

Incorporating WordNet in an Information Retrieval System

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shailesh Padave

May 2014

© 2014

Shailesh Padave

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Incorporating WordNet in an Information Retrieval System

by

Shailesh Padave

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2014

Dr. Chris Pollett Department of Computer Science

Dr. Sami Khuri Department of Computer Science

Dr. Ronald Mak Department of Computer Science

ABSTRACT

Incorporating WordNet in an Information Retrieval System

by Shailesh Padave

 Query expansion is a method of modifying an initial query to enhance retrieval

performance in information retrieval operations [11]. There are alternate ways to expand a

user input query such as finding synonyms of words, re-weighting the query, fixing spelling

mistakes, etc. [11]. In this project, we created a query rewriting algorithm, which uses

synonyms for a given word for query expansion. These synonyms were chosen using

WordNet, a lexical database for English [16] [15]. Similarity ranking functions and a part-of-

speech tagger were written to extract the essential data from WordNet output. Various

experiments were carried out after integrating WordNet in Yioop to evaluate the

improvement in search results and its throughput.

ACKNOWLEDGEMENT

I would like to express my deepest appreciation and gratitude to my advisor Dr. Chris

Pollett, who mentored me in this project. His advice, useful comments, remarks and

engagement through the learning process of the master's project have been priceless. I

would also like to thank Dr. Sami Khuri and Dr. Ronald Mak for being committee members

and for their precious time and suggestions. I would like to thank my family and friends,

who have supported me throughout the entire process.

1 | P a g e

Table of Contents

1. Introduction ... 4

2. The Yioop Search Engine ... 6

3. WordNet .. 7

3.1. Introduction to WordNet .. 7

3.2. WordNet Database Structure ... 8

3.3. Search Result of WordNet ... 11

3.4. Applications of WordNet ... 12

4. Part-Of-Speech Tagging ... 13

5. Similarity Ranking Algorithms ... 17

5.1. Cosine Similarity Ranking Algorithms .. 17

5.1..1. TF (Term Frequency) & IDF (Inverse Document Frequency) 18

5.2. Intersection Ranking Algorithms ... 20

5.3. BM25 Ranking Algorithms .. 20

6. Design & Implementation ... 23

6.1. How to Use the WordNet Output ... 30

6.2. Importance of Ranking Algorithms ... 31

6.3. Steps to Add WordNet Feature in Yioop ... 32

7. Experiments .. 35

7.1. Recall and Precision ... 36

8. Conclusion .. 44

Bibliography .. 46

2 | P a g e

List of Figures

Figure 1: WordNet Output from GUI .. 11

Figure 2: Search Result Output from WordNet using command line 11

Figure 3: WordNet Output ... 16

Figure 4: Sequence Diagram for Integration of WordNet in Yioop 24

Figure 5: Block Diagram of Integrating WordNet in Yioop ... 27

Figure 6: Similar Words Returned By WordNet ... 29

Figure 7: BM25 Score Listed as WordNet in Score .. 29

Figure 8: Yioop Login Page .. 33

Figure 9: Page Option from Yioop Admin web page ... 33

Figure 10: Search Time Tab .. 34

Figure 11: Search Page Elements and Links ... 34

Figure 12: Recall vs. Precision without Part-Of-Speech Tagging During Crawl 37

Figure 13: Recall vs. Precision using Part-Of-Speech Tagging during Crawl Time 38

Figure 14: Area under the Curve for Both Observations .. 39

Figure 15: RRF for Web Pages from Yioop Search Result .. 41

Figure 16: WordNet Score for Web Pages from Yioop Search Result 42

3 | P a g e

List of Tables

Table 1: Types of Files in WordNet [16] ... 8

Table 2: WordNet Database Statistics [16] .. 10

Table 3: Tags and its Definition from Brown Corpus [5] ... 15

Table 4: Number of Web Pages Crawled .. 35

Table 5: Recall and Precision in Yioop Crawling without Part-Of-Speech Tagging 37

Table 6: Recall vs. Precision with Part-Of-Speech Tagging During Crawl Time 38

Table 7: Recall Precision Values For Different Search Queries 40

Table 8: Score Comparison between WordNet and RRF score .. 42

4 | P a g e

1. Introduction

 The idea behind this project is to incorporate WordNet in an Information

Retrieval System. WordNet was developed at the Princeton University by George A.

Miller in the mid-1980s. WordNet is a large lexical database of English which has

nouns, verbs, adjectives, and adverbs grouped together into sets of cognitive synonyms.

WordNet is a useful tool for computational linguistics and natural language processing

due to its structure [16]. In this project, WordNet’s output is used in a query re-writing

algorithm for query expansion in the Yioop search engine [11].

 To retrieve relevant search results, a search engine uses query re-writing

algorithms for query expansion. In a query expansion, we reformulate the user’s input

query using its synonyms. This technique improves the Yioop’s search results by

ordering web pages according to their relevance. This project will add a new feature in

Yioop to make use of WordNet. Various experiments were performed on the WordNet

to understand its internal working using command line instructions.

 Chapter 2 introduces you to the Yioop search engine and some preliminary

work that was done before commencing the project. Chapter 3 includes a brief

introduction about the WordNet and its features. It also includes the database

information used for WordNet and the different kinds of queries that WordNet supports.

Chapter 4 describes how to use part-of-speech tagging for query time and crawl time. It

also illustrates the importance of part-of-speech tagging in fetching results from

WordNet output. In Chapter 5, various similarity-ranking algorithms are discussed

5 | P a g e

which are used in this project, e.g., cosine similarity ranking, intersection ranking and

Okapi BM25 [9] [10]. The cosine-similarity ranking and intersection ranking methods are

used to extract data from the WordNet output. This chapter also briefly describes the

importance and effectiveness of ranking methods for an implementation of a WordNet

feature in Yioop.

 Chapter 6 gives a detailed explanation about the design and implementation

of a WordNet feature in the Yioop search engine. Chapter 7 contains a list of experiments

that were conducted after adding WordNet feature in Yioop along with the part-of-

speech tagging. This chapter also documents the steps to integrate WordNet in Yioop.

Chapter 8 contains conclusions about this idea and possible scopes for future work.

6 | P a g e

2. The Yioop Search Engine

 Yioop is an open source, distributed crawler and search engine written in

PHP, developed by Dr. Chris Pollett. It is designed in such a way that it allows users to

produce indexes of web sites [15]. Until now, query expansion was not present in the

Yioop. This project will add a query expansion in the Yioop using similar words from

WordNet [11]. This feature will improve Yioop’s search results. Yioop can be configured

as either a general purpose search engine for the whole web or to provide search results

for a set of URLs or domains [15].

 WordNet is available on the Princeton University website [16]. To study

WordNet’s internal structure, we performed many experiments particularly on the

command line instructions to understand the use of WordNet in Yioop for a query

expansion. Currently, Yioop uses the reciprocal rank fusion score1 to order web pages

in its search results [15].

1 Reciprocal rank fusion score is an addition of the document rank score, relevance score and proximity score after
normalization [15].

7 | P a g e

3. WordNet

3.1. Introduction to WordNet

 The WordNet project was initiated by the Psychology Professor, George

Miller, in the 1980's and he was awarded the Antonio Zampolli Prize for his tremendous

contribution to WordNet in 2006 [16]. Similar to WordNet, we found WordWeb, Artha,

openthesaurus and Moby Thesaurus projects, but many of them worked only on

Windows and the databases were not as extensive as the database of WordNet [18]. As

WordNet is largely used in many information systems and it has a large lexical database

for English, we decided to use WordNet for query expansion, leading to improved

Yioop search engine results [19] [16] [11].

 WordNet is a large lexical database of English. Nouns, verbs, adjectives and

adverbs are arranged into sets of conceptual synonyms (synsets), each expressing a

distinct concept. WordNet groups English words into sets of synonyms called synsets,

provides short, general definitions, and records the various semantic relations between

these synonym sets [19]. Synsets are associated by means of conceptual-semantics and

lexical relations. For example, fly (noun) can refer to an insect and fly (verb) can refer

to an act of moving through the air. The browser helps us to navigate the network of

meaningfully related words and concepts. WordNet's structure makes it a useful tool

for computational linguistics and natural language processing. WordNet superficially

appears like a thesaurus, in which it groups words together based on their meanings [16].

8 | P a g e

 However, there are some important distinctions. First, WordNet interlinks

not just word-forms, i.e., strings of letters but specific senses of words. As a result,

words that are found in close proximity to one another in the network are semantically

disambiguated. Second, WordNet labels the semantic relations among words, whereas

the groupings of words in a thesaurus do not follow any explicit pattern other than

meaning similarity [16].

 The purpose of WordNet is twofold [19]:

 To produce a combination of dictionary and thesaurus

 To support automatic text analysis and artificial intelligence applications

3.2. WordNet Database Structure

 By integrating WordNet in Yioop, Yioop's search results are improved by

using the query expansion technique. Similar words from WordNet results are used for

query rewriting. For each word, WordNet provides similar words in different senses

using its database information. The WordNet database contains information for verbs,

nouns, adjectives and adverbs which are stored in a structured database.

Table 1: Types of Files in WordNet [16]

Types of word Files

Adjective data.adj , index.adj

Adverb data.adv, index.adv

Noun data.noun, index.noun

Verb data.verb, index.verb

9 | P a g e

 Each type of word is stored in data and index files. All database files follow

UNIX naming convention. Index files are index.pos type and data files are data.pos

type where "pos" can be [16]:

 Noun  verb

 adjective  adverb

 For example, if the type of a word is a noun then, information for noun is

stored in data.noun and index.noun. A data.noun file contains all the information about

words which are noun and index.noun contains the position of each noun word in data

file. Due to this, searching for any word became easier and more efficient for the

WordNet [16].

An exception list is a list of irregular words which cannot be processed in an algorithmic

manner [16]. The format of an entry in each file is

< 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟_𝑤𝑜𝑟𝑑, 𝑖𝑡𝑠_𝑏𝑎𝑠𝑒_𝑓𝑜𝑟𝑚 >

For example, (corpora, corpus) and (wives, wife). Files in WordNet database are as

follows [16]:

 noun.exc

 verb.exc

 adj.exc

 adv.exc

Every file contains cntlist which stores count of each word in glossary.

10 | P a g e

One entry in data.verb which will explain the importance of each field [16].

00048819 29 v 01 habit 0 002 @ 00047662 v 0000 + 03479089 n 0101 01 + 09 00 |

put a habit on

• synset_offset - Current byte offset in the file (8 digit)

• lex_filenum – (2 digit) lexicographer file name containing the synset

• ss_type – n,v,a,s,r

• w_cnt – number of words in synset (2 digit HEX)

• word – Actual search word

• gloss – represented as vertical bar followed by text string. May contain 1 or

more examples

Information about data.verb [16]

castilian n 1 1 @ 1 0 06979859

 lemma – lower case word

 pos – n v a r

 synset_cnt – number of synset in that lemma

 p_cnt – number of pointers

Here are some statistics for a WordNet database [16]:

Table 2: WordNet Database Statistics [16]

Part of

speech

Unique

String

Synset Total Word-

Sense pair

Noun 117798 82115 146312

Verb 11529 13767 25047

Adjective 21479 18156 30002

Adverb 4481 3621 5580

Total 155287 117659 206941

11 | P a g e

3.3. Search Result of WordNet

After installing WordNet, use wn.exe to run WordNet.

 Here is the output of WordNet:

Figure 1: WordNet Output from GUI

 As shown in Figure1, the WordNet represents a given word in four senses -

noun, verb, adjective, and adverb. This WordNet output is used by a query rewriting

algorithm in query expansion [11].

Each sense contains similar words followed by the use of that word in a sentence. We

can obtain the similar output from command line.

Command line output for the input word - fly is shown in Figure 2:

Figure 2: Search Result Output from WordNet using command line

12 | P a g e

The following command is used to get the WordNet output:

wn <input_word> -over

This command outputs all the similar words from four different senses. Different

command line arguments provide the information about hypernyms, hyponyms etc.

Hypernyms can be defined as Y is a hypernym of X if every X is a kind of Y, for

example, canine is a hypernym of dog. Hyponyms are defined as Y is a hyponym of X

if every Y is a kind of X, for example, dog is a hyponym of canine [19].

3.4. Applications of WordNet

 WordNet has been used for a number of different purposes in information

systems, such as word sense disambiguation, information retrieval, automatic text

classification, automatic text summarization, machine translation and even automatic

crossword puzzle generation [19].

13 | P a g e

4. Part-Of-Speech Tagging

 In this project, a part-of-speech tagger is used in between the Yioop and the

WordNet layer. Part-of-speech tagging is a process of marking up or tagging a word in

a text or a sentence or a corpus corresponding to a particular part-of-speech based on

its definition and context [14]. Part-of-speech tags for a word in a phrase, a paragraph or

a sentence are decided by its relationship with the adjacent word. A part-of-speech

tagging is also known as POS tagging or POST. A part-of-speech tagging is mainly

used by corpus linguistic for grammatical tagging and word category disambiguation

[14].

 In this process, we identify the words as noun, verb, adjective and adverb.

Part-of-speech tagging is divided into two distinguished groups, which are rule- based

part-of-speech tagging and stochastic part-of-speech tagging [14].

 Rule-based part-of-speech tagging is the oldest approach which uses hand

written rules for tagging and it depends on a dictionary or a lexicon to retrieve suitable

tags for the tagging process [12]. A bigger lexicon will give us better results but it will

also cost more processing speed [3]. When a word has more than one tag, the correct tag

is identified by hand written rules. Linguistic features of a word, such as its preceding

word, its following word, and some other aspects help the tagger to analyze

disambiguity. For example, if you want to do part-of-speech tagging for a word, and if

its previous word is an article then a part-of-speech tagging for the word must be a noun

14 | P a g e

[12]. If a word ends with 'ed' then it is a past participle and a word is an adverb if it ends

with 'ly' [3].

Let the sentence under the test be

“We systematically analyze the performance of these techniques versus existing search

results”

After part-of-speech tagging, output will be

We~NN systematically~AV analyze~NN the~DT performance~NN of~IN these~DT

techniques~NN versus~IN existing~VB search~NN results~NN

 It is really difficult to completely automate part-of-speech tagging.

Sometimes humans have difficulty finding a possible interpretation for a given

sentence. In such cases, a corpus is used which is a set of documents tagged manually

for its respective part-of-speech. A full list of common tags from the Brown corpus is

used for tagging purpose [3]. The Brown corpus contains 500 samples of English-

language text with roughly one million words [5]. We used an implementation based on

the Brill tagger, which was described by Eric Brill in his 1995 thesis. It is also known

as "an event-driven transformation-based tagger"[4]. It is widely used for English word

processing [14].

15 | P a g e

Some examples of tags from the Brown corpus are as follows [5]:

Table 3: Tags and its Definition from Brown Corpus [5]

Tag Definition

NN Singular or mass Noun

NNS Plural Noun

DT Singular determiner/quantifier

JJ Adjective

RB Adverb

IN Preposition

 As shown in the WordNet output, it is divided into four different senses such

as noun, verb, adjective and adverb for a given word. Instead of using the whole output,

we implemented a part-of-speech tagging as a filtering technique to extract the relevant

part. A part-of-speech tag is obtained for each word from user’s input query. Then

eventually from WordNet, we will fetch relevant information only for that sense.

 For instance, consider a query in the search engine, as 'running dog' then in

the first step, it will use a part-of-speech tagger and generate output as ‘running~VB

dog~NN’. If an input query has more than a word then WordNet will process word by

word. Now if we search running in WordNet, its output will provide 5 senses for noun,

41 senses for verb, and 7 senses for adjective as shown in Figure 3 on the next page.

16 | P a g e

Figure 3: WordNet Output

 If we consider the total output, we need to process all 53 senses, which is not

efficient. But a part-of-speech tagger will make it efficient as it tags an input word

running as verb, we will select only verb senses from WordNet output for query

expansion. Chapter 6.1 contains step by step instructions to extract the similar words

from WordNet output. Part-of-speech tagging gives us an efficient and effective way to

extract relevant data from WordNet output.

In the absence of a part-of-speech tagger, we can use each and every sense from the

WordNet output, however, it may affect efficiency.

17 | P a g e

5. Similarity Ranking Algorithms

 Similarity ranking algorithms are used to find the similarity between two

different sentences [6]. The WordNet output provides an array of sentences and a query

term is provided by the Yioop search engine, we can rank these sentences from an array

on the basis of similarity measures. In an information retrieval system, we often use a

similarity measure to rank the documents. Some of them are cosine ranking, Okapi

BM25, intersection ranking, Euclidean distance, etc. [9] [10].

 In our implementation, we used cosine similarity ranking, intersection

ranking and BM25. More information about the implementation can be found in

Chapter 6.

5.1. Cosine Similarity Ranking Algorithms

 The cosine similarity is a measure of a similarity between two vectors of an

inner product space that measures cosine of the angle between them [17]. Since it is a

judgment of orientation, if two vectors have the same orientation, cosine will be 0° then

cosine similarity between two vectors will be 1. If two vectors are at 90° then similarity

will be 0. The cosine is less than 1 for any other angle between 0° to 90°. When two

vectors have diametrically opposite orientation, then a similarity will be -1. Cosine

similarity is independent of their magnitude. Practically, cosine similarity should be in

positive space, i.e., the outcome should be neatly bounded to a range of 0 to 1. High-

dimensional positive spaces are most suitable for cosine similarity [17].

18 | P a g e

5.1..1. TF (Term Frequency) & IDF (Inverse Document Frequency)

 Term Frequency is a measure to find how common the term is in the given

document from corpus [6].

Term Frequency is formulated as [6]:

𝑇𝐹 = log(𝑓𝑡,𝑑) + 1 𝑖𝑓 𝑓𝑡,𝑑 > 0 & 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where, 𝑓𝑡,𝑑 𝑖𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

Inverse Document Frequency is the relationship between document frequencies to

total number of documents in a corpus [6].

Inverse Document Frequency is formulated as [6]:

𝐼𝐷𝐹 = log (
𝑁

𝑁𝑡

)

where, 𝑁 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠

𝑁𝑡 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡

Consider two |V|- dimensional vectors, 𝑥 ⃗⃗⃗ and 𝑦 .

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, …… , 𝑥|𝑣|) and 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4, …… , 𝑦|𝑣|

𝑥 is for a query vector and 𝑦 will be for a document vector. We will take their dot

product to measure closeness between query and document [6].

The length of a vector is computed by the Euclidean distance formula [6]

|𝑥 | = √∑𝑥𝑖 . 𝑦𝑖

|𝑣|

𝑖=1

19 | P a g e

According to linear algebra, a dot product is calculated using the following formula [6]:

𝑥 . 𝑦 = ∑𝑥𝑖 . 𝑦𝑖

|𝑣|

𝑖−1

The above equation is defined by the following geometric meaning as [6]

𝑥 . 𝑦 = |𝑥 ||𝑦 | cos 𝜃

where, 𝜃 = angle between 𝑥 and 𝑦 .

The length of the vector |𝑣 | is calculate as follows [6]:

|𝑣 | = √∑𝑣𝑖
2

|𝑉|

𝑖=1

To calculate the angle, we have the following equation [6]:

cos 𝜃 =
∑ xi . yi

V
i−1

√∑ 𝑥2|𝑉|
𝑖=1

√∑ 𝑦2|𝑉|
𝑖=1

when 𝜃 = 0°, cos 𝜃 = 1 then the two vectors are collinear and

 if 𝜃 = 90°, cos 𝜃 = 0 then the two vectors are orthogonal.

Consider we have a query vector 𝑞 ⃗⃗⃗ and document vector 𝑑 ⃗⃗ ⃗ , then the similarity is

defined as the cosine of the angle between them [6]. i.e.

𝑠𝑖𝑚(𝑑 ⃗⃗ ⃗, 𝑞 ⃗⃗⃗) =
𝑑 ⃗⃗ ⃗

|𝑑 ⃗⃗ ⃗|
 .

𝑞 ⃗⃗⃗

|𝑞 ⃗⃗⃗ |

We will not get negative values for cosine similarity, as we are using only positive

components of the vector [6].

20 | P a g e

5.2. Intersection Ranking Algorithms

 This is another technique used to calculate a similarity between two

statements. We split both sentences into an array of words, also known as tokens, and

then we count the number of common tokens in between them. An average length of

two sentences is used to normalize the score [1].

The Intersection ranking is computed as follows [1]:

𝑓(𝑠1, 𝑠2) =
|{𝑤|𝑤 𝑖𝑛 𝑠1& 𝑤 𝑖𝑛 𝑠2}|

(|𝑠1| + |𝑠2|) 2⁄

where |𝑠1| 𝑎𝑛𝑑 |𝑠2| 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑠1𝑎𝑛𝑑 𝑠2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 [1]

5.3. BM25 Ranking Algorithms

 A search engine determines the set of matching documents from a corpus to

a given user query by using boolean interpretation [6]. Consider a query as

𝑄 = ("san", "𝑗𝑜𝑠𝑒", "𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟")

Conjunctive Boolean query for Q is

"san" AND "jose" AND "𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟"

Disjunctive Boolean query for Q is

"san" OR "jose" OR "𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟"

Then a search engine will retrieve the results using a conjunctive and a disjunctive

query.

A conjunctive retrieval method is faster than a disjunctive retrieval method since few

documents will be scored and ranked in case of disjunctive retrieval method [6].

21 | P a g e

 Okapi BM25 is one of the similarity ranking functions used in an information

retrieval by search engines [6] [13]. When we provide a query to the search engine, it will

return the list of relevant documents. To rank these relevant documents, Okapi BM25

ranking function is used. Stephen E. Robertson, Karen Spärck Jones, and others

developed this algorithm in 1970 and 1980. This ranking function is actually named as

BM25, but it is known as Okapi BM25 because the Okapi information retrieval system

was the first one to implement this ranking function. The Okapi information retrieval

system was implemented at London's City University in the 1980s [13].

 BM25 is a retrieval function for a bag-of-words i.e. multi set of words,

regardless of the grammar rules [13] [2]. BM25 will rank a set of documents depending

upon the appearance of the query terms in each document. This ranking function is

independent of relative proximity of the query words in a document [13].

 For the calculation of BM25, we use TF (Term Frequency) and IDF (Inverse

Document Frequency) functions [6].

The Term Frequency (TF) is calculated using following formula [6]

𝑇𝐹𝐵𝑀25 =
𝑓𝑡,𝑑 . (𝑘1 + 1)

𝑓𝑡,𝑑 + 𝑘1. ((1 − 𝑏) + 𝑏. (
𝑙𝑑

𝑙𝑎𝑣𝑔
))

where, 𝑓𝑡,𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑞𝑢𝑒𝑟𝑦 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

 𝑘1, 𝑏 = 𝑓𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑠𝑒𝑡 𝑡𝑜 1.2 𝑎𝑛𝑑 0.75 𝑟𝑒𝑠𝑒𝑝𝑐𝑡𝑖𝑣𝑒𝑙𝑦

 𝑙𝑑 = 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

22 | P a g e

 𝑙𝑎𝑣𝑔 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑟𝑝𝑢𝑠

 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑏 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛.

The Inverse Document Frequency (IDF) is calculated by using the following formula

[6]:

𝐼𝐷𝐹(𝑡) = log (
𝑁

𝑁𝑡

)

where 𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑟𝑝𝑢𝑠

 𝑁𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑜𝑐𝑐𝑢𝑟𝑠

The BM25 scoring function is defined as [6]:

𝑆𝑐𝑜𝑟𝑒𝐵𝑀25(𝑞, 𝑑) = ∑𝐼𝐷𝐹(𝑡). 𝑇𝐹𝐵𝑀25(𝑡, 𝑑)

𝑡 ∈𝑞

 Consider we have a query Q with n words such as 𝑞1,𝑞2,𝑞3,. . , 𝑞𝑛 , for each

query word, term frequency and inverse document frequency will be calculated using

the above formula and the score will be generated using BM25. Once we get the scores

for each document, we can arrange the documents in an increasing order of BM25 score.

 Once we get the top two similar words by processing the WordNet output,

we use them as query words in a query expansion. Yioop will return the relevant

documents to a given query from the corpus of documents. Then we can use the BM25

scores to rearrange them if we get similar words for a given query. More explanation

on the implementation is provided in Chapter 6.

23 | P a g e

6. Design & Implementation

 This chapter briefly describes an implementation of the WordNet feature in

the Yioop using information from previous chapters. We used the Yioop as a base

platform to incorporate the WordNet in a search engine. The aim of using WordNet is

to get similar words for a given query and rewrite the input query. These rewritten

queries using similar words are used to expand a query [11]. A sequence diagram for

integrating WordNet in Yioop is shown in Figure 4 on next page.

 When we enter a query in the WordNet, the software provides an output in

four different senses such as noun, verb, adverb, and adjective. The output is as shown

in Figure 1 from Chapter 3.3. There are no PHP API's (Application Programming

Interface) provided for WordNet [16]. We need to find another way to integrate WordNet

in Yioop. In a preliminary work, we found out that WordNet supports the command

line instructions.

The instruction is as follows:

 𝑤𝑛 < 𝑞𝑢𝑒𝑟𝑦𝑊𝑜𝑟𝑑 > 𝑜𝑣𝑒𝑟

Output of this command is the same as the output obtained from the GUI (Graphical

User Interface). To run this command, a user needs to reach the binary folder of

WordNet from the installation directory or the user can set WNHOME as an

environmental variable.

24 | P a g e

Figure 4: Sequence Diagram for Integration of WordNet in Yioop

25 | P a g e

 We will discuss more about the WordNet result format. The results for each

input word is written in a standard output format. Every output contains a description

for the similar word in one line. In the output, we get an overview of all senses of a

search word in all syntactic categories. Each result starts with synset offset, followed

by its synonyms, i.e., similar words, followed by an elaborated meaning of the

synonym, and in a further part, we can see the usage of that synonym in a sentence or

sentences. These sentences are used to find out the exact synonym using similarity

ranking methods.

 We will discuss the importance of WordNet output from query expansion

point of view. When a user enters a query in Yioop, we will use that query as input for

part-of-speech tagger. A part-of-speech tagger will process the input and will return a

tagged result. Let us consider an example with the input query 'running dog'.

A part-of-speech tagger will provide the following tagged output:

running~VB dog~NN

We are interested in four types such as noun, verb, adjective and adverb. So if we get

any other tag than these four tags, we will ignore them. Now, we know in which

syntactical category we need to concentrate for further processing from WordNet

output.

26 | P a g e

 We input this query to WordNet, one word at a time from the query. For a

given word, WordNet provides a search result from its database. The result is written

to a text file named 'wordnet_output.txt'. We read this output file and store all the data

in a variable. Now we need some extraction process to extract similar words for us from

the search result. If we take a closer look at the WordNet output, we can see that there

is a common format. We use regular expressions to extract all the similar words from

the tagged sense. In this step, we filter a search result to its corresponding part-of-

speech. We need to find out similar words along with their use in sentence or sentences.

We store all similar words as all the similar words are placed before ‘--' sign in the

WordNet output. Sentences are extracted from WordNet result using regular expression

as all the sentences are stored in between '("<sentence>")'.

 After extraction of similar words and their sentences in an array as per their

part-of-speech tag used in user query, we need to find an exact similar word for a given

query word. Now here similarity ranking functions will play a major role. To extract

similar words using their respective sentences, we use the cosine similarity ranking

function. Cosine similarity ranking is carried out on two input two sentences. One

sentence is the input query from user and the other sentence is from WordNet output.

27 | P a g e

Figure 5: Block Diagram of Integrating WordNet in Yioop

 After performing the cosine similarity ranking, we can reorder the arrays for

similar words according to their cosine similarity score. We repeat the same process for

the next word from a given input query. As per the example, we get similar words for

'running' and 'dog'.

 If we get four similar words for 'running' and three similar words for 'dog',

then we will see all possible combinations for a given query so we can generate twelve

combinations for it. We cannot use all generated combinations for further processing.

Therefore, we will make use of statistics from an inverted index.

 An inverted index is a mapping between terms and their location in a corpus,

i.e., a text collection. Every inverted index has two main components: a dictionary and

a posting list. The dictionary lists the terms from a collection vocabulary. A posting list

contains the position of each word in a collection [6].

28 | P a g e

 Now for further filtration, we can use an inverted index. We get the frequency

for each combination from previous processing. The index manager returns a count for

each combination. We sort them according to the frequency of each combination in an

inverted index. As the top two combinations have higher frequencies in the inverted

index, it means more documents have that combination, so we select the top two

combinations. These two words will be used for reordering of documents from the

search result. For reordering, we use the BM25 score.

 While crawling web pages, a summary is generated for a page and it is stored

in a database. This summary contains the most important and frequent words from the

web page. This summary for a webpage itself will describe the content of that web page.

So for BM25, we will use input as an array of summaries from the web pages and two

similar words we extracted from the WordNet result. To normalize the BM25 score, for

two input words from WordNet result, we multiply the first score by 2/3 and the second

score will be divided by 1/3. As the first word is more relevant than the second one, we

gave higher preference for the first BM25 score before adding.

 This is a very effective way of calculating the similarity ranking. The search

results will be reordered by the BM25 score. If the BM25 score for documents is zero,

the search results from Yioop will be ordered by the reciprocal rank fusion score.

29 | P a g e

 The WordNet results will be displayed on the Yioop search result as shown

in Figure 6. Under the WordNet Results we will show the top two words used by Yioop

in query expansion.

Figure 6: Similar Words Returned By WordNet

Also you can see the BM25 score for those two words for a document on the Yioop

screen under the Score tab.

Figure 7: BM25 Score Listed as WordNet in Score

30 | P a g e

6.1. How to Use the WordNet Output

 In the previous chapters, we learned about WordNet’s output format. If in

the future we want to replace WordNet by any other dictionary for a given word in any

other language, then the implementation is flexible enough to adopt new dictionary

software.

Here are some important parameters the software output must follow:

1. Dictionary output should contain similar words for a given word in different

syntactical categories as noun, verb, adverb and adjective.

2. In every syntactical category, similar words should be placed before '--' and should

 be followed by use of those similar words in the sentence closed in "-".

The generalized format for the WordNet output is as follows:

𝑇ℎ𝑒 𝑛𝑜𝑢𝑛 < 𝑠𝑒𝑎𝑟𝑐ℎ − 𝑤𝑜𝑟𝑑 > ℎ𝑎𝑠 𝑛 𝑠𝑒𝑛𝑠𝑒𝑠:

1. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, Use of similar word in sentence)

2. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, Use of similar word in sentence)

𝑇ℎ𝑒 𝑣𝑒𝑟𝑏 < 𝑠𝑒𝑎𝑟𝑐ℎ − 𝑤𝑜𝑟𝑑 > ℎ𝑎𝑠 𝑛 𝑠𝑒𝑛𝑠𝑒𝑠:

1. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, Use of similar word in sentence)

2. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, "𝑈𝑠𝑒 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒")

𝑇ℎ𝑒 𝑎𝑑𝑣 < 𝑠𝑒𝑎𝑟𝑐ℎ − 𝑤𝑜𝑟𝑑 > ℎ𝑎𝑠 𝑛 𝑠𝑒𝑛𝑠𝑒𝑠:

31 | P a g e

1. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, Use of similar word in sentence)

2. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, Use of similar word in sentence)

𝑇ℎ𝑒 𝑎𝑑𝑗 < 𝑠𝑒𝑎𝑟𝑐ℎ − 𝑤𝑜𝑟𝑑 > ℎ𝑎𝑠 𝑛 𝑠𝑒𝑛𝑠𝑒𝑠:

1. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, Use of similar word in sentence)

2. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑1, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑜𝑟𝑑2, ……

− −(𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑, "𝑈𝑠𝑒 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒")

 For the above output format, we used regular expressions to extract similar

words from search results according to their tags provided by a part-of-speech tagger.

We used the cosine similarity ranking and intersection ranking function to calculate the

similarity between a user input query and the sentences from the WordNet output.

6.2. Importance of Ranking Algorithms

 Three ranking algorithms are used in this project, Cosine similarity ranking,

Okapi BM25 and Intersection ranking.

1. After retrieving the search result from WordNet, Cosine similarity ranking found

out exact similar words from n number of senses.

2. The intersection method is used along with Cosine similarity ranking. If the cosine

similarity function returns a zero similarity score, then the intersection ranking function

will be used to get the score.

32 | P a g e

3. Okapi BM25 is used to rearrange retrieved web pages in Yioop’s search result. As

per BM25 ranking function, if the frequency of a query word is higher in a web page

summary then that web page is more relevant than other web pages. Yioop uses

reciprocal rank fusion to score the web pages.

If WordNet returns no results from search results then all the web pages in the search

result will be ordered by RRF (Reciprocal Rank Fusion). Reciprocal Rank Fusion is an

addition of the Doc Rank score, Relevance score and Proximity score after

normalization [15].

6.3. Steps to Add WordNet Feature in Yioop

 WordNet is a standalone application [16]. It is a form of dictionary which will

give search results for a given word in different syntactical parts as noun, verb, adjective

and adverb. There is no specific API (Application Programming Interface) provided for

the PHP language [16]. So we use the features from this tool using command line

arguments. Once we get similar words from WordNet, we can use query expansion

technique by query rewriting with those similar words returned by WordNet [11].

Here are the steps to add WordNet as feature in a Yioop search engine:

1. Download WordNet from the WordNet website

For Ubuntu User: 𝑠𝑢𝑑𝑜 𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑛𝑒𝑡

For Mac User: 𝑏𝑟𝑒𝑤 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑛𝑒𝑡

Sometimes Linux users may need to install science-linguistics as it is dependency for

WordNet.

33 | P a g e

For science-linguistics dependency: 𝑠𝑢𝑑𝑜 𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑠𝑐𝑖𝑒𝑛𝑐𝑒 − 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐𝑠

2. Open the Yioop search engine and login as 'root' user.

Figure 8: Yioop Login Page

3. Then on the left side of the screen, you can see different options. Select 'Page

Options' from Crawls.

Figure 9: Page Option from Yioop Admin web page

34 | P a g e

4. After selecting Page Options, you can see three different tabs on right hand side of

the web page such as Crawl Time, Search Time, and Test Options. Out of these tabs,

select the "Search Time" tab.

Figure 10: Search Time Tab

5. Once you select the Search time tab, you can see different options under Search

Page Element and Links such as Word Suggest, IP Address, and WordNet etc. To

use the WordNet, the user needs to check that option as shown in Figure 11.

Figure 11: Search Page Elements and Links

6. The Windows user needs to provide a path of the WordNet directory but it is not

required for the Ubuntu user.

35 | P a g e

7. Experiments

 From an experimental point of view, we used a part-of-speech tagger with

crawl time as well as query time. This experiment helped to decide whether or not the

use of part-of-speech tagging with crawl time, i.e., at the time of creating the inverted

index, will improve Yioop’s search results. While crawling the webpage, the crawler

requests the web page for information and generates the summary along with the

inverted index. We tested it by including part-of-speech tagging before index creation.

Experimental work was carried out on the original Yioop crawling index and index

generated after part-of-speech tagging.

The experiments were carried out on different datasets as follows:

Table 4: Number of Web Pages Crawled

Name of Website Number of crawled pages

SJSU CS 18156

Wikipedia dataset 100,000

dmoz dataset 972800

 The effectiveness of the retrieved method is measured by the relevance

provided by human assessment. When a search engine provides a search result, and the

user visits any website listed in search result, and then backtracks quickly to search

results then that document is no more relevant to user search query [6]. So to measure

the effectiveness of search engine retrieval method, we use two standard measures

named as Recall & Precision.

36 | P a g e

7.1. Recall and Precision

To calculate recall and precision, we need two input parameters named as [6]

𝑅𝑒𝑠 = 𝑆𝑒𝑡 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑏𝑦 𝑞𝑢𝑒𝑟𝑦 𝑞

𝑅𝑒𝑙 = 𝑆𝑒𝑡 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑜𝑝𝑖𝑐

Recall is computed as [6]:

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅𝑒𝑙 ∩ 𝑅𝑒𝑠|

|𝑅𝑒𝑙|

Precision is computed as [6]:

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅𝑒𝑙 ∩ 𝑅𝑒𝑠|

|𝑅𝑒𝑠|

Recall means the fraction of relevant documents which appear in the result set. It is the

measure of number of relevant documents returned by search engine from corpus [6].

Precision is defined as the fraction of the result set which is relevant. This measures

how many documents in the result set are relevant to input query or topic [6].

 On the Yioop search engine, under setting option, the user has a choice to

select the number of web pages to be shown on a search result as 10, 20, 50, and 100.

So recall and precision also can be calculated on the first 10, 20, 50, 100 results. For k

pages, recall and precision measures are defined as recall@k and P@k i.e. precision@k

respectively.

37 | P a g e

Recall-precision values in Yioop crawling without part-of-speech tagging are as

follows:

Table 5: Recall and Precision in Yioop Crawling without Part-Of-Speech Tagging

Recall Precision

0.82 0.12

0.66 0.25

0.61 0.43

0.45 0.62

0.21 0.76

The graphical representation is as follows:

Figure 12: Recall vs. Precision without Part-Of-Speech Tagging During Crawl

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Without Part-Of-Speech Tagging

38 | P a g e

A part-of-speech tagging layer is added in crawling, and experimented on the same

dataset which is used for Yioop crawling, i.e., without a -part-of-speech tagging. After

experimenting with part-of-speech tagging during crawl time, we get recall-precision

values as follows:

Table 6: Recall vs. Precision with Part-Of-Speech Tagging During Crawl Time

Recall Precision

0.61 0.15

0.42 0.25

0.38 0.42

0.25 0.49

0.2 0.41

The graphical representation is as follows:

Figure 13: Recall vs. Precision using Part-Of-Speech Tagging during Crawl Time

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

With Part-Of-Speech Tagging

39 | P a g e

From the above experiment, we realized certain findings which are listed as follows:

1. When recall increases, precision decreases and vice-versa.

2. The area under the curve in a part-of-speech tagging with crawl graph is less as

compared to the area under the curve in graph where a part-of-speech tagging is not

included in crawling. The efficiency of search results is directly proportional to the area

under the curve. The graphical representation is as shown in Figure 14.

Figure 14: Area under the Curve for Both Observations

3. Number of URLs visited

 Using a part-of-speech tagging during crawl time = 660 / hour

 Not using a part-of-speech tagging during crawl time = 800 / hour

4. After adding a part-of-speech tagging layer in crawl process, the efficiency was not

affected. To tag the total web page information, it takes on average 0.4 seconds.

40 | P a g e

The above results show that, the part-of-speech tagging is not effective during crawl

time, but it is very important during query time.

All these experiments were carried out on the Wikipedia, SJSU CS and dmoz dataset.

Table 7: Recall Precision Values For Different Search Queries

Search

Query

Recall@1
0

P@1
0

Recall@2
0

P@2
0

Recall@5
0

P@5
0

Recall@10
0

P@10
0

Computer 0.62 0.17 0.45 0.3 0.21 0.53 0.19 0.56

technolog

y

0.71 0.21 0.57 0.41 0.27 0.69 0.24 0.64

field 0.64 0.2 0.5 0.25 0.43 0.34 0.3 0.43

world 0.8 0.19 0.63 0.34 0.57 0.4 0.3 0.55

Movies 0.77 0.15 0.56 0.26 0.45 0.34 0.3 0.46

The behavior we found is, when recall increases, precision decreases and when

precision increases, recall decreases.

So 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∝ (1 𝑅𝑒𝑐𝑎𝑙𝑙⁄) ,

i.e. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑠𝑎𝑙𝑙𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑖𝑡ℎ 𝑅𝑒𝑐𝑎𝑙𝑙 𝑎𝑛𝑑 𝑣𝑖𝑐𝑒 𝑣𝑒𝑟𝑠𝑎[6]

 We used the Okapi BM25 ranking function to get the scores for each document from

the result set. Another input we used where the top two similar words were retrieved

from the WordNet output for each word from a user input query.

 Once we get the BM25 score for each webpage summary, the search results are

arranged in decreasing order of the WordNet score. If WordNet output is unable to

mailto:Recall@10
mailto:Recall@10
mailto:P@10
mailto:P@10
mailto:Recall@20
mailto:Recall@20
mailto:P@20
mailto:P@20
mailto:Recall@50
mailto:Recall@50
mailto:P@50
mailto:P@50
mailto:Recall@100
mailto:Recall@100
mailto:P@100
mailto:P@100

41 | P a g e

provide the top two similar words from a given query word, then all search result web

pages will be ordered with Reciprocal Rank Fusion (RRF) score[15].

We performed some experiments on the search results using the WordNet score.

Consider search query as - information technology

Figure 15: RRF for Web Pages from Yioop Search Result

9.85

9.9

9.95

10

10.05

10.1

10.15

1 2 3 4 5 6 7 8 9 10

R
e

ci
p

ro
ca

l R
ak

Rank of Web Pages

Reciprocal Rank for Query - information
technology

42 | P a g e

After experimenting with the WordNet score, we got the results as follows:

Figure 16: WordNet Score for Web Pages from Yioop Search Result

Similar experiments were carried out with different user queries and observations are

as follows.

Table 8: Score Comparison between WordNet and RRF score

iron man computing device

Rank of

Web

Pages

Yioop RRF

score

WordNet

Score

Rank of

Web

Pages

Yioop

RRF

score

WordNet

Score

1 10 0.13 1 9.95 0.1

2 9.64 0.07 2 9.94 0.09

3 9.64 0.03 3 10.1 0.08

4 9.94 0.03 4 10 0.06

5 9.85 0.02 5 10.1 0.06

6 9.68 0.02 6 10 0.06

7 9.68 0.02 7 10 0.04

8 10 0.02 8 9.89 0.02

9 10 0.02 9 10 0.02

10 9.69 0.01 10 10 0.02

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10

W
o

rd
N

e
t

sc
o

re

Rank of Web Pages

WordNet Score for information
technology

43 | P a g e

 After rearranging the web pages according to WordNet score in the Yioop

search result, more relevant web pages for a given search query moved to the top in

Yioop’s search result. Normally, when the user inputs any query in search engine, user

will prefer to select top four or five web pages. With this experiment, we got relevant

documents from search result on top as per their WordNet score. So WordNet played a

vital role in the query expansion technique using a query rewriting algorithm.

44 | P a g e

8. Conclusion

 A query expansion is achieved using a query rewriting algorithm with the

help of WordNet’s search result in Yioop. Until now, WordNet has no direct API to

support PHP [16]. In order to achieve that, we used WordNet command line arguments.

A part-of-speech tagging and similarity ranking functions extracted the required data

from WordNet output which is used for query expansion in the Yioop search engine.

 After entering a query, a user will go for the top three or four search results.

The search engine should be efficient enough to put those relevant web pages on top.

This is achieved in the Yioop search engine by integrating WordNet. As a result, web

pages in Yioop’s search results are ordered by their relevance using the WordNet score.

The Yioop search engine will use Reciprocal Rank Fusion (RRF) score in absence of

WordNet score.

 Many experiments were carried out with different user input queries on three

different data sets, such as Wikipedia, SJSU CS and dmoz. The dmoz dataset is mostly

used by Google for their search engine functionality testing [7]. After using query

expansion technique with the help of WordNet, more relevant results from the result

set were rearranged as per their WordNet rank.

 We achieved a query expansion using a query rewriting algorithm with the

help of the WordNet. For example, the query expansion for an input query 'computer

science' will be 'computing machine skill', 'information processing system scientific

discipline', etc. A part-of-speech tagging helped us to extract meaningful data from the

45 | P a g e

WordNet output, this improved the efficiency of extraction. Similarity ranking

functions such as cosine similarity and intersection ranking, effectively return similar

words. Okapi BM25 Ranking functions were used to calculate the WordNet score for

each web page from the search result.

 The whole WordNet process is completed within 0.20 seconds on an average

with standard deviation of ±0.3 with Intel duel core at 2.5 GHz system. After adding

WordNet in Yioop, the efficiency of the throughput is maintained.

 This project gave us a good understanding of WordNet's internal structure

and how it works. The command line arguments are more beneficial to extract the data

from generated output. The part-of-speech tagging helped us to reduce our work to find

similarity with each sentence from the output. We used the cosine similarity ranking

and intersection method to find out similarity between two sentences.

Future Work:

 WordNet is limited to the English language database [16]. In the future, we

can enhance the current application for any other language dictionary such as Chinese,

Spanish, Hindi, etc. As Yioop is a multi-language search engine, a query expansion will

work on different languages as well.

46 | P a g e

Bibliography

[1] Babluki, S. (n.d.). Build your own summary tool! The Tokenizer. Retrieved

February 12, 2014, from http://thetokenizer.com/2013/04/28/build-your-own-

summary-tool/

[2] Bag of words model. (n.d.). Wikipedia. Retrieved February 26, 2014, from

http://en.wikipedia.org/wiki/Bag_of_words_model

[3] Barber, I. (2009, November 20). PHP/ir. Part Of Speech Tagging -. Retrieved

December 10, 2013, from http://phpir.com/part-of-speech-tagging

[4] Brill tagger. (n.d.). Wikipedia. Retrieved February 12, 2014, from

http://en.wikipedia.org/wiki/Brill_tagger

[5] Brown Corpus - Wikipedia, the free encyclopedia. (n.d.). Wikipedia. Retrieved

December 10, 2013, from http://en.wikipedia.org/wiki/Brown_Corpus#Part-of-

speech_tags_used

[6] Büttcher, S., Clarke, C. L., & Cormack, G. V. (2010). Information retrieval:

implementing and evaluating search engines. Cambridge, Mass.: MIT Press

[7] DMOZ. (n.d.). Wikipedia. Retrieved March 20, 2014, from

http://en.wikipedia.org/wiki/DMOZ

[8] George A. Miller (1995). WordNet: A Lexical Database for English

Communications of the ACM Vol. 38, No. 11: 39-41

[9] Gupta, Y., Saini, A., Saxena, A., & Sharan, A. (2014). Fuzzy logic based

similarity measure for information retrieval system performance improvement.

Distributed Computing and Internet Technology

[10] Huggett, M. (2009). Similarity and ranking operations. Encyclopedia of Database

Systems

[11] Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information

retrieval. New York: Cambridge University Press.

[12] Natural Language Processing. (2009, December 15). Natural Language Processing

RSS. Retrieved February 15, 2014, from

http://language.worldofcomputing.net/pos-tagging/rule-based-pos-tagging.html

[13] Okapi BM25. (n.d.). Wikipedia. Retrieved March 3, 2014, from

http://en.wikipedia.org/wiki/Okapi_BM25

[14] Part-of-speech tagging. (n.d.). Wikipedia. Retrieved December 10, 2013, from

http://en.wikipedia.org/wiki/Part-of-speech_tagging

[15] Pollett, C. (2010, August). Open Source Search Engine Software - Seekquarry:

Home. Retrieved November 12, 2013, from

https://seekquarry.com/?c=main&p=documentation

47 | P a g e

[16] Princeton University "About WordNet." WordNet. Princeton University. 2010.

<http://wordnet.princeton.edu>

[17] Wikipedia for Cosine Similarity Ranking Retrieved on December 10, 2013, from

website: http://en.wikipedia.org/wiki/Cosine_similarity

[18] WordNet Alternatives and Similar Software - AlternativeTo.net. (n.d.). WordNet

Alternatives and Similar Software - AlternativeTo.net. Retrieved March 5, 2014,

from http://alternativeto.net/software/wordnet/

[19] WordNet. (n.d.). Wikipedia. Retrieved October 5, 2013, from

http://en.wikipedia.org/wiki/WordNet

