performance Testing 

  

After adding few news sources, the news_updater was taking increasingly more time to update. 

After almost 275 news sources, it took more than 5-6 minutes to build the index file, and after 

350 news sources, it took almost 10 minutes to generate the index file. We can easily predict 

that, as the number of news sources goes on increasing, that there will be an increase in the 

time it takes to build the index shard. Referring to this chart, we can make a rough estimate 

that in an hour, the single machine news updater can handle around 3-4 k news sources. 
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3.3 Scaling the News Updater Feature in Yioop 

 In order to decrease the time it takes to build the index shard of the news feeds as the 

number of news sources continue to increase, we implemented the news updater feature in such 

a way that now it can work on a cluster of machines. We experimented with different approaches 

and came up with solution that seemed the most feasible in terms of implementation and 

computing time.  

 

 

Figure 5:  Distributed news updater 

 The multiple machine setting consists of the name server node and slave nodes. All 

machines will essentially be running the same copy of program, though only the name server 

would query the database and distribute the news sources among the requesting slave machines. 

With reference to the above diagram, one can see that name server acts as single point for 

distributing the requested information, querying the database, etc.  

 We have used divide and conquer strategy and distributed the work among a number of 

machines that, at the end, can merge these results in one place.  In this cluster, the name server 

21 
 



node does all the bookkeeping-related work in order to divide and then merge the pieces of 

work/info submitted by other machines. Only one machine queries the database to get the news 

sources from where user-entered news sources can be fetched. It then passes them on to the 

other machines for the purpose of downloading feeds from them. 

According to MVC architecture of Yioop[4], any class can make a simple  xmlhttp request to the 

server to get a certain piece of information. In this case, this request can either be made directly, 

or one can make use of already available functions written in Yioop. Taking into consideration 

the already existing code, we implemeted the feature on distributed mode without disrupting the 

existing code’s functioning. 

Parallel Model class already had the capabilty to make an xmlhttp request to server . We simply 

extended from this class and made a request to the crawl_controller of the server for the purpose 

of retrieving the news sources. 

 As depicted by the class diagram below, we have added the extra class of crwal controller 

in order to make a request to the name server for the news sources. Once the requesting machines 

get the news sources, it just downloads the feeds and returns the feeds back to the server. 
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                                       Figure 6: Class Diagram for news updater in distributed environment 

3.5 Algorithm 

 We modified the news_updater functionality to distribute it over multiple machines so 

that each machine can independently run its own news_updater, make a request to the name 

server, and get the news sources from where it fetches the news. 

News_updater will be running on all the machines except name_server at periodic intervals. 

• A variable MULTIPLE_NEWS_UPDATER has been defined in the config.php file. If 

the value of this Variable is set to true, then the news_updater will work in the distributed 

fashion. If it is set to false, then it will run in single machine mode. One can also create 

local_config.php and set the variable from there, instead of setting it from the config.php 

file. 

• If the variable MULTIPLE_NEWS_UPDATER is set to true, then the following events 

will occur: 
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• The machine will call the updatefeeditems method from source_model from its 

news_updater.  

• The machine that makes the request to name_server for the news updater will be 

identified by reading the text file ‘current_machine_info.txt’ by the updateFeedItems 

method of source_model.  

• updateFeedItems makes an exec call to getNewsSources function in crawl_controller.  

o The exec call is made through parallel_model, and current_machine hash string 

is appended to the request url.  

• The getNewsSources function gets all the news_sources from the database, calculates 

their md5 hash, and puts in a feeds array that has the same length as the number of 

machines.  

• After the hash values array for all the feeds is calculated, then the feed values 

corresponding to the requesting machine are returned to the calling function.  

• Once the machine receives the feeds_array, it will resume its process and fetch the 

articles from these news_sources.  

 

 While scaling the news updater feature, we had to take into account certain issues, such 

as uniform distribution of the news sources among the requesting client machines. Google 

highlights the importance of maintaining such even distribution [7] [11]. This task was 

accomplished by devising a strategy. The requesting machine produces a text file that has the 

hash of current machine name. This information is passed when a request is made to the name 

server for news sources. At the end of name server, certain steps are carried out, which can be 

seen in the code snippet below. This ensures that all news sources are evenly distributed. 
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In order to get the news sources for a particular requesting machine, we follow a below strategy. 

 

 

 Get the current machine identifier from string 

 Match it against the array of machine identifiers present in 

given distributed setting 

 And save the index as machine_index_match 

  For each feed  

  Calculate the hash value and store it in hash variable 

  then divide this hash variable with total no of machines 

   present in order to round it up to at least one of the 

machine  

    if this hash index matches with the machine_index_match 

then add it to the feeds array 

  otherwise continue with next news feed; 

 

The above pseudocode depicts how are we evenly distributing the number of news sources 

between multiple machines.  

 The flow of the news updater feature more or less remains the same, as per the diagram 

below. The only difference is that each machine checks if it is running in multiple machine 

setting. If so, then the requesting server gets the news sources. 
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   Figure 7 : A flow diagram for distributed news updater feature 

3.4 Comparison with other social networking sites news feed feature 

 Google News is a computer-generated news site that aggregates headlines from news 

sources worldwide, groups similar stories together, and displays them according to each reader's 

personalized interests[12]  
.Their articles are selected and ranked by computers that evaluate, 

among other things, how often and on which sites a story appears online. They also rank based 
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on certain characteristics of the news content, such as freshness, location, relevance, and 

diversity. As a result, stories are sorted without regard to political viewpoint or ideology, and 

you can choose from a wide variety of perspectives on any given story. Based on your search 

queries, Google offers a section called ‘suggested for you,’ which contains the news feeds 

related to your search queries and interests. 

 The stories that show in your News Feed are influenced by your connections and activity 

on Facebook. If any of your connections view, post, or like any stories, they will also appear in 

your news feed. Facebook also provides customized setting options for its news feed, which 

more or less filter out the news feeds before presenting them to you. Yahoo also provides news 

feeds based on various categories, but it does not have any customized categories like Google. 

 Yioop differs from the above engines in the way in which the list of video and news sites 

can be configured through the GUI. This way, we can keep our news sources from filtering out 

unwanted content. Scaling the news updater feature on Yioop has the added advantage of being 

able to add more news sources without worrying about the time it takes to generate the news 

feed. We can add machines depending on our needs. 

 

3.5 Conclusion  

 A distributed environment can help speed up operations by running processes in a 

parallel fashion. One can fully utilize the computing resources of the distributed environment in 

order to dramatically reduce the time that would otherwise be taken on the single machine 

setting. In the future, Yioop will be able to switch to the multiple machine setting or the single 

machine setting depending on the requirements of the news updater feature.  
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                                                         CHAPTER 4 

MANAGE MACHINES WEB INTERFACE 

 
 A graphical user interface is always an integral part of any application. In today’s era of 

Web applications, web interfaces play a crucial role. Yioop has a web interface that was mainly 

developed using html embedded within php. It is in line with the MVC architecture of Yioop. 

In this section, I will cover the existing web interface of Yioop, as well as proposed changes and 

their implementation details. 

4.1 Existing Web Interface in Yioop 

 In Yioop, machine statuses and the statuses of processes running on these machines can 

be seen through the web interface. In Yioop, it is possible to start or stop and view the log files 

of the queue servers and fetchers through the Manage Machines activity. One can configure 

multiple queue servers and/or fetchers on a machine. The media updater is by default part of 

every Yioop instance, irrespective of its part in the cluster. One has only the ability to start or 

stop it like the other processes. 
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Figure 8: Snapshot of the existing GUI for the Manage Machines activity 

4.2 Proposed Changes in Manage machines activity  

 This deliverable is related to the previous deliverable in which we want the media 

updater process to be a part of all machines. Media updater is one process which will run on all 

the instances of Yioop by default. As with the others, one will have the ability to start or stop 

and view the log files of media updater. It also gives one the ability to see how many machines 

are in the cluster and which are currently running the media updater. We designed certain 

mockups using html, then decided on the final look and feel of the Manage Machines activity. 
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                                                 Figure 9: Wireframe for proposed changes 

4.3 Changed Web Interface in YIOOP 

We modified the existing code to accommodate the changes. Thee manage machine web 

interface will now be able to show the media updater process status on the Yioop instances. We 

created the following table in the database with table 

MEDIA_UPDATER_PROPERTIES  

Table 4 : Database Table Format for Manage Machines Activity 

NAME VALUE 

PRESENT_ON_NAME_SERVER TRUE/FALSE 

   

Based on this value, machine_model will fetch the value from the database and render the view 

from machinestatus_view. The communication is done throughs admin controller, where 
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machine_model puts fetched data from the database into the data array of admin controller. 

machinestatus_view then renders view based on this data. 

The implementation mainly involved related classes to query the database and put the data in 

the appropriate storage structure. The view then refers to this data and renders the page. 

 

 

 

                                       Figure 10: Class Diagram for Proposed Web Interface 

 

One should also be able to switch between the view based on their choice of Media Updater 

Mode, such as Distributed or Name Server. The flow of the entire manage machines table is 

depicted in the diagram below. The ability to switch from Name server to Distributed mode 

gives the user the flexibility to keep the media updater running on as many machines as he/she 

wants. 
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  Figure 11 : A flow diagram for the Manage Machines activity 

In case of single machine setting, even though the user has both of these options, it really doesn’t 

make any difference. It is worth noting that the media updater is running on name server even 

in distributed mode, but in name server mode, it is running only on server. The reason behind 

the above setting is that the media updater process of server has some specialized functions to 

execute  (discussed in chapter 5), so we have to keep it running in either case. 

After implementing the new interface, it now looks like the screenshots below. 

The new web interface now looks like: 
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a) Name Server Mode 

 

 

  Figure 12: Snapshot for Manage Machines activity in name server mode 

 

In this mode, the media updater will only work on the name server. The Yioop user can control 

the status of the media updater on the name server. 

b) Distributed Mode: 
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Figure 13: Snapshot for Manage Machines activity in Distributed mode 

 

 The name server will be visible in both the cases, as the media updater on the name server has 

to perform some explicit tasks that can’t be interrupted. 

 

4.4 Conclusion 

Yioop can now switch between name server mode and name server mode setting for viewing 

the status of and controlling all running processes. 
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CHAPTER 5 

VIDEO UPDATER FEATURE 

 

 Many search engines have the capability to upload videos and view them later. One of 

the most popular examples is YouTube. In this section, I will cover the purpose, attempted 

approaches, an evaluation of these approaches, tools used, and the implementation details of the 

chosen approach.  

5.1 Purpose 

 In the media_updater, there is a provision for uploading videos and different video 

sources. For uploaded video[15] files below a configurable size limit, videos are automatically 

converted to web-friendly mp4 formats. We have discussed the reason behind choosing avi and 

mov file formats to mp4 file format at length in background work. 

To convert such video formats to a different format, we can use a tool called ffmpeg, which is 

described above. Using this Linux utility, a script can be used to convert the uploaded video 

formats to a particular format, such as mov, and then upload them back on the server for the 

users to watch. As part of this deliverable, we have designed the architecture for the video 

uploader, which will be part of the Media uploader only. 

 

5.2 Approaches 

 
5.2.1 Server converting video as a whole 
 

In this approach, only the name server will be working converting the videos and uploading 

back the converted file. 
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Pros: 

1. Easy to implement. 
2. Less bookkeeping 
3. No loss of data 

 

Cons: 

1. Will take longer in terms of time. 
2. Name server’s other functions will also be interrupted and delayed during the media 

conversion. 
 

5.2.2. Distributed setup converting split video as a whole 
 In this approach, we decided to scale the previous approach so that it can work in a 

distributed environment. Each video will be split into multiple video files, and then sent to slave 

media updaters for conversion. Large video files are split into small files primarily to facilitate 

of the uploading and downloading of the video file for conversion purposes by the slave media 

updaters.  

We decided on the functions/modules which will be assigned to different Yioop instances.

  

Table 5 : Functions Assigned based on the Role of Machine in Cluster 

NAME SERVER MEDIA UPDATER SLAVE 

Look for Videos to Split Convert 

Split  

Looking for converted videos  

Concatenate   

Generate assemble files for conversion  
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Figure 14 : Distributed setup converting split video as a whole 

 

Pros : 

1. Easy to implement 
2. Less bookkeeping 
3. Greater ease of downloading and uploading the video files for conversion. 
 

Cons : 

1. Videos are assigned in the order that they are assigned for conversion. 
2. Longer video files assigned to a media updater will take longer even if they were assigned 
first. A user might end up waiting for the video to be uploaded back, even if it he/she uploaded 
it before another. 
 

5.2.3 Distributed setup converting split video 

 We expanded the distributed setup so that instead of assigning all the split files belonging 

to one video to only one media updater, we now assign any split video file to any media updater 

based on the video time. This way, there is an overhead of bookkeeping at the end of the name 
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server node in order to put the relevant files back. 

 

 

Figure 15 : Architecture diagram for Distributed setup converting split 

Pros : 

1.Time reduction for the video conversion. 
2. Easy to upload and download split video files to and from name server. 
 

Cons : 

1. Difficult to implement 
2. Lots of bookkeeping on the server side. 
 

5.3 FFmpeg and CURL 

  FFmpeg is the leading multimedia framework, able to decode, encode, transcode, 

mux, demux, stream, filter, and play pretty much anything that humans and machines have 

created. It supports everything from the most obscure ancient formats up to the cutting edge. 

 The object of much research over the past few decades has been the elaboration of new 

algorithms that manage to reduce the quantity of data needed for audio and video, while also  
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Figure 16: Video Container Format 

reducing the damage done to the picture and sound as a result of compression. These algorithms, 

called codecs, allow us to encode the data in order to transport it and then decode the data at the 

other end.Several codecs are contained in the libavcodec library supplied with FFmpeg. Others 

are provided by LAME, libgsm, XviD, AMR and libvorbis. 

 Once the audio and video streams have been encoded by their respective codecs, this 

encoded data needs to be encapsulated into a single file. This file is called the container. One 

particular type of container is AVI (Audio-Video Interleaved). AVI is only a method of mixing 

the encoded audio and video together in a single file. It contains data that informs the media 

player what audio and video codecs were used. There are many different possible combinations 

of codecs that can be used within each type of container, which explains why a system may play 

back some AVI files and not others. The system can extract the encoded audio and video data 

from the AVI file, but it can decode that encoded data only if the required codecs are present. 

 FFmpeg [9] is a free software project that produces libraries and programs for handling 

multimedia data. FFmpeg includes libavcodec, an audio/video codec library used by several 

other projects, libavformat, an audio/video container mux and demux library, and the FFmpeg 

command line program for transcoding multimedia files. 
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 Playback of a multimedia file operates in the exact opposite direction. Once the container 

used is identified, it tells us which codecs are needed to decode the data. The audio and video 

streams are then extracted from the container and fed through the appropriate codecs. At the 

other end, we get raw audio and video data that can be fed to the audio and display subsystems 

of the computer. 

 FFmpeg is a tool that, in its simplest form, implements a decoder and then an encoder, 

thus enabling the user to convert files from one container/codec combo to another. The original 

container is examined, and the encoded data is extracted and fed through the codecs. The newly-

decoded data is then fed through the target codecs into the new container. 

 FFmpeg can also do a few basic manipulations of the audio and video data just before it 

is re-encoded by the target codecs. These manipulations include changing the sample rate of the 

audio and advancing or delaying it with respect to the video.  

 We studied different ffmpeg commands for converting videos from one format to 

another. 

We wrote a few required modules for the purpose of video manipulation. 

 

Convert command 

ffmpeg -i sample.mov -vcodec h264 -acodec aac -preset veryfast -crf 28  -strict -2 sample.mp4 

This command converts mov video to mp4 video format. 

 

Split command: 

ffmpeg -i sample_iTunes.mp4 -acodec copy -f segment -segment_time 50 -vcodec copy -
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reset_timestamps 1 -map 0 -an sample_iTunes%d.mp4 

 

Concatenate command: 

ffmpeg -f concat -i  list.txt -c copy output.mp4 

This command simply merges the files listed in the text file into one text file. 

  

cURL: 

 cURL [10] is a library that lets you make HTTP requests in PHP. PHP supports libcurl, a 

library created by Daniel Stenberg. libcurl allows you to connect to and communicate with many 

different types of servers with many different types of protocols. libcurl currently supports the 

http, https, ftp, gopher, telnet, dict, file, and ldap protocols. libcurl also supports HTTPS 

certificates, HTTP POST, HTTP PUT, FTP uploading (this can also be done with PHP's ftp 

extension), HTTP form-based upload, proxies, cookies, and user+password authentication. We 

have used curl to download and upload files using http. 

 

5.4 Video Updater in YIOOP 

 The class diagram explains the classes that have been  modfied for the implementation 

of the Video updater. Primarily, most of the video updater functions are included in the media 

updater as one video uodater module. These functions then call the other auxillary functions 

written in model and controller classes as needed. 
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Figure 17 : Class Diagram for video updater future 

The media_updater process will run on several yioop instances simultaneously in the distributed 

environment. 

Based on which Yioop instance it is running, it follows different processes. 

a) Name server process 

The name server process is only responsible for a few functionalities. The name server 

does not convert videos. The video updater can only work in distributed mode. This is 

the reason that the name server has to be kept running in either mode, since it also does 

bookkeeping.  
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Figure 18: A flow diagram for the name server media updater process 
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b) Media updater slave process 

 The slave process is pretty simple. It only converts videos that it receives from the name 

server. Most of the intelligent work is done by the name server. 

 

 

Figure 19: A flow diagram for the media updater slave process 

 

In order to avoid the name server having to go through same video directories looking for certain 
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things, we have devised the below process, where it can decide whether to discard the video 

directory or continue with it. 

Table 6 : Text Files based on the Role of Machine in Cluster 

Function task Look for Generate Delete 

Media split Split.txt  Split.txt 

Move folders to 

converted  

Count.txt   

Generate ready to 

assemble file 

Concatenated.txt 

Ready to assemble.txt 

Ready to 

assemble.txt 

 

Media merge Concatenated.txt 

 

Concatenated.txt 

 

All text files 

 

The above text files serve as a way to communicate or convey information regarding what could 

be the next step for the name server, as well as help reduce the time taken by the name server to 

go through them and perform the required tasks. 

Also, in order to convert videos in the order that they have been assigned for split, we implement 

the below strategy. 

 

1. Video directories are named based on the time they are placed into the work directory 

of the name server by the group model.  

2. When a request is made to the name server for the file conversion, the following steps 

are followed. 
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For each video_directory placed in video directory 
{ 
 For each file in the video directory 
 { 
  If the filename contains word ‘taken’ 
   { 
   Check the timestamp 
     If the timestamp is older than 5 minutes 
        { 
      Rename this file with current 
timestamp 
     Send video directory name and file 
name  

     }else {continue} 
    }else 
    { 

     Rename this file with current 
timestamp 
     Send video directory name and file 
name  

    } 
  If result is not empty break out of the loop 
 
  } 
 
 If result is not empty break out of the loop 
            

} 
 

 

5.5 Conclusion 

Video updater is now introduced in Yioop, which converts video formats from one type (mov 

and avi) to another (mp4) efficiently using the distributed setup.  
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CHAPTER 6 

MAIL DISTRIBUTION 

 

  One can create groups in Yioop and start group discussions. People who are subscribed 

to the group are notified via email if there is new activity in a group. Currently, Yioop webapp 

sends out these emails in real time as soon as new activity occurs. If there are too many people 

subscribed to a group then, there the process could time out resulting in some people not being 

notified. Webapp sending emails will result in rendering the Yioop pages slowly and might even 

result in Denial of Service attacks. In this chapter we will discuss how to aggregate these emails 

and send them periodically in the media updater process. 

6.1 Existing Email Functionality in Yioop 

 In Yioop [4], when a user starts a new thread or comments to an existing thread, several 

people will be notified via email provided they have their email address configured properly. 

For a new thread, the groups’ owner will be notified if they themselves weren't the ones starting 

the thread. If it was in fact the group's owner that starts a thread, then everyone who belongs to 

the group will be notified. For a comment to a thread, excluding the commenter, the group's 

owner, the person who started the thread, and anyone else who has commented on the thread 

would be notified via email.  

 If Email Activation is chosen, then the user can specify the email address that the email 

address for notification. The checkbox Use PHP mail () function controls whether to use the 

mail function in PHP to send the mail, this only works if mail can be sent from the local machine. 
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Alternatively, if this is not checked like, one can configure an outgoing SMTP server and send 

the email through it. Sending emails immediately can result in traffic congestion if too many 

people are subscribed to the group. We worked on aggregating such emails and sending them 

periodically. This solution can be scaled so that it can work on multi machine set up.  

6.2 Aggregating the mail distribution  
 

 We aggregated these mails to be sent in a text file and scheduled them to be sent by 

media updater. Media updater periodically keeps on checking if there are any emails to be 

sent. Based on the current setting (single/ multi machine) these emails are sent. Below diagram 

explains the proposed solution. This solution is designed to work in both single as well as 

multi machine settings. 

 

Figure 20: Architecture Diagram for Proposed Solution 

 

  We set one global variable (SEND_MAIL_MEDIA_UPDATER) in config file. If this 

variable is set to true then Mail server writes the email details (to, from, subject, message) into 
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a text file which is created periodically (every 5 minutes as of now and this time can be changed 

in config file).Below is the class diagram giving implementation details. 

 

Figure 21: Class Diagram for Mail Distribution 

 

The mailer text files produced by mail_Server are saved into schedules/mail folder of work 

directory. Media updater when invoked checks for pending emails (if any mailer files are present 

in the mail folder). If any files are present, based on setting and the Yioop instance, either name 

server will send the emails or cater to the requested of slave media updaters to distribute the 

mailer files. 

6.3 Locking mechanism to Avoid Race Conditions  

 Mail server and name server would be accessing the same files from mail folder. To 

avoid the race conditions, locking mechanism in php is used. When mail server is writing into 
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a file, first a lock is obtained and released only when it is done writing. Similarly, for name 

server, it establishes lock on a file before reading into it. If any of the process is unable to acquire 

lock on the file, it will either wait or will move on to the next file.  

 The flow of mail distribution is given in below flow diagram for both the cases –single 

as well as multi machine setting. 

 

Figure 22: A Flow Diagram for Mail Distribution 

6.4. Conclusion 

   The mail server will be aggregate emails to be sent over a period of time and 

then media updater will send these emails out periodically. This will serve the purpose of 

offloading the task of sending emails from the Yioop webapp, so that it can serve webpage 
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requests quickly, thus resulting in improved performance. This will also help in preventing 

denial of service attack. Furthermore, scaling this task will reduce the burden of sending 

emails only from the name server. 
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CHAPTER 7 

EXPERIMENTS AND INTEGRATION 
 

After integrating [16] media updater features into Yioop, I conducted some experiments in a real 

distributed environment.  

7.1 Experiment Setup  
I created a cluster on AWS of a few machines. The configuration for machines was as follows: 

1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory 

Platform : Ubuntu 

I set up Yioop on one such instance and got Yioop running on one of them. Then I created clones 

of  this instance using the AMI option[14] 

 

7.2 News Updater Performance Testing 

 I had already done testing in name server mode for the news updater . After distributing 

the code, I manually added the news sources [6] to the name server, kept adding slave machines 

to the cluster, and recorded the time it took to build the index shard, allowing me to see how it 

was being reduced. 

Table 7 : Time recorded for News Updater Performance Testing 

No of news sources No of machines in the 
cluster Time taken (in seconds) 

100 1 150 

 2 90 

125 1 150 

 2 80 

 3 40 
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200 1 160 

 2 80 

300 1 160 

 2 80 

350 1 160 

 2 90 

400 2 80 

 3 30-35   

500 2 85 

 3 30-35 

550 1 170 

 2 85 

680 1 190 

 2 90 

 3 65-70 

700 2 98-100 

 3 50-60 

 

Looking at above table, we can see that as the number of news sources increases, the time 

required to build the index shard steadily increases. However, this time can be reduced 

exponentially as a number of machines are added into the cluster. Two machines in the cluster 

reduce the time almost exactly by 50%, which proves that the news sources are being distributed 

evenly amongst them. 
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Figure 23: Line chart for Comparison of News Updater Performance Testing 

7.3 Video Updater Performance Testing  

For video updater testing, I used the above distributed setup and recorded the time it took to 

convert the videos. We split each video into 5-minute segments. They were then converted by 

different slave media updaters, then finally merged by the video updater. From the recorded 

times of the video conversions in the below table, we can say that the video updater converts a 

video very quickly. 

Table 8 : Conversion Time Recorded for Increasing Length of Video 

Length of videos No of machines Time ( in seconds) 

1 min 1 5 

7-8  mins 1 15 

14-15 mins 1 35 

 2 15-20 
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24 mins 1 90 

 2 25 

 3 20 

50 mins(500 Mb) 1 300  

 2 180 
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CHAPTER 8 

CONCLUSION  
 

In this project, we have presented a media updater for Yioop. This updater supports 

the news updater and video updater features. We scaled these features so that they can work 

in a multiple machine setting, which effectively reduced the time.  

 News updater can also cater to large numbers of news feeds without worrying about 

the time constraint. This will help Yioop to fetch feeds from many sites even more frequently 

and keep them updated without worrying about the impact on its other functionalities. These 

fresh news feeds can then be used in Yioop’s search results. The user will also be able to 

manage media updater processes running on ta number of machines. One can start or stop it 

when required.  

The video updater feature is responsible for converting to the video format (mp4) so 

that it is visible in all browsers. Since this feature is written with the distributed aspect in 

mind, the user can upload lengthy videos without worrying about the time Yioop will take to 

convert and upload back for viewing purposes. 

The mail distribution feature will give Yioop ability to aggregate the emails over a 

period of time and then send them in batches in single or multiple machine setting.  

Currently, the video updater converts only the most widely-used video formats, such 

as mov and avi. In the future, we can add more formats to this list.     
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