
CS 297 Report

Incorporating WordNet in an Information Retrieval System

by

Shailesh Padave

(shaileshpadave49@gmail.com)

Fall 2013

Advisor : Dr. Chris Pollett

Department of Computer Science

San Jose State University

TABLE OF CONTENTS

1.0 Introduction...1

2.0 Deliverables...2

 2.1 Deliverable 1..2

 2.2 Deliverable 2..5

 2.3 Deliverable 3..7

 2.4 Deliverable 4..8

3.0 Conclusion...9

4.0 References...11

CS297

1 | P a g e

Introduction:

 The idea of this project is to incorporate WordNet in an Information Retrieval

System. The idea is to use WordNet output in a query rewriting algorithm for query

expansion. WordNet is a large lexical database of English. Basically in WordNet, noun,

verbs, adjectives, and adverbs are grouped together into sets of cognitive synonyms.

Synonyms are also known as synset where each synset expresses distinct concept.[1]

WordNet is developed at Princeton University. George A. Miller began this project in

mid-1980's and now it is housed in Department of Computer Science.

 In this semester, I worked on various experiments on WordNet. I tried to

understand how WordNet works internally and learnt command line instructions for

WordNet. This report provides a brief description of work done in CS297 Preparation for

Master's writing project.

 The work was divided into four deliverables. The first deliverable was to

download WordNet on the local system and learn on which different kinds of queries

WordNet supports. The second deliverable was to implement Cosine Similarity Ranking

Algorithm. The goal of this deliverable was to extract synonyms from the given senses

from WordNet. The third deliverable was to use the code for Part of speech tagging with

the output of WordNet. The fourth deliverable was to implement an intersection ranking

algorithm and cosine similarity ranking algorithm and find out suitable method for

calculating similarity ranking. In some of the cases, the cosine similarity ranking gave

unexpected result so the comparison between two methods helped us to get expected

result. We now describe each of these deliverables in more details followed by the future

work in CS298 and the conclusion.

CS297

2 | P a g e

2. Deliverables

Deliverable 1 :

 Yioop is an open-source, distributed crawler and search engine written in PHP. It

is designed to allow users to produce indexes of web-site. Yioop comes with its own

extendable model-view-controller framework that you can use directly to create new sites

that use Yioop search technology. This framework also comes with a GUI which makes it

easy to localize strings and static pages. Yioop can be configured as either a general

purpose search engine for the whole Web or it can be configured to provide search results

for a set of URLs or domains. [3]

WordNet is a large lexical database of English. It groups English words into sets of

synonyms called synset and provides short, general definition and records the various

semantic relations between these synonyms. [2]

WordNet superficially resembles a thesaurus, in that it groups words together based on

their meanings. However, there are some important distinctions. First, WordNet interlinks

not just word forms—strings of letters—but specific senses of words. As a result, words

that are found in close proximity to one another in the network are semantically

disambiguated. Second, WordNet labels the semantic relations among words; whereas the

groupings of words in a thesaurus does not follow any explicit pattern other than meaning

similarity.[1]

The purpose of WordNet is twofold[2]:

1. To produce a combination of dictionary and thesaurus

2. To support automatic text analysis and artificial intelligence applications

CS297

3 | P a g e

 Figure 1 shows screenshot for WordNet is as follows:

Figure 1

When WordNet searches for any word, the output will be given with the four types of

word such as − noun, verb, adjective and adverb. We can get the output using the

software as well as from command line arguments. There are different commands for

different output types.

Currently we are looking for the output same as shown in Fig. 2. For this, we used the

following command for input word 'be'

Figure 2

CS297

4 | P a g e

All the information we got is extracted from database. The database information for

WordNet is as shown in below table:

Types of word Files

Adjective data.adj , index.adj

Adverb data.adv , index.adv

Noun data.noun , index.noun

Verb data.verb , index.verb

Now we will see how the data is stored in data.verb file.

00048819 29 v 01 habit 0 002 @ 00047662 v 0000 + 03479089 n 0101 01 + 09 00 | put
a habit on

• synset_offset − Current byte offset in the file (8 digit)

• lex_filenum – (2 digit) lexicographer file name containing the synset

• ss_type – n,v,a,s,r

• w_cnt – number of words in synset (2 digit HEX)

• word – Actual search word

• gloss – represented as vertical bar followed by text string. May contain 1 or
more examples

Information about data.verb

castilian n 1 1 @ 1 0 06979859

 lemma – lower case word

 pos – n v a r

 synset_cnt – number of synset in that lemma

 p_cnt – number of pointers

CS297

5 | P a g e

Deliverable 2:

 This deliverable involved cosine similarity ranking algorithm. The cosine

similarity is a measure of similarity between two vectors of an inner product space that

measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1

for any other angle. [4]

In cosine similarity ranking, we maintain query vector and document vector. All the

unique words from document vectors are collected together. The size of query vector and

document vector is equal to the size of dictionary. We can measure closeness between the

two vectors by taking their dot product.[6]

To calculate ߠ ,we have the following equation:

cosߠ =
∑ x୧	. y୧
୧ିଵ

ට∑ |ଶ|ݔ
ୀଵ ට∑ ||	ଶݕ

ୀଵ

	

when ߠ = 	0°, cosߠ	 = 	1	and two vectors are collinear and if ߠ = 	90°, cosߠ	 = 	0	and

two vectors are orthogonal.

Consider we have a query vector	ݍ	ሬሬሬ⃗ and document vector ݀	ሬሬሬ⃗ , and similarity is defined as

the cosine of the angle between them[6]. i.e.

ሬሬሬ⃗	݀)݉݅ݏ , ሬሬሬ⃗	ݍ) 	= 		
݀	ሬሬሬ⃗

|݀	ሬሬሬ⃗ |
	 .
ሬሬሬ⃗	ݍ

ሬሬሬ⃗	ݍ| |

With help of this similarity ranking algorithm, we will find out the synonyms for the

given word from query according to the part of speech. Basically, WordNet output

contains the synonym for the word along with the word usage in that sentence. Now to

figure out which is the proper word from the given senses we used cosine similarity

ranking algorithm.

CS297

6 | P a g e

e.g. : Consider we have query as − running bolt

If we try to search synonyms for word 'bolt' we will get output as shown in Fig. 3:

Figure 3

So now we have to find out cosine similarity for each given sentence from seven senses

of noun bolt with given query as 'running bolt'.

CS297

7 | P a g e

Deliverable 3:

 Part-of-speech tagging also known as grammatical tagging or word-category

disambiguation, is a process of marking up a word in a text(corpus) according to this a

particular part of speech. This based on both its definition as well as context i.e.

relationship with adjacent and related words in a phrase, sentence, or paragraph. [5] Tags

are the grammatical parts of speech that the words fall into, the traditional noun, verb,

adjective and adverb.

 Our code reads the query provided by user and it tags each word with its particular

part of speech. This is useful to figure out to from which part of WordNet output we

should pick up the senses. This we reduce the time to find synonyms for given query.

 In absence of part-of-speech tagging, we have to find out cosine similarity ranking

with each sentence from WordNet output. Part-of-speech tagging code will help us

simplify the logic and time to get output.

 The tagger was trained by analyzing a corpus and noting the frequencies of the

different tags for a given word. As words were tagged they were assigned to the most

frequent tag for the word if it was in the corpus, or tagged as a noun if not. Then a series

of transformations were applied, which changed the tag depending on various conditions.

The results were compared to known correct tags, and the rules that added the most

accuracy retained.[7]

e.g. : Sam is running behind the dog.

Figure 4

CS297

8 | P a g e

Output will be as follows:

Sam_NN is_VB running_VB behind a dog_NN.

Deliverable 4:

 Intersection method is another way to find out the similarity between the

sentences. For cosine similarity ranking, in some cases, we may get IDF as 0 which leads

the total score zero. So another experiment was carried out with intersection ranking

algorithm. We are using an intersection function to calculate the intersection between two

sentences.

 In the intersection method, two sentences have a good intersection then they holds

the same information and a sentence has a good intersection with many other means that

sentence holds some information from each one of them. We may say that it is key

sentence in our text.

 In this method, we will find out the tokens from given query and sentence. This

method will try to find out the similar tokens from the both sentences. More similar

vectors, more will be the score.

We found that this is useful method than cosine similarity ranking. As in cosine similarity

ranking, we use TF (term frequency) and IDF (Inverted Document Frequency). In our

code, we used to have two or more sentences in an array, and when try to find out the

similarity between one sentence with another sentences from array, it will calculate TF

and IDF. If a word occurs one time in an array, then according to IDF, log(1) is zero. In

cosine similarity ranking technique, we take product of TF and IDF, which will

eventually become zero. Since, a word occurred once on the sentence then we should get

some similarity with the sentence from document vector and query sentence from query

vector. On the other hand, intersection method will provide similarity if a word from

query sentence occurred once in document sentence. This situation will repeat many

times in our implementation, so we found intersection method is more useful than cosine

similarity ranking technique.

CS297

9 | P a g e

Conclusion:

 WordNet has no direct API which supports PHP. In this semester, we studied

WordNet and we found some command line arguments which gave us the very useful

output for our project. We extracted the required data from output.

 WordNet extracts all the information from database. In database, it contains two

files each for noun, verb, adjective and adverb with extension as .data and .index. So

WordNet refers totally eight files for generating output. Whenever we get the output from

WordNet, for each type, WordNet creates senses. We are going to use sentence or

sentences provided for each sense to figure out perfect synonym for word given in query.

We figured out that this is efficient way to expand the query using WordNet.

 This project gave me good understanding of WordNet's internal structure and how

it works. The command line arguments are more beneficial to extract the data from

generated output. I learned PHP language very well in this semester. The part-of-speech

tagging helped us to reduce our work to find similarity with each sentence from output.

We used cosine similarity ranking and intersection method to find out similarity between

two sentences.

 In next semester, I will work to integrate my developed code into Yioop!. I will

get the summary from Yioop! for any website. I will use the part-of-speech tagging on

each sentence. Afterwards, each sentence from the summary will be tagged with verb,

noun, adjective or adverb as per its tagging in given sentence. After this process, stemmer

will stem the given input. I have to hide that tagging provided by part-of-speech tagging

from stemmer.

 Once the stemming process is done, WordNet will work on each sentence from

summary. We will pick up each sentence from summary. WordNet will work on each

word in summary. First we will see part of speech tag attached to it. Then for that word

we'll request WordNet to get the output. According to the part of speech tagging, we will

extract only those senses from the output of WordNet which are matched with tagging

CS297

10 | P a g e

provided by part-of-speech tagging. Then we will find out similarity between

sentence/sentences given by WordNet in example for each sense with sentence provided

in the summary. The synonyms with the highest scored sentence will be selected and

those words will be used to expand the query.

 We figured out the query expansion technique using WordNet . After using the

synonyms provided by WordNet, Yioop! will calculate the page rank with the new

modified query. Yioop! will compare it with result provided by original query result and

results provided by new expanded query result. The highest ranked pages will be showed

first.

This concludes the description of the deliverables of my 298 project.

CS297

11 | P a g e

References:

[1] WordNet: A lexical database for English Retrieved on Dec 1, 2013, from

website: http://wordnet.princeton.edu/

[2] Wikipedia for WordNet Retrieved on Dec 1, 2013, from

website: http://en.wikipedia.org/wiki/WordNet

[3] Yioop Documentation from SeekQuery Retrieved on Dec 1, 2013, from

website: https://seekquarry.com/?c=main&p=documentation#overview

[4] Wikipedia for Cosine Similarity Ranking Retrieved on Dec 1, 2013, from

website: http://en.wikipedia.org/wiki/Cosine_similarity

[5] Wikipedia for Part of Speech Tagging Retrieved on Dec 1, 2013, from

website: http://en.wikipedia.org/wiki/Part-of-speech_tagging

[6] Cosine Similarity Retrieved on Dec 10, 2013, from

website: http://www.cs.sjsu.edu/faculty/pollett/267.2.12f/Lec12092012.html#(9)

[7] Part of speech tagging Retrieved on Dec 10, 2013, from website:

http://phpir.com/part-of-speech-tagging

