Hierarchical Clustering

Kuldeep Dhole

Supervised By: Dr. Pollett
What is clustering?

The process of grouping a set of objects into classes of similar objects.
What is Hierarchical clustering?

It is a method of cluster analysis which seeks to build a hierarchy of clusters.

Strategies:
- Agglomerative (Bottom-up)
- Divisive (Top-down)

Agglomerative approach is preferred.
Agglomerative (Bottom Up) Approach

- Given n points p1, p2, … pn; We assume all as different clusters c1, c2, c3,…. cn

- Algorithm is pretty intuitive and simple:
 num = #n
 while (num > 1):
 find the pair of **closest distance** points pi,pj i.e. ci,cj
 form a new cluster ci,j = ci + cj
 remove ci and cj
Dendrogram
CLOSEST DISTANCE

- Let’s assume we are in 2D space, and we have points p1, p2.
- Approaches to get closest distances:
 - Euclidean Distance:
 \[(x1-x2)^2 + (y1-y2)^2\]^{0.5}
 In multidimensional space,
 \[(a1-a2)^2 + (b1-b2)^2 + (c1-c2)^2 + \ldots \]^{0.5}
 - Manhattan Distance:
 \[|x1-x2| + |y1-y2|\]
 In multidimensional space,
 \[|a1-a2| + |b1-b2| + |c1-c2| + \ldots\]
Distance Calculations continued...

How to calculate distance between:
- a point p and cluster c2 OR
- a cluster c1 and cluster c2

Approaches:
- Single-link: We pick the point of closest distance from c2
- Complete-link: We pick the point of furthest distance from c2
- Centroid: We pick the centre of gravity from c2
Computational Complexity

- Initially, we need to compute distances of all pairs of n individual points $=> O(m \cdot n^2)$

- In each loop of the algorithm, we compute the closest distance between most recently created cluster and other clusters.

- Using heap, we can achieve this by $O(m \cdot n^2 \log(n^2))$
Applications

- Clustering search results for efficient navigation e.g. “jaguar” -> c1 = car, c2 = animal, c3 = apple inc

- Citation ranking e.g. google scholar