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1. Introduction 

The aim of the CS 297 project is to explore various privacy and a security features of an open source 

search engine and enhance the security and privacy capabilities of a Yioop. A Yioop is a GPLv3, open 

source, PHP search engine developed by Dr. Pollett. Since Yioop is an open source it is easy to 

understand what information it uses from a user request. 

Most modern search engines record user IP address, the time of visit and user tracking cookies to keep 

track of search terms in order to improve efficiency of the search result and show user specific 

advertisements. This information can be used to reveal personal information and hence many people 

object to its collection. 

For this project, we have implemented the proxy feature and the Perfect Forward Secrecy in Yioop to 

enhance the privacy one has when using this search engine. We also enhanced Yioop’s crawling ability 

by adding code to crawl the Tor network. 

This report includes details of all the deliverables of the CS297 project. Before starting the project, 

preliminary activity was to install a Yioop on the local apache server. The first deliverable was to write 

the CS297 proposal. The second deliverable was to prepare a presentation on the Perfect Forward 

Secrecy. The third deliverable was to write a PHP script to verify whether a website supports the Perfect 

Forward Secrecy or not. The fourth deliverable was to prepare a presentation on the Tor network and Tor 

hidden Service, and to write the code to crawl the Tor network. The fifth deliverable was to prepare a 

presentation on the zero knowledge proof. The sixth deliverable was to add a proxy feature in a Yioop. 

The last deliverable was to prepare the CS297 report. 

In this report, each deliverable is explained under appropriate section headers. At the end, the report has 

the conclusion section to discuss the learning from the project followed by the reference section including 

all the references used to achieve the goals of the project. 



 
 
 

    
 

        

               

     

              

                   

                 

  

                      

                 

              

                 

              

                  

              

                

               

           

                

   

                 

              

             

                  

                  

             

              

               

CS297 Report
 

2. Overview of Deliverables 

2.1 Deliverables#1: PPT on the Perfect Forward Secrecy 

The purpose of this deliverables is to get an understanding of the Perfect Forward Secrecy (PFS) and 

prepare a presentation on it. 

The Perfect Forward Secrecy (PFS) is a property of the key-agreement protocol that ensures that a 

session key used to encrypt the data will not be compromised even if in the future, a long term private 

key is compromised. The idea is not to use a single key (e.g. private key) to generate all the session 

keys. 

In order to understand why do we need to use the Perfect Forward Secrecy that, it is helpful to have a 

basic idea of how HTTPS works in general. When we access a secure website, it uses HTTPS 

protocol to make the connections. All HTTPS connections are not equal. Once a connection is 

established, a browser generates a session key from the private key, and encrypts the data using a 

session key. An interceptor can intercept all the communication messages. An interceptor does not 

know the private key of the client (browser), so an interceptor cannot derive the session key. Thus an 

interceptor cannot decrypt messages, but can still store all the communication messages. Later on, if 

an interceptor somehow obtains a client’s private key, he can derive the session key and decrypt all 

the stored messages. The main problem here is that, a private key is used for two 

purposes: authentication and encryption. Authentication only matters while the communication is 

established, but encryption is expected to last for years. This situation is the motivation factor for the 

Perfect Forward Secrecy. 

In PFS, a client (browser) periodically creates a new session key based on the values supplied by both 

parties in the exchange. Because both parties contribute a random value known only to them, each 

new key generated is dissimilar to the previously created keys. Even if a third party managed to 

intercept a private key, the third party can only derive the session key for a very small duration. 

A session key is the key factor to determine whether a connection has Perfect Forward Secrecy or not. 

The Transport Layer Security (TLS) handshake protocol is a responsible for the authentication and 

key exchange, necessary to establish a secure connection. To establish a secure connection, TLS 

protocol needs to do the three things: cipher suite negotiation, authentication of a server and key 
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exchange. How the session key is derived is determined by the cipher suite in use. In the beginning of 

SSL handshake, the client sends a list of supported cipher suites. The server then picks one of the 

cipher suites, based on a ranking and server informs a client which cipher suite will be used from 

onwards communication. This step determines if future connections will have the Perfect Forward 

Secrecy or not. The cipher suites that use ephemeral Diffie-Hellman (DHE) or the elliptic-curve 

variant (ECDHE) have the Perfect Forward Secrecy. 

A Web server needs to be configured to use the PFS. A Web server usually has a cipher suite 

configuration in its SSL configuration. There are two relevant options: first, the cipher suites that you 

want your server to use, and second, how a server picks the cipher suite. The order of a cipher suite 

also matters. For the Apache server, Perfect Forward Secrecy requires Apache 2.3.3 or higher. Below 

examples shows how to configure mod_ssl to enable the Perfect Forward Secrecy. 

There are certain challenges for the PFS. The first challenge is that the Diffie-Hellman (DHE) key 

exchange used in the PFS is significantly slower due to additional calculations of a session key in 

each request. Web site operators tend to disable DHE suites in order to achieve better performance. 

The second challenge is from a client side, not all browsers support all the necessary suites. 

Deliverables#2: PFS verification and PFS Checker Script 

There are many ways to verify whether a web site supports PFS or not. The first is the OpenSSL 

utility. The second is the SSL scan utility and third is the SSL lab website. I have used the SSL Lab 

utility to show that a Yioop supports the PFS. A Yioop preferred a cipher DHE_RSA_AES256-SHA 

for the connection, thus it supports PFS. 
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PFS Checker PHP Script 

PFS checker is a PHP script, used to verify whether a websites support the PFS or not. The Input to the 

script is an URL of the website and the output of the script is the list of the cipher supported by a website. 

The snapshot of the output is as shown below. 
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Deliverables#3: TOR network Presentation 

Tor (The onion router) is an open source software used for an anonymous internet surfing. Tor was 

originally designed, implemented, and deployed as a third-generation onion routing project of the U.S. 

Naval Research Laboratory. The primary purpose of the Tor was to protect the U.S. navy’s confidential 

communication. Today, it is used by journalists, military people and corporate people for a privacy and 

security purpose. 

Tor protects against Internet surveillance known as “Traffic analysis”. Traffic analysis is a special kind of 

interference attack used to deduce pattern information from the patterns in a communication. An Internet 

data packet has two parts: the header and the body. The header has basic information like a source, 

destination, timing and some geographical information. The body part has an encrypted data. In traffic 

analysis, an interceptor focuses on the header part and tries to find a common pattern in the header. The 

header might not reveal the person’s exact identity but still reveals much useful information. 

In some countries, there are many restrictions on the internet usage. People cannot share their view and 

access some of the websites, and if they do, it is very easy for government agencies to identify that 

person. Tor provides freedom of speech by providing an anonymous internet surfing. 

Tor uses an onion routing system. Tor uses thousands of volunteer’s networks to direct traffic over the 

internet, so user’s identity can be kept hidden from a network interceptor. Tor helps to reduce the risk of a 

traffic analysis by distributing transactions over the several places so no single point can link to the 

sender’s destination. 

For example, user A wants to send data safely to user B using the Tor network. Tor creates a private 

network for this communication. The first step is to identify the available nodes. User A’s Tor client 

obtains a list of the Tor nodes from a server. It picks a random node each time so a pattern cannot be 

observed by an interceptor. A client generates an encrypted message and sends it to the first node. The 
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Tor client on this node decrypts the first layer of encryption and identifies the next node. This will 

continue until the final node. The final node receives the location of the actual recipient, where it 

transmits an unencrypted message to ensure complete anonymity. Now when user ‘A’ wants to send 

another packet its Tor client uses a completely different path. 

Tor works on the principle of the onion routing. The onion routing uses networking technologies to 

provide anonymity and privacy on the internet communication. The onion routing connection has three 

phases: connection setup, data movement and connection tear down. The first phase starts when an 

initiator creates an onion, a layered data structure that specifies properties of a connection at each point. 

An initiator determines the number of onion routers (nodes) to be used in the communication and creates 

the onion packets by having multiple encryptions using a public key of the onion router (node). Each node 

has information about only two nodes: the sender and the receiver. Each node peels the layer of onion; 

they use their public key to decrypt the data and obtain information about the next node where data needs 

to send .Receiver can use its public key and finally obtain plain text. Once a connection is established, bi­

directional communication is possible. When data is sent back from the receiver to the sender layering 

occurs in the reverse direction. 
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In the onion routing, the setting up a connection and identifying the onion routers for a communication 

does not take much time. Massive encryption is done at this stage, but since encryption is much cheaper 

than decryption, more burdens are placed on onion routers. Each onion routers needs to perform 

decryption which is a costly operation in terms of time. The overall the performance of the Tor network is 

slow due to extra bouncing of the packets as well as due to the decryption at each of the onion routers. 

Performance also depends on the bandwidth of each of the onion routers. If one of the routers is slow, 

then the overall time for communication will increase. 

3.1 Tor Hidden Service: 

A Tor hidden service allows publishers to publish a service without revealing their identity (IP address). 

Users can connect to a hidden service using a rendezvous point without knowing the publisher of a 

service and revealing their own identities. This type of anonymity provides protection against the 

distributed DoS attacks as an attacker would not know the IP address of a service. 

Below are the three design goals of a Tor hidden service. 

1. Access Control: A publisher needs a way to filter the incoming requests so that attackers cannot flood 

a service by making many connections to the service. 

2. Robustness: A publisher should be able to hide his identity for long time, and a service should not be 

bound with only one onion router. A publisher should allow to migrate a service to the different onion 

routers. 

3. Application transparency: we are forcing user to use a service through the Tor network, but we should 

not force a publisher to make any changes in the application. 

Let’s say Bob wants to publish a hidden service. First Bob needs to deploy a service on the server. Then 

Bob should select the contact point for the service. These contact points are known as introduction points. 

Bob’s Tor client generates the public key and sends the key to the introduction point. Bob’s client makes 

the Tor circuit with the introduction point instead of a direct connection, so Bob’s identity is kept private. 

The Introduction points only receive the public key for the service, not the IP address of a service. A 

Hidden service assembles a service descriptor which has public key and introduction points, and signs it 

with the service’s private key. This descriptor is uploaded to a distributed hash table. This descriptor can 

be found by the client by requesting a xyz.onion where xyz is a 16-character name derived from the 

public key of a service. 
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Let’s say Alice has learned about Bob’s service, and she wants to use it. She already knows the descriptor 

of Bob’s service. Alice wants to communicate anonymously. Her Tor client creates the Tor circuit by 

randomly picking a relay and asking it to act as a rendezvous point. Alice sends a rendezvous cookie to 

one of the introduction point. The cookie has information about a rendezvous point and an introduction 

message, encrypted using a service’s public key. These communications take place via Tor circuit. A 

hidden service gets the request and obtains the address of a rendezvous point and sends the one time 

secret to it. At this point it is very important that it sticks to the same entry guard when creating a new 

circuit. The entry guard is a set of relays which are always picked as a first node while creating a circuit. 

These relays are chosen randomly. In the last step, the rendezvous point notifies a client about a 

successful connection establishment. After that, both a client and service can use their circuits to 

communicate with each other. A rendezvous point simply relays (end-to-end encrypted) messages from a 

client to a service and vice versa. Once a rendezvous point gets the response from a service, it informs the 

client that the connection is established, and now a client and service can talk with each other through a 

rendezvous point. 

In general, six relays are used in the end to end communication. Three of them are chosen by a service 

(also known as introduction point) and three are chosen by a client including a rendezvous point. This 

entire process can be depicted by the below figure. 

The steps to create a hidden service are as below: 

1. Install a web server locally 

2. Configure a hidden service to point to the local web server 

3. Open the torrc file. It is located at: \Tor\Tor Browser\Data\Tor \torrc 
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4. Now add an entry like below in the torrc file 

a. HiddenServiceDir D:\Tor\HiddenService 

b. HiddenServicePort 80 127.0.0.1:8080 

5. Save the torrc file and restart tor client 

HiddenServiceDir is a place where the Tor stores the information about a hidden service. Tor will 

generate a hostname file in this folder, which has an onion URL for the service. The Hidden service Port 

is used to specify a virtual port, IP address, and port for redirecting connections to this virtual port. 

3.2 Code to crawl the Tor network 

I have added the code in the functions: getPages, prepareUrlHeaders, and getPage of fetch_url.php of 

Yioop. I have also created the patch of changes and uploaded it on the issue tracker. 

Deliverables#4: Proxy server presentation and proxy feature in Yioop: 

In the client-server communication, a proxy server acts as an intermediate machine between a client and 

server. A proxy server is a substitute for connecting directly to the web. A client connects with a proxy 

server and sends the request to a proxy server, then proxy server forwards that request to a web server. A 

web server sends a response to a proxy server and it directs the response to a client. A proxy was invented 

to add the structure and encapsulation to the distributed systems. 

There are many security advantages of a proxy server. It hides the internal clients from an external 

network, blocks dangerous URLs, filters a dangerous content, checks the consistency of a retrieved 

content, and eliminates the need for a transport layer routing between the networks. Proxy server also 

provides a single point of access, control, and logging. 

Forward proxies, open proxies, reverse proxies and performance enhancing proxies are the common type 

of a proxy. 

A Forward proxy acts as a gateway for a client browser. It gets the HTTP request from a client and 

forwards it to a Server thus provides anonymity to a client IP. 

4.1 Proxy feature in Yioop: 

I have added the code to create a proxy link for an each result link. When a user clicks on a proxy link, a 

request is sent to a Yioop server, and it sends a request to the requested website. In this case, a Yioop 

server acts as a forward proxy server. A Yioop server uses the Tor connection to make a request to the 

website, so its identity can be kept private. 
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I have modified the search_view.php to add the code to create a dynamic proxy link. I have also added the 

proxy_url.php file to receive a requested URL by user and to make a request to the URL through the Tor 

network. The snapshot of a proxy link is as shown below. 

Deliverables#5: Presentation on the Zero Knowledge Proof: 

A zero knowledge proof or protocol is a method in which a party A can prove that given statement X is 

certainly true to party B, without revealing any additional information of a statement X. 

Let’s say Alice and Bob want to communicate over a shared network. Alice initiates the communication 

and sends a secret to Bob. Bob verifies a secret, so he can be certain that he is communicating with Alice. 

Once he verifies the secret, he sends a conformation. In the above scenario, Bob must know Alice’s 

secret, so he can verify Alice’s identity but now Bob can impersonate Alice. The zero knowledge proof 

protocol allows Alice to prove Bob that she knows the secret without revealing the secret. In this protocol, 

verification is performed for many executions and each time, Alice needs to pass the verification. 

A zero knowledge protocol is a three pass identification protocol. The first message is a commitment or 

witness, sent from Alice to Bob. The second message is a challenge sent from Bob to Alice and the third 

message is a response sent from Alice to Bob. 

A zero knowledge protocol must have below three properties. 

1. Completeness: If the statement is true, an honest verifier will be convinced by an honest prover. 

2. Soundness: If the statement is false, an interceptor cannot convince a verifier that it is true, except with 

small probability. 

3. Zero-knowledge: If the statement is true, no cheating verifier learns anything other than this fact. The 

randomness is also an important property of the zero knowledge protocol. The randomness in the 

commitment and challenge message are used to hide the secret information. 
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Fiat-Shamir protocol is an example of Zero Knowledge Proof protocol. The goal of this protocol is to 

prove that prover knows the secret in n executions. This is a probabilistic protocol with the probability of 

a 2-n for adversary to fool a verifier. Usually the numbers of executions are around 20 to 40. 

This is a secure protocol. The prover does not need to share the secret. It is also simple, as it does not 

involve any complex encryption method. There are certain limitations of this protocol. First the secret 

must be numeric, otherwise a translation is needed and second, it is only suitable for a certain kind of 

problem like the grandmaster problem and the mafia problem. 

3. Conclusion 

The deliverables in my CS297 project helped me to understand the different security concepts. 

Deliverable-2 helped me to understand the Perfect Forward Secrecy (PFS) concept and write the PFS 

verification script, which shows that a Yioop supports the Perfect Forward Secrecy. Deliverable-3 gave 

me an opportunity to understand the Tor network, Tor hidden service and helped me to write the code to 

crawl the Tor network.Deliverable-4 gave me an opportunity to learn about zero knowledge proof 

protocol. Deliverable-5 helped me to learn about a proxy feature. 

4. References 

1. http://en.wikipedia.org/wiki/Perfect_forward_secrecy 

2. Section 9.3.4 of Information Security Principles and practice by Dr. Mark Stamp, Published by 

JohnWiley & Sons, Inc 

3. http://tinyurl.com/lamysw6 

4. Section 9.3.4 of Information Security Principles and practice by Dr, Mark Stamp 5. 

http://crypto.stackexchange.com/questions/8933/how-can-i-use-ssl-tls-with-perfectforward-secrecy 

6. https://scottlinux.com/2013/06/26/how-to-enable-perfect-forward-secrecy-in-apacheon-linux/ 

7.https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deployingforward-secrecy 

8. http://en.wikipedia.org/wiki/Tor_(anonymity_network) 

9. https://www.torproject.org/about/overview.html.en 

10. Technical paper: Onion Routing for Anonymous and Private Internet Connections by David 

Goldschlag Michael Reedy Paul Syversony on January 28, 1999 

11. Technical paper: Onion Routing Efficiency for Web Anonymization in Various Configurations by 

Tomas Sochor University of Ostrava, Ostrava, Czech Republic 

12. https://www.torproject.org/docs/hidden-services.html.en 

https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/about/overview.html.en
http://en.wikipedia.org/wiki/Tor_(anonymity_network
https://scottlinux.com/2013/06/26/how-to-enable-perfect-forward-secrecy-in-apacheon-linux
http://crypto.stackexchange.com/questions/8933/how-can-i-use-ssl-tls-with-perfectforward-secrecy
http://tinyurl.com/lamysw6
http://en.wikipedia.org/wiki/Perfect_forward_secrecy


 
 

             

     

             

     

               

  

  

            

       

           

           

      

 

 

 

CS297 Report
 

13. Technical Paper: Section 5 of Tor: The Second-Generation Onion Router by Roger Dingledine, Nick 


Mathewson and Paul Syverson
 

14. Technical Paper: Section 5.1 of Tor: The Second-Generation Onion Router by Roger Dingledine,
 

Nick Mathewson and Paul Syverson.
 

15. Technical Paper: Figure 1 of Locating Hidden Servers by Lasse Øverlier and Paul Syverson
 

16. https://www.torproject.org/docs/tor-hidden-service.html.en
 

17. http://en.wikipedia.org/wiki/Zero-knowledge_proof
 

18. Section 9.5 of Information Security Principles and practice by Dr. Mark Stamp
 

, Published by JohnWiley & Sons, Inc
 

19. Technical Paper: How to Explain Zero-Knowledge Protocols to Your Children.
 

Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara,
 

California, USA, August 20-24, 1989, Proceedings
 

http://en.wikipedia.org/wiki/Zero-knowledge_proof
https://www.torproject.org/docs/tor-hidden-service.html.en



