
CLASSIFICATION OF WEB PAGES IN YIOOP

WITH ACTIVE LEARNING

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shawn C. Tice

June 2013

c© 2013

Shawn C. Tice

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

CLASSIFICATION OF WEB PAGES IN YIOOP
WITH ACTIVE LEARNING

by

Shawn C. Tice

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

June 2013

Dr. Chris Pollett Department of Computer Science

Dr. Mark Stamp Department of Computer Science

Dr. Cay Horstmann Department of Computer Science

ABSTRACT

CLASSIFICATION OF WEB PAGES IN YIOOP
WITH ACTIVE LEARNING

by Shawn C. Tice

This thesis project augments the Yioop search engine with a general facility

for automatically assigning “class” meta words (e.g. “class:advertising”) to web

pages based on the output of a logistic regression text classifier. Users can create

multiple classifers using Yioop’s web-based interface, each trained first on a small

set of labeled documents drawn from previous crawls, then improved over repeated

rounds of active learning.

Acknowledgements

Thanks to my wife Marisa, my advisor Dr. Chris Pollett, my committee members

Dr. Mark Stamp and Dr. Cay Horstmann, my superbly supportive employers at

iFixit, and to taxpayers everywhere, but especially in California.

v

Table of Contents

Chapter

1 Introduction 1

2 Background 6

2.1 Text Classification . 7

2.1.1 Classification as a Boundary Problem 9

2.1.2 Naive Bayes . 12

2.1.3 Logistic Regression . 14

2.1.4 Other Classification Algorithms 18

2.2 Feature Selection . 20

2.3 Pool-Based Active Learning . 22

2.3.1 Density-Weighted Pool-Based Sampling 25

2.4 The Yioop Framework . 27

2.4.1 Client Side . 28

2.4.2 Server Side . 29

3 Requirements 32

3.1 Effectiveness . 33

3.2 Efficiency . 35

vi

3.3 Responsiveness . 35

3.4 Usability . 37

4 Design & Implementation 39

4.1 System Overview . 39

4.2 Managing Classifiers . 44

4.2.1 Design . 44

4.2.2 Implementation . 46

4.3 Building a Training Set . 49

4.3.1 Client-Side Design . 49

4.3.2 Client-Side Implementation 53

4.3.3 Server-Side Design . 55

4.3.4 Server-Side Implementation 66

4.4 Training a Classifier . 68

4.4.1 Design . 68

4.4.2 Implementation . 70

4.5 Using a Classifier . 70

4.5.1 Design . 71

4.5.2 Implementation . 72

5 Experiments 73

5.1 Experimental Setup . 74

vii

5.2 Effectiveness . 75

5.2.1 Feature Selection . 78

5.3 Efficiency . 80

5.4 Responsiveness . 81

6 Conclusion 84

6.1 Future Work . 85

Bibliography 87

viii

Chapter 1

Introduction

The Internet is decentralized by design, and it is arguably this single fact that

has shaped its growth into the massive web of servers and clients familiar to its

current denizens. The Internet is not—as one might expect—like a library, each web

site catalogued and cross-referenced by topic and author, but rather like an

inconceivably vast information bazaar. In this bazaar the merchants are only

vaguely distributed according to the wares that they have for sale, and the space is

so enormous that it would be infeasible for an individual to visit them all. Thus, in

the absence of a master index or even a table of contents, one’s only options for

finding information on the Internet are to type in arbitrary addresses and to follow

links between pages in the hope that they lead somewhere useful. Search engines

have emerged to provide the missing index, and they go about doing it by

mimicking the behavior of a user following links between pages, keeping track of

each page’s content as they go.

Yioop is a search engine like the popular Google and Yahoo search engines,

but designed to be operated on a smaller scale—by an individual or small

organization. Like all search engines, Yioop performs three main tasks: crawling

web pages (downloading new pages linked to from visited ones), indexing the

downloaded pages (associating with each word a “posting list” of the documents

and offsets where it occurs), and querying the resulting index (computing the set of

documents present in all or some of the posting lists of the queried words). Where

commercial search engines like Google can index tens of billions of pages, however,

Yioop can only index hundreds of millions. Yioop’s advantage is that it can crawl,

index, and query according to the unique requirements of the individual.

This trade-off makes Yioop particularly suited to indexing private intranets or

relatively small hand-picked collections of public websites, and providing a

customizable interface for querying the indexed documents. For example, a small

e-commerce company might use Yioop to index their product pages and provide site

visitors with a customized product search. Because the company controls when

indexing happens and how it is carried out, they can keep the index up to date as

they add and remove products.

When searching for something like a product, a query of a few words will

usually suffice to retrieve the relevant documents, but often the sought-after

information is not so easily expressed. Consider, for example, a search for

documents of a particular media type, such as images or videos. The media type is

a property of a document rather than something that would necessarily show up in

the document text, and consequently a naive indexing strategy based only on a

document’s words would often fail to retain such information, rendering it

inaccessible to a query. Yioop holds on to this document-level information by

2

adding meta words to the index and associating them with documents via the same

mechanism used to index any other word. A meta word is created simply by affixing

a document property (such as “image”) to a common prefix (such as “media”),

using a colon to delimit the two. Examples of meta words are “media:image”,

“filetype:pdf”, and “os:linux.” Without meta words it would be difficult—if not

impossible—to write a query that reliably retrieves only those web pages that were

served by a machine running the Linux operating system. And yet the server’s

operating system is among the easier data to identify and retain when indexing web

pages.

Imagine, instead, that you would like to restrict a query to web pages that

contain partisan rhetoric, or to web pages that are free of advertising. These are

rather complicated but useful document properties—difficult to specify with a query

consisting only of words that might occur in relevant documents, but not readily

available to the search engine during indexing in the way that properties like file

type and operating system are. In fact, a human would probably have difficulty

assigning such properties to some particularly ambiguous documents, and if asked

to do so for millions of distinct documents, any human would certainly make some

mistakes. Of course, the reality is that no human could endure even reading that

many documents, so it would be useful for a search engine to annotate documents

with such properties as best it could, and make those properties available as meta

words to be used in queries.

3

The primary goal of this project is to augment the Yioop search engine with

the capability to be taught to recognize complex document properties, and to

appropriately assign those properties to crawled documents using the meta word

mechanism. Learning to recognize document properties like “contains partisan

rhetoric” is the domain of machine learning, and more specifically, of text

classification. Text classification usually requires a large training set—that is,

example documents that have already been determined to either have or not have a

particular property—to achieve reasonable accuracy, and because example

documents are often hard to come by, this project’s secondary goal is to leverage

Yioop’s inverted index and web interface to simplify the process of finding and

labeling them. Furthermore, since it is unlikely that any user would be willing (let

alone eager) to search for more than a few hundred examples, this project’s final

major goal is to specialize for the case of a small training set by trying to help the

user find those documents that—once labeled—would most improve the classifier’s

accuracy.

The remainder of this thesis will proceed as follows: Chapter 2 sets the scene,

describing relevant prior work and explaining the terminology and ideas used

throughout the remaining chapters. Chapter 3 elaborates on the introduction,

laying out in precise terms the project requirements, and chapter 4 explains in detail

how each requirement was satisfied—describing both the major design decisions and

the details of their concrete implementations within the Yioop framework.

4

Chapter 5 presents the results of several experiments carried out to measure how

well the design decisions and implementation worked in practice. Finally, chapter 6

closes with suggestions for future work and some general remarks on the project

outcome and the role of machine learning in the field of information retrieval.

5

Chapter 2

Background

This chapter formally defines the classification task and explains how it relates

to the stated goal of learning to recognize complex document properties. It presents

several classification algorithms at a high level, with special attention paid to those

that are well-suited to text classification in particular. Following this, feature

selection is introduced as a method to ease the computational costs of text

classification and improve the probability estimates of some classifiers. The

discussion turns from there to obtaining labeled examples from a large pool of

unlabeled documents when there is a user available to assign labels. Here, the

application of active learning techniques provides an opportunity to reduce the work

that the user must do to obtain an accurate classifier, thus making progress toward

the second and third goals listed in the introduction. Finally, the chapter closes

with an overview of the Yioop framework in order to familiarize the reader with its

terminology and basic operation. All of this material will inform the development of

project requirements in chapter 3, and provide the reader with the necessary

background to follow the presentation of the design and implementation in

chapter 4.

6

2.1 Text Classification

Within the field of machine learning, classification is the problem of training a

learning algorithm on a set of labeled examples belonging to two or more classes so

that, when given a new unlabeled instance, the algorithm may assign the correct

label. This is referred to as a supervised learning problem because the training

examples must be labeled—usually by a human. An unsupervised learning problem,

by contrast, takes unlabeled instances and derives both a set of labels and a

procedure for assigning one or more of those labels to each instance. The

unsupervised learning equivalent of classification is called categorization.

Both classification and categorization have applications to information

retrieval, where they can be used to weed out uninteresting documents (e.g., those

containing advertising), to label documents so that searches may be restricted to a

particular class (e.g., pages containing partisan rhetoric), and to group related

documents together (e.g., news stories about the same event). The primary goal of

this project is to extend Yioop with the first and second capabilities, both examples

of the classification task. Web page classification is a special case of text

classification, and most of what applies to the latter applies to the former as well.

To simplify the discussion, then, the rest of this section focuses on text

classification, with the understanding that the same ideas translate to web page

classification with minor modifications.

In text classification the labeled examples are usually documents, where each

7

document, d, is represented as a vector of terms (referred to more generally as

features or variables). Taking the offsets of terms within a document into account

would result in far too many variables to consider, so most classifiers favor a bag of

words approach, where only a term’s presence in a document is considered—not

where it occurs. Sometimes the input is simplified further still, discarding how often

the term occurs, and retaining only whether it occurred at all.

Using this approach, a popular form for the input to the classifier to take is a

binary matrix X ∈ {0, 1}m×n, where the rows represent documents and the columns

represent terms. A zero in cell Xij indicates that term tj does not occur in

document di, while a one indicates that the term does occur in the document. Note

that n is equal to the vocabulary size—the number of distinct terms across all

documents. Binary features are just one choice, though; term weights are another

popular choice. The weight can be the number of times a term occurs in a

document, or something more complicated such as a combination of the term

frequency and inverse document frequency.

The main challenge that text classification presents is the number of features

(distinct terms) that must be considered—anywhere from one to ten thousand for a

normal problem. A large number of features gives rise to two practical difficulties.

First, it is more likely that training will result in over-fitting to the examples, and

second, it takes more work to both train a classifier and use it to classify new

instances. The next section provides an explanation of the source of these

8

difficulties by formulating the classification task as an attempt to find a boundary

between points in high-dimensional space.

2.1.1 Classification as a Boundary Problem

Each row of the aforementioned input matrix X can be interpreted as a vector

describing a point in high-dimensional space. If there were only two training points

from which to build a classifier—one from each class—any boundary separating the

two points would serve as a solution to the classification problem. Given a new

point, one need only figure out which side of the boundary the point lies on, and

assign it the same label as the training point which lies on that same side. If there

were only one variable, then the points would lie along a line, and the boundary

separating two classes of points would be another point on that line. If there were

two variables, then the points could lie anywhere on the Cartesian plane, and the

separating boundary would be limited to a curve (potentially straight) on that

plane. Figure 2.1 depicts two datasets, one described by a single variable, and the

other by two variables. The black and white points represent instances of two

distinct classes, and their positions along the line and within the Cartesian plane

encode their features.

In general, the more variables there are, the more likely it is that some

hyperplane exists which completely separates the points belonging to two classes. If

there are fewer training points than there are variables, then there is always a

9

(a) (b)

Figure 2.1: Two datasets depicted as sets of points. The color of each point indi-
cates its class, and its position encodes one (a) or two (b) variables that describe
it. Potential class boundaries are shown for each dataset; note that none of them
completely separates the two classes, and that although the dashed line in (b) makes
fewer mistakes than the solid line, it is probably a less meaningful division.

hyperplane that perfectly divides the points (assuming that the same point may not

belong to two classes). While this may seem like a boon, it is usually problematic

because the training points are not perfectly representative of all points belonging

to the two classes. When the dividing boundary is perfectly tailored to the training

points, it becomes more likely that a new point will fall on the wrong side because

of some minor deviation. Thus to avoid over-fitting when there are more variables,

one either needs more training points (making the training data more representative

of all instances), or a way to artificially constrain the dividing hyperplane.

Gathering more training examples usually requires a constant amount of work per

10

example (but for some problems there may be no more readily-available examples),

while constraining the hyperplane requires special consideration when designing and

implementing the classification algorithm.

Even with a sufficient amount of training data or a suitable classification

algorithm, problems which contain more variables will require more work to arrive

at a solution. Some algorithms scale better than others, but they all must somehow

take into account each variable across all training points when searching for a

solution, and thus the more variables (and the more training points) that there are,

the more work the algorithm must perform. For more complex classification

algorithms,1 finding a near-optimal solution to problems with thousands of

variables may be infeasible.

A text classification problem usually has as many variables as there are unique

terms in all of the training documents, and for any kind of natural (i.e., human)

language problem that number can easily reach into the low tens of thousands. The

large number of variables and the statistically complex processes which give rise to

natural language text make text classification a particularly challenging problem.

Fortunately, because efficient and accurate text classification has so many practical

applications it has been the focus of a lot of research, and a number of algorithms

have now been either tailored specifically to text classification, or shown to be

suitable for the task.

1 For example, many classification algorithms perform some kind of optimization on the dividing
boundary with the goal of minimizing the error of misclassified points in the training data.

11

The next two subsections discuss, respectively, two well-known text

classification algorithms: Naive Bayes and logistic regression. The former is often

used as a baseline for a new problem, and the latter has been shown to be effective

for text classification [8]. These algorithms together form the core of Yioop’s new

classification system, where they are used for separate but complementary tasks.

Section 2.1.4 gives an overview of several additional classification algorithms that

were considered for this project, but ultimately deemed ill-suited for one reason or

another.

2.1.2 Naive Bayes

The basic formulation of the Naive Bayes text classification task is to find

P(c|d) = P(c|d1,d2, . . . ,dn) where c is a class label, and d1 . . .dn are the terms

present in a particular document d (recall that transformed term features such as

TF · IDF may be used as well). By Bayes’ theorem, the probability that document d

belongs to class c given the presence of a single term t is

P(c|t) =
P(c)P(t|c)

P(t)
.

For purposes of classification, the denominator may safely be ignored because it

does not depend on c, leaving just P(c) and P(t|c), both of which can be computed

from the training data. To find P(c|d1,d2, . . . ,dn), however, one must consider the

conditional probabilities between terms since—intuitively—the presence of one term

12

often affects the probability of seeing other related terms. For example, the presence

of “Pythagorean” would likely increase the probability of seeing “theorem”.

Unfortunately, the number of possible relationships between terms grows

exponentially with the number of terms, making the automatic computation of

these conditional probabilities infeasible (at present). An alternative is to use

human knowledge to inform the model—and Bayesian networks employ this

strategy—but an even simpler and more common approach is to assume that terms

are independent of one another. Although clearly false, this assumption suffices in

most cases because the true conditional probabilities lack the impact to change the

final outcome. The probability of seeing a set of independent terms together is given

by the product of their individual probabilities, so that the final probability of

document d belonging to class c is

P(c|d) = P(c|d1,d2, . . . ,dn) ∝ P(c)
n∏
i=1

P(di|c).

This quantity is easily computed in a single pass through the training data,

but it is actually possible to compute a column vector β ∈ Rn from the training

data such that β · d′ gives the log-odds that the vector d′ (representing a new

document) belongs to class c [2, p. 347]. Thus the classification task is reduced to a

single vector product. In order to derive a classification decision from the classifier,

the log-odds are computed and converted to a probability p; if p ≥ .5 then the

document is assigned to class c, and to ¬c otherwise.

13

Naive Bayes is often used as a baseline classifier because it is simple to

implement, efficient to train, and produces a column vector that can be used to

quickly classify new instances. Although it may not accurately estimate P(c|d), it

often comes close enough to make a reasonable hard classifier, which determines

only whether a document is in c or not in c. A soft classifier, by contrast, gives a

fairly approximate estimate of how well a document fits into a particular class.

In general, more complex classification algorithms can obtain greater accuracy

when trained on the same data as a Naive Bayes classifier, but the Naive Bayes

classifier will take less time to train. This property of Naive Bayes classifiers suits

them to situations where there is a large amount of data and limited time in which

to train. The next section introduces logistic regression, which compliments the

strengths of Naive Bayes: it can often achieve greater accuracy than Naive Bayes

given the same training set, but requires more work (and thus time) to do so.

2.1.3 Logistic Regression

As with Naive Bayes, the goal of logistic regression is to estimate P(c|d), but

the method for doing so is different. Logistic regression trains a classifier by

explicitly maximizing the likelihood of h(β · d) for all documents d in the training

data, where h is called the hypothesis function. For logistic regression, h is chosen to

be the logistic link function

14

h(z) =
ez

1 + ez
=

1

1 + e−z
.

This function has range [−∞,∞] and a domain [0, 1], making it a convenient

approximation of a probability. In contrast to Naive Bayes, logistic regression

training involves optimizing β to maximize the likelihood of the training data.

Without going into detail about any particular optimization algorithm, the basic

idea is to start with some reasonable value for β (all zeroes is a common choice),

and to find a new value that results in a slightly better likelihood for the training

data, then to iterate until β cannot be significantly improved. This final stage of

the process is called convergence.

Convergence cannot be guaranteed, but this will not be a problem for most

classification problems. The main issues that prevent convergence are a poor choice

of parameters to a particular optimization routine, highly-correlated variables, or

too little training data, all of which can usually be fixed. In the first case, the

parameters must simply be tuned to the particular problem, and in the second case,

highly-correlated variables can often be identified using standard statistical methods

and collapsed into a single variable. The third problem is related to over-fitting, and

often results in a perfectly-separable training set—one for which it is possible to

perfectly classify every example.

To address this last problem, many practical implementations of logistic

regression restrict the values of β to be close to zero. This restriction is called

15

regularization, and it effectively combats over-fitting and the issue of too little

training data relative to the number of variables, but adds to the model complexity.

In general, logistic regression with regularization is an excellent tool for text

classification. It can obtain significantly better accuracy than Naive Bayes

classification using the same training and test data, but can still be trained

relatively efficiently (depending on the chosen optimization algorithm). Since the

final product of training with a logistic regression classifier is the same as that for

Naive Bayes—namely a parameter vector β, the method and time required to

classify a new document are essentially the same. Furthermore, the value p = β · d′,

where β is derived using logistic regression, is a much better approximation to the

probability that d′ belongs to a class than the same value calculated using a β

derived using Naive Bayes.

The next section briefly introduces the specific logistic regression

implementation used by this project: lasso logistic regression—which is just logistic

regression with a particular regularization strategy.

Lasso Logistic Regression

A standard way to implement regularization is to impose a prior Gaussian

distribution with mean zero and small variance on each parameter βj. Finding the

maximum a posteriori (MAP) estimate of β is then equivalent to ridge regression [4]

with the logistic link function. From an optimization perspective, this approach can

16

be thought of as adding a penalty on the absolute magnitudes of the β terms.

Making a particular βj larger (or smaller) may increase the likelihood of the data,

but the improvement must be balanced against the decreased likelihood of the

parameter itself.

Genkin, Lewis, and Madigan propose a similar approach [3], but instead of a

Gaussian prior, they suggest a Laplace prior with mean and mode both equal to

zero. In contrast to the Gaussian prior, the Laplace prior produces more βj

parameters that are exactly equal to zero for the same amount of prior variance (a

parameter), yielding stronger regularization and a sparser β vector, which combats

overfitting when the training set is small, and can provide an alternative to feature

selection (discussed in section 2.2). Genkin et al. call this approach lasso logistic

regression, after the LASSO technique introduced by Tibshirani for linear

regression, which used a least squares estimate subject to a constraint on the sum of

the absolute values of the β parameters.

To find the MAP estimate of β with a Laplace prior Genkin et al. propose a

modified form of the CLG convex optimization algorithm [11] developed by Zhang

and Oles. CLG is a cyclic coordinate descent algorithm, which means that it

optimizes the objective function one parameter at a time, holding all other

parameters constant. Multiple iterations through all parameters are carried out,

with a check for convergence at the end of each iteration. Because the optimal value

for each parameter depends on the other parameters, and these are constantly

17

changing, only a single update is carried out on each parameter per iteration. Upon

convergence, the dot product of the β vector and a new feature vector x gives a

point estimate of the log likelihood that x is a positive instance of the target class.

2.1.4 Other Classification Algorithms

There are many classification strategies and variations beyond the two

presented in the previous sections. This section briefly describes a few alternatives

that might have worked in place of Naive Bayes and logistic regression, but which

were passed over because they were a bad fit for some aspect of the project.

The first alternative classification algorithm investigated was support vector

machines (SVMs) [9, p 256], which share a great deal in common with logistic

regression, but take a different theoretical approach to achieve what amounts to

regularization. Support vector machines try to find a hyperplane that separates the

two classes of training examples while maximizing the margins between the

hyperplane and the examples closest to it from both classes. SVMs have been shown

to be extremely effective text classifiers [5], but they offer only moderate

improvements over good logistic regression implementations despite greatly

increased complexity and training time. As discussed further in Chapter 3, training

performance was a major concern for this project, and consequently the additional

complexity to implement and time to train an SVM was deemed too great a cost for

the expected marginal increase in accuracy.

18

The second alternative considered and discarded was a neural network with

hidden nodes [9, p. 246]. Such a neural network usually has one input node for each

variable, one or more layers of some number of hidden nodes, and one output node

for each possible class (two in the case of text classification with two classes). Each

node uses a function to map its inputs to a single output value (the logistic function

is a popular choice to accomplish this), then feeds those outputs to each node in the

next layer, applying a different weight for each destination node. Training modifies

the weights used for each edge connecting two nodes to maximize the likelihood of

the training data. Classification is accomplished by feeding the values of a new

instance into the input nodes, propagating them through the network, and choosing

the class represented by the output node with the largest final value.

Perhaps the most important benefit of neural networks is that they exhibit

low bias, and can effectively learn any function given a suitably-large training set.

They pay for this benefit, however, with a much more expensive training phase

(again, relative to logistic regression), and a less theoretically-motivated

parameterization. There are only general guidelines by which to set up the actual

topology of a neural network, and it is unclear how many hidden nodes should be

used to train a text classifier for an arbitrary problem. In practice, the topology to

use for a particular problem is usually determined by experimentation, but in this

case it would be unreasonable to expect a user of Yioop to try different network

topologies in order to train a classifier for the class of interest.

19

The third and final approach considered was actually a class of algorithms

called ensemble methods. These methods attempt to combine the results of several

different classifiers on the same input in order to balance out the strengths and

weaknesses of each. There is compelling evidence that ensemble methods generally

produce results that are no worse than those of their best constituent classifier, and

much better on some inputs [2, p. 376], but the extra accuracy comes at the cost of

extra time spent training and running multiple classifiers for each class.

Nonetheless, ensemble methods are a very promising avenue for improving

classification accuracy; they were passed over only because there was insufficient

time to implement and experiment with them.

2.2 Feature Selection

Feature selection is simply the process of choosing those features (i.e., terms in

text classification) that best predict the class of an instance, and completely

ignoring all other features. It has been shown that the text classification task rarely

benefits from reducing the number of features used, but that good feature selection

can result in only a minor loss in accuracy [10]. The primary reason to discard

features is to drastically reduce both training and classification time by restricting

an instance to only a very small subset of its original features. Additionally, using a

limited feature set with the Naive Bayes algorithm can make it into a better soft

classifier [2, p. 348].

20

There are a number of statistics that attempt to measure how informative a

feature is [10]. This project uses the χ2 measure, which computes the lack of

independence between terms and the classes of documents that they appear in. If a

term is highly dependent on some class, then it is considered to be informative, and

ranked higher than a term which is not dependent on any class. The least

informative term is one which occurs the same number of times in documents of all

classes. The χ2 measure of informativeness for a term, t, and class, c, is defined as

χ2(t, c) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)
,

where A is the number of times that t occurs in documents belonging to class c, B is

the number of times t occurs in documents that do not belong to class c, C is the

number of documents belonging to class c that do not contain t, D is the number of

documents that do not contain t and do not belong to class c, and N is the total

number of documents. The informativeness for a term irrespective of class is defined

as the maximum over all classes (an alternative would be to use the average across

classes).

Having computed this measure for each term, only sufficiently informative

terms are selected for use in training and classification, where the cutoff may be

specified either as a fixed number of terms ranked by decreasing informativeness, or

as a threshold on the value of the χ2 measure. Provided that the statistics that the

measure relies on are maintained for the data set and do not have to be computed

21

online, the complexity of the algorithm is the product of the number of terms and

the number of categories.

2.3 Pool-Based Active Learning

The primary goal of this thesis is to extend Yioop to allow a user to create

arbitrary classifiers and use them in a crawl. Because creating a useful classifier

requires at least a moderately-sized set of labeled training examples, a necessary

step toward achieving that goal is providing some means to acquire labeled

examples. This is often one of the more challenging aspects of machine learning in

practice, though an adequate set of labeled examples is an assumption in most

machine learning research.

The simplest approach is to ask the user to provide all examples as input to

the system, but this places the maximum burden upon the user—a reliably bad

idea. Instead, the user could collaborate with the classification system to find

training examples, an approach called active learning. Given a body of unlabeled

documents to draw from, the classification system can choose documents that it

would like labels for, and present these to the user for labeling. Newly-labeled

examples are used to improve the classifier until the user either tires of labeling

documents or is happy with the classifier’s accuracy. As the former case is more

likely, the document selection process should attempt to maximize the benefit

derived from each requested label.

22

As a baseline, consider selecting documents at random. With this scheme, the

document selected at step i depends on the document selected at step i− 1 only in

that it cannot be the same, taking minimal advantage of previously-labeled

documents. One way to take better advantage of the existing labeled training set is

to select documents that a classifier trained on it has trouble classifying. At a

minimum, basing the next selection off of a classifier trained on the current training

set implies that each new labeled document affects following selection decisions.

The effect is expected to be positive because knowing the true label for

difficult-to-classify documents should have the best chance of improving the

classifier. In contrast, asking for the true label of a document about which the

classifier is already confident is unlikely to yield much new information about the

class of interest. The challenge, then, becomes identifying those difficult-to-classify

documents.

McCallum and Nigam propose pool-based sampling, which stands in contrast

to stream-based sampling, where documents are considered in order, and once

passed over will never be considered for labeling again. Pool-based sampling instead

repeatedly scans the entire pool of unlabeled documents, looking for the single

“best” one to request a label for. This approach places nearly all of the burden of

finding documents to label on the classification system rather than on the

user—usually a desirable arrangement.

Both the stream-based and the pool-based approach require a precise

23

definition of how “difficult” a document is to classify in order to choose the “best”

one. McCallum and Nigam suggest employing a Query-by-Committee (QBC)

strategy, which works by classifying the same document with several

slightly-different classifiers (the committee) and selecting those documents for which

there is the most disagreement among committee members. Others have suggested

QBC before, and it has been shown to successfully identify documents which, when

labeled, improve classification accuracy beyond what would have been achieved with

randomly-selected documents.

To measure disagreement between the k committee members m1,m2, . . . ,mk,

McCallum and Nigam propose Kullback-Leibler divergence to the mean [7]. Each

committee member m first produces a distinct discrete class distribution Pm(C|d)

for a document d, where C is a random variable over the possible classes (in the

simplest case c and ¬c). Then KL divergence to the mean measures the certainty of

disagreement between the members by computing the mean KL divergence between

each distribution and the mean of all of the distributions:

1

k

k∑
m=1

D(Pm(C|d) ‖ Pavg(C|d)),

where Pavg(C|d) is the mean class distribution amongst all committee members:

Pavg(C|d) =
1

k

k∑
m=1

Pm(C|d).

KL divergence, D(· ‖ ·), is an asymmetric measure of the difference between

24

two distributions, usually interpreted as the extra bits of information that would be

required to send messages sampled from the first distribution using a code

constructed to be optimal for the second distribution. Given two discrete

distributions P and Q, each with n components, the KL divergence between them is

defined as

D(P ‖ Q) =
n∑
i=1

P (i) ln
P (i)

Q(i)
.

Once the KL divergence to the mean has been computed for each document in

the pool of unlabeled documents, the document with the largest

divergence—indicating the greatest disagreement—is selected to be labeled next.

McCallum and Nigam suggest, however, that this procedure tends to prefer

documents which might be thought of as outliers from the other documents in the

pool. They propose augmenting disagreement with density, which attempts to

capture how similar a particular document is to other documents in the pool.

2.3.1 Density-Weighted Pool-Based Sampling

Under this scheme, the best candidate for labeling is the one with the

maximum product of density and disagreement—the document which strikes a

balance between being difficult to classify and being representative of other

documents. The “overlap” between two documents is approximated by the

exponentiated negative KL divergence between their respective word distributions:

25

Y (di,dh) = e−γD(P(W |dh)‖λP(W |di)+(1−λ)P(W)),

where W is a random variable over words in the vocabulary, P(W |d) is the

maximum likelihood estimate of words sampled from document d, P(W) is the

marginal distribution over words, λ is a parameter that specifies how much

smoothing to apply to the encoding distribution (to handle the case that a word

occurs in dh but not in di), and γ is a parameter that specifies how “sharp” the

measure is. Note that the negative sign in front of the sharpness parameter, γ,

converts a larger KL divergence into a smaller exponential, and thus a smaller

overlap value.

The density, Z, of a document di is simply the geometric mean of the overlap

between di and each other document dh in the document pool D:

Z(di) = e
1

|D|
∑

dh∈D lnY (di,dh).

Calculating densities in this manner for each document in the pool is much more

expensive than computing the per-document disagreement values because every

document must be compared to every other document, resulting in a number of

computations of the KL divergence between two documents that is quadratic in the

pool size. The extra work has, however, been shown to result in an extra five to

eight percentage points of accuracy over using just disagreement to select the same

number of documents for labeling. The effect is especially dramatic when the

26

number of labeled documents is small, suiting the density-weighted pool-based

method to cases where the cost of labeling a document is especially high (e.g., when

it is expected that the user will not want to label many documents). This is the

expectation for users training novel web page classifiers, and so density-weighted

pool-based sampling appears to be a good fit for this project.

2.4 The Yioop Framework

The final section of this chapter briefly describes the major components of the

Yioop framework in preparation for the discussion of the project requirements,

which were heavily influenced by Yioop’s capabilities and limitations. The

classification task—especially the collection of training examples—looks quite

different when embedded within a web framework and made accessible to a user

who is not expected to have any expertise in machine learning or information

retrieval. Indeed, in combination with the goal of catering to a novice user, the

restriction to a web application environment had the greatest impact on the overall

design and implementation of the final classification system. As such, an awareness

of Yioop’s structure will be integral to understanding the decisions made

throughout the rest of the thesis.

Yioop is a web application written in the popular PHP scripting language,

with as few external dependencies as possible. Being a web application, it requires

an operational web server, and users are expected to connect to this server via a

27

web browser to carry out most administrative tasks. Yioop also has a large

collection of libraries and a few executable scripts to perform less interactive tasks,

such as crawling and indexing web pages. These computationally-intensive tasks are

designed to be distributed across multiple computers, each equipped with a Yioop

installation, and coordinated by a single master called the name server.

Like any web application, Yioop is best divided at a high level into server-side

and client-side components. The following subsections consider each of these

collections of components separately, starting with the client side.

2.4.1 Client Side

Yioop performs the vast majority of its work on the server, only using the

client (a web browser) to provide a graphical interface for changing settings,

managing web crawls, and so on. Yioop builds this graphical interface using

standard HTML and CSS, so Yioop’s client side consists of primarily-static HTML

generated by PHP scripts and completely-static CSS and JavaScript files.

In most cases, the client connects to the server to request a page, and the

server responds with HTML, which in turn specifies other resources such as CSS

and JavaScript files that the client will need. Once the web browser has fetched

these extra resources and rendered the page, the user interacts with it in the

browser, filling in text fields, toggling radio buttons, and so on; the web browser

does not communicate with the server at all during this time. When done with the

28

task at hand, the user clicks a “submit” button, and the browser sends a form

containing the user’s modifications (and perhaps some hidden values passed along in

the original HTML) to the server.

The form values, and the URL to which the form is sent, are the primary

means the client (and thus the user) has of effecting change on the server. Critically,

the server keeps no state between connections from a particular client, so each time

the client connects, the server must reestablish—either from scratch, or from some

serialized form that had been previously saved to disk—any data structures it needs

in order to carry out the task put to it by the client. This limitation of the

underlying HTTP protocol has a large impact on the time that it takes to build a

classifier, as well as on the overall design of the process.

2.4.2 Server Side

Yioop’s server-side components are considerably more complex than its

client-side ones, owing to the rather complex nature of crawling, indexing, and

querying web sites; they break down roughly into controllers, models, views,

libraries, and executables. Controllers handle requests made to the server, and may

be thought of as collections of related functions, where each function serves as an

entry point to the application, similar to the main function of a standard C

executable. These entry points are called activities, and each activity is responsible

for processing and responding to a specific kind of request.

29

Activities carry out their duties primarily by manipulating models and

libraries to change the application state, then passing the new state into a view,

which is responsible for generating the HTML sent back to the client. Libraries

serve the familiar purpose of grouping together related functions, and models are

classes with the specific task of providing an interface to manipulate persistent

objects, stored either in a database or in a normal file on disk. Finally, executables

are scripts that run independently of the web server, and their primary purpose is to

carry out web crawls.

Instances of two separate executables coordinate to perform a crawl: queue

servers and fetchers. Fetchers are—naturally enough—responsible for fetching and

processing web pages, while queue servers are responsible for maintaining the list of

web pages to be crawled, coordinating the activities of the fetchers, and integrating

the fetchers’ work into a master index. Usually there will be one queue server per

machine involved in a crawl, and several fetchers per queue server. All

communication between machines is coordinated by the name server—the same

machine that users connect to in order to administer Yioop and make queries. The

name server is thus the hub of the entire system and a single point of failure, but

because it is usually only serving web pages, responding to requests, and passing

messages between queue servers and fetchers, in a multi-machine environment it is

typically under relatively light load. Nearly all of the heavy work of connecting to

remote servers, processing web page text, building indices, and processing queries is

30

pushed off to the queue servers and fetchers on other machines.

31

Chapter 3

Requirements

Recall that the primary goal of this thesis is to augment Yioop with the

capability to be taught to recognize complex document properties, and to

appropriately assign those properties to crawled documents using the meta word

mechanism. It should be more than simply possible to teach Yioop to recognize new

document classes, though. It should be relatively easy for a user familiar with

Yioop’s administrative interface to do so. Toward that end, users should be able to

leverage Yioop’s existing indices and its web interface to find examples and use

them to train a new classifier. After building a new classifier, it should also be

relatively easy to use Yioop’s web interface to begin a crawl that uses it.

In order to meet these goals, the classification system must satisfy each of the

high-level criteria listed below (these are just general criteria—in each case details

will be provided in the sections that follow):

• It must be effective. Provided a sufficiently-representative training set, the

classifier should classify new documents with reasonable accuracy.

• It must be efficient. Classifying documents during a crawl should not

significantly reduce the number of documents that may be fetched per hour.

32

• It must be responsive. When the user is building up a new classifier, the

delay between any action the user performs and a useful response from the

system should be small.

• It must be usable. Beyond being responsive, the system should be usable by

a novice after reading some brief documentation. A new user familiar with

Yioop’s crawl process should be able to create and use a new classifier.

Additionally, the system should permit recovery from mistakes when

labeling documents.

The following sections discuss each of these criteria in detail. It is difficult to

derive concrete targets for most of them, but at a minimum some notion of a range

of reasonable behavior is provided for each, as well as suggestions for quantitatively

measuring on a relative scale how well the system performs on a particular criterion.

Thus, for example, while it might not be possible to say how responsive the system

is on an absolute scale, it should at least be possible to say how a specific change to

the system affects its responsiveness.

3.1 Effectiveness

Classification effectiveness (i.e., accuracy) is widely reported for specific data

sets, and so it is often possible to place a classifier’s effectiveness on an absolute

scale. Furthermore, Yioop provides a facility for indexing records stored in custom

formats in text files and databases, making it relatively easy to import existing data

33

sets, classify them, and compare the results with those reported in the literature.

Doing this with the final classification system should yield accuracy in the

neighborhood of the best reported results.

It is unlikely that classification accuracy will climb quite as high as the best

results because the system must be implemented in PHP, and due to this and other

factors discussed in section 4, must sometimes sacrifice accuracy in exchange for

responsiveness and efficiency. Most reported results, on the other hand, come from

classifiers implemented in C or C++, where training time is not limited, and the

primary goal is to maximize accuracy. Having extra time to train on a large data set

often means better accuracy, and this is especially the case when employing

optimization methods such as those used by logistic regression. Furthermore,

previous research has shown that some machine learning approaches are simply

better-suited to text classification, and it may be that the final classification system

cannot use the best approach due to other constraints.

In any case, for most text classification problems involving a small number of

classes it is common to achieve at least 80% accuracy, and so that should be a

target for the final system. In general, accuracy should be within a range of five to

ten percent of reported results for a particular problem.

34

3.2 Efficiency

Classification of web pages is a useful addition to Yioop that should not come

at the cost of significantly degrading its performance on any of its core tasks. For

example, it would be unacceptable for classifying web pages at crawl time to reduce

the number of pages crawled per hour by fifty percent. As the cost of classification

decreases, however, it becomes harder to judge whether or not it is acceptable.

Would a ten percent reduction in throughput be too much? Five percent?

It is difficult to choose any particular number ahead of time as the dividing

line between success and failure. The true test is whether an actual job that

requires classification may be feasibly carried out using the final system. As a very

rough guide, however, adding classification probably should not reduce crawling

throughput by more than ten percent. This requirement is easily tested by

measuring the time that it takes to index the same set of documents with and

without classification. The same test will suffice to determine how changes to the

classification system affect efficiency.

3.3 Responsiveness

Like efficiency, responsiveness is hard to quantify, but often “you know it

when you see it.” Training a classifier—especially on more than a few hundred

examples—is an expensive operation, and so it is reasonable to expect a noticeable

delay between the time that training starts and the time that it completes. The

35

more interactive process of searching for and labeling training examples, on the

other hand, should probably not involve large delays lest the user grow frustrated.

Unfortunately, there is an inherent conflict between optimizing work such as picking

the best document to label next, and responsiveness. A successful classification

system must balance the two objectives, reducing the user’s work without taking

too long to do so.

At the very least, any necessary delay should be communicated to the user, for

example by displaying a “loading” message that updates periodically. This strategy

only carries one so far, though, and at some point the user will grow frustrated

whether informed of a delay or not. Thus there are practical limits on how long any

computation may take during the more interactive classifier construction phase, but

it is hard to say exactly what those limits are. The standard thirty second execution

time limit on PHP processes started by the web server provides a reasonable upper

bound, but this is probably already more than most users’ patience can bear.

Again, although it is difficult to concretely specify what constitutes “success,”

one can at least measure a proxy for responsiveness and seek always to improve it to

the extent that it can be done without negatively impacting other criteria. One

reasonable proxy is simply the time between initiating an action and seeing the

desired consequence of that action (e.g., the time between labeling a document and

being presented with the next document to label). This value can often be

approximated by measuring the time between sending a request to the server and

36

receiving a response.

3.4 Usability

If efficiency and responsiveness are difficult to set expectations for, then doing

so for usability is perhaps too much to ask. The only test here is whether or not a

new user can read some brief documentation (i.e., a few paragraphs) and then use

the system to classify documents of interest to that user. Nonetheless, there are

some universal usability guidelines that do not require quantitative validation, and

the design of the classification system should take these into account.

First, as mentioned previously, the user should be able to recover from

mistakes when labeling documents; that is, the user should be able to change the

label assigned to a document, and to remove labeled documents from the training

set. Second, when performing heavy computational work, the system should notify

the user so that it is clear nothing has gone wrong. Finally, and perhaps most

importantly, work that the user has performed (e.g., labeling documents) should be

safe from loss under all but the most extreme circumstances.

These are only guidelines, and while it is possible to verify that the

classification system follows them, there is no guarantee that doing so will make it

usable. Regardless, one must plan for usability to the extent that one’s foresight

allows; these guidelines are an important part of the project requirements, and

should be considered in the design. After all, an efficient, effective classification

37

system has little practical utility if users cannot reliably employ it to classify

documents.

38

Chapter 4

Design & Implementation

This chapter describes the design and implementation of the classification

system that was motivated by the goals developed in the introduction, and the

requirements outlined in chapter 3. First, the system design is sketched out at a

high level, and then each component is described in greater detail. The description

of a component is itself further divided into two topics: its design, and its

implementation. These two topics were interleaved rather than separated into

individual chapters in order to highlight the motivations behind each

implementation decision without being repetitive or taxing the reader’s memory.

4.1 System Overview

At a high level, the design of the classification system breaks down into four

major components, each one largely independent of the others:

• managing the creation and deletion of classifiers,

• building a training set for a classifier,

• training a classifier,

• and using one or more trained classifiers in a crawl.

39

Before describing each of these components in detail, it will be helpful to first clarify

what a classifier in this system actually looks like. Because building a new classifier

requires a lot of work, a classifier’s representation is independent of any particular

crawl, and any other classifier. If a user has built an excellent classifier for

identifying advertising material, he or she should be able to use that classifier over

the course of several crawls. Furthermore, the user should be able to—at the same

time—make use of another classifier that identifies pages containing partisan

rhetoric. If, on the other hand, a particular crawl calls for just one classifier, then

the user should be able to select it without discarding the work done to create the

other. Thus classifiers are first-class entities with an interface for suggesting new

documents to label, adding labels to documents, and classifying new documents. In

concrete terms, a classifier is an instance of a class with associated persistent data

stored on disk.

For simplicity (mostly in the document labeling interface, but the decision

impacts the representation of a classifier in general), all classifiers are binary—each

one may be trained to recognize only the presence or absence of a single class. Thus

each classifier decides whether a given document is a positive instance of the class,

or a negative instance. This is not a trivial limitation, for it provides no means to

distinguish between dependent and independent classes. As an example, a user

might want to identify different news categories such as entertainment, sports, and

finance, where each category is mutually exclusive with the others. With only the

40

capability to create multiple binary classifiers, it is possible that some documents

might be classified as belonging to both the entertainment and the sports categories,

whereas the user would prefer that those documents be classified only as the more

likely of the two. Such a preference could be accommodated relatively easily by

providing a way to group classifiers together, but that feature was left for future

work.

Managing Classifiers

The presentation of classifiers just given—as independent entities that persist

between crawls, and that have the well-defined job of deciding between the presence

or absence of a class in a given document—suggests a fairly standard create, read,

update, delete (CRUD) interface for managing them. When users select the

“Classifiers” activity tab in the Yioop administrative interface they are presented

with a listing of existing classifiers. Each classifier in the list may be selected for

editing or deletion, and a text box is provided to enter the label of a new classifier.

The “create” and “delete” operations proceed as one would expect for nearly any

persistent entity, but the “edit” operation is much more involved.

Building a Training Set

The page dedicated to editing a classifier provides a mechanism to change the

classifier’s label and view some of its relevant details, but the bulk of the interface is

geared toward helping users find and label example documents in order to improve

41

classification accuracy. This is one of the more complex aspects of the classification

system, and it will be discussed in detail further on, but from the user’s perspective

it amounts to selecting an existing index (from a previous crawl) to draw documents

from, and marking each in a series of documents as either “in the class” or “not in

the class.” In addition to specifying an index, the user may also provide a query

that documents must match in order to be considered for labeling.

Each time the user labels a document, the classifier is re-trained and the pool

of unlabeled documents is re-evaluated to identify the next best candidate for

labeling; this candidate is then presented to the user. Instead of choosing a label,

the user may skip a document, in which case the classifier is not re-trained, and the

next best candidate is selected. In either case, the record representing the old

document is updated to reflect the decision, and shifted down to make room for a

new record. The old record remains visible and active, however, so that the user

may either change the label or retroactively skip the document, thus allowing

recovery from mistakes, as discussed in section 3.4.

Training a Classifier

Each time a fixed number of new documents are labeled, the classifier checks

its own accuracy by splitting its labeled examples into a larger training set and a

smaller test set, training on the training set, then checking its accuracy on the test

set; this is done several times—each time with a different split of the data—and the

42

average accuracy obtained is presented to the user. When satisfied that the classifier

is accurate enough, the user can finalize it, which results in one last round of

training on the full set of labeled examples. This step may take a while, but once it

has completed the user is free to use the trained classifier in a crawl.

Using Classifiers

Over time, a user might build a number of accurate classifiers, any subset of

which are relevant to a particular crawl. Because classifiers do not interact with one

another, including an extra classifier in a crawl does not impact the performance of

any other classifier, but it does reduce crawl-time efficiency, unnecessarily working

against the criterion established in section 3.2. To help prevent this situation, there

is a simple mechanism for selecting the classifiers to be used for the next crawl: a

list of check boxes, one per classifier, where a selected box indicates that the

associated classifier should be used. Because this list is specific to a crawl, rather

than to a classifier, it does not appear on any of the normal classifier pages. Instead,

the list is available to the user on the “Page Options” page, which provides

administrators with options for configuring how fetched pages will be processed

during the next crawl.

Once a set of classifiers has been chosen, and the other crawl parameters set

appropriately, a new crawl using the selected classifiers can begin. The current

configuration for each active classifier is sent to the fetchers, where it is used to

43

construct a classifier instance that will remain in memory for the duration of the

crawl. After a fetcher downloads and processes a page, as a final step it gives the

active classifiers a chance to label it. Each classifier computes an approximate

probability that the page belongs to its class, and if this estimate exceeds a

threshold then the classifier adds the appropriate meta word to the record for that

page. These meta words are associated with the page in the index, and may be

searched for later to limit query results to the pages associated with those meta

words.

The following four sections dive into the details behind the design and

implementation of each major component just outlined.

4.2 Managing Classifiers

The system for managing the creation, viewing, and deletion of classifiers is

quite simple, and most of its design with regard to operation was covered in the

overview. It does remain, however, to describe how classifiers are represented in

memory and stored on disk.

4.2.1 Design

The entity that until this point has been referred to as a classifier is in fact a

container class for all of the data required to carry out the training and application

of a classification algorithm. In addition to the data, each classifier instance also

maintains references to one or two instances of classes that implement the actual

44

classification algorithms. This arrangement facilitates the use of two different

classification algorithms for the different tasks to which they are suited without

duplicating data or complicating the code that makes use of a classifier. These two

different tasks are, roughly, searching for the next document to label when building

an example set, and actually classifying new documents at crawl time. The former

task requires a very efficient classification algorithm that might sacrifice some

accuracy, while the latter task has no serious time constraint, and benefits from

maximum accuracy.

Classifiers1 are stored on disk as directories of files containing serialized and

sometimes compressed data. Storing classifiers in a directory structure makes them

easy to back up and copy between machines, while splitting them across several files

allows for partial reconstitution, depending on the task they are required for.

For example, when classifying at crawl time, a classifier has no need of the

huge matrix of example data that it uses during training to estimate the β vector

discussed in section 2.1.2; it would thus be a tremendous waste—both of resources

and of time—to load that matrix into memory during classification. A similar

argument applies when listing all classifiers on the main classifiers page, where only

the most basic summary information about each classifier is required. A simpler

design would reconstitute each classifier in its entirety, including several megabytes

of training data, the full vocabulary, the β vector, and so on.

1 That is, the containers mentioned previously. The class that actually implements an algorithm
such as logistic regression will be referred to generally as a “classification algorithm.”

45

4.2.2 Implementation

When a user clicks on the “Classifiers” activity tab in Yioop’s web-based

administrative interface, a request is sent to the name server, and ultimately routed

to the new manageClassifiers2 activity in the AdminController class. This

activity scans a directory on disk for any existing classifiers, unserializes the

appropriate skeleton files describing each classifier, and passes the aggregated

summary information off to a view, which generates HTML to display the list of

classifiers and their basic information. This HTML is embedded in Yioop’s generic

administrative template (which provides HTML to display the header, activity tabs,

and so on), and the result is finally sent back to the client, where it is rendered into

the page that the user sees. When the user submits the form to create a new

classifier, or clicks the link to delete a classifier, this same basic execution path is

followed, except that in the former case a new, empty classifier instance is

constructed and saved to disk, and in the latter case the appropriate directory on

disk is deleted.

In memory, each classifier is an instance of the Classifier class, which

provides a simplified interface to manage the training set, to select a new document

for labeling out of a pool of unlabeled documents, and to both train and use two

different kinds of classification algorithms. The training set is maintained internally

as a sparse matrix3 where the rows represent documents and the columns represent

2 A monospace font is used to indicate the name of a class, method, or other entity taken directly
from the project source code. This convention is used throughout the rest of the report.

3 That is, as a map from row indices to maps from column indices to values, rather than as, for

46

terms, plus a vector of labels for the documents. Within this matrix (and

elsewhere), terms are mapped to numeric indices to make more efficient use of

memory and to simplify checks for equality; each classifier has its own instance of a

Features class responsible for keeping track of the mapping between the two sets of

indices. The Features instance also keeps track of feature and label statistics, such

as how often a given feature appears in documents with a given label, and how

many documents overall have a particular label. These statistics are maintained as

new documents are added to or removed from the training set so that they may be

queried efficiently.

The pool of unlabeled documents is simply stored as an array, but some

parallel structures are also maintained in order to facilitate more efficient

calculation of document densities. Finally, each classification algorithm is

represented as an instance of a subclass of the ClassificationAlgorithm class. It

may seem strange that an algorithm should be instantiated, but this is done to keep

the algorithm’s free parameters and the β vector computed during training in a

single place for serialization. All of these properties of a classifier are

persistent—that is, they are stored on disk between requests.

The directories that represent a classifier on disk are named after the class

labels of the classifiers they store. Thus the labels must be unique, and given a

example, a vector of vectors. Under the former scheme, zero entries are left out of the maps, so
that an m × n matrix of zeroes would take up O(1) memory, instead of O(mn) memory, as would
be the case under the latter scheme. A sparse vector is represented similarly, as a map from indices
to values.

47

label, the associated classifier can be efficiently found on disk and reconstituted.

Whenever classifiers are first created or loaded from disk they contain only

summary information such as the class label, the total number of examples in their

training sets, and their last estimated accuracy. The extra data stored on disk (such

as the matrix representing the training set, the Features instance, etc.) must be

explicitly loaded by calling the appropriate classifier method; there are several

related methods for this purpose—each one tailored to prepare the classifier for a

particular activity, such as training or classification. When the classifier is stored

back to disk, only the files relevant to the current activity are written to.

At present there is no attempt to guarantee that operations on classifiers are

atomic, and this could certainly cause issues if several users attempted to work with

the same classifier on the same instance of Yioop, all at the same time. As an

example, it is possible to lose information if two users submit requests to add a new

document label sufficiently close together. Should one request arrive before the

earlier request has written the modified classifier back to disk, the second request

will read in stale information, nullifying the first request’s effect when it eventually

writes its own view of the classifier to disk. This and a number of similar conflicts

that can occur when operations on classifiers are carried out concurrently limit the

system, in practice, to a single user.

48

4.3 Building a Training Set

Building a representative set of example documents for a particular class is

every bit as important as choosing a powerful learning algorithm, for even the best

algorithm cannot learn how to recognize a class without being exposed to examples

of the variation amongst documents that belong to it. Since it is a major goal of

this project to—as much as possible—relieve users of the responsibility to find

examples, this component of the classification system will play a major role in its

overall success or failure. The following subsections describe the interface that the

system exposes for finding and labeling documents, as well as the work that occurs

on the server to actually identify candidate documents for labeling, choose the next

document to be labeled, and keep track of the labels that a user assigns.

4.3.1 Client-Side Design

As mentioned briefly in the overview, the interface for building a training set

can be found on the classifier “edit” page, and this is where users will spend most of

their time when creating a new classifier. The top of the page provides some

summary information and a place to change the class label, but the rest of the page

is dedicated entirely to finding and labeling documents. This process begins with

the selection of a Yioop crawl index to draw examples from, and an optional query

that selected documents must match.

Using existing indices as a source for documents has several advantages. First

49

and foremost, indices can be efficiently queried, which allows users to quickly and

easily narrow down the pool of candidate documents to those matching one or more

words. This capability can be very helpful early on, since presumably the user can

make some informed guesses about which words are likely to be good indicators for

a class. A user trying to find examples of documents containing advertising might,

for instance, search for phrases such as “one weird trick” or “limited offer”. Another

advantage of using indices is that they provide a convenient and uniform way to

group, store, and access documents; furthermore, there is already a mechanism built

into Yioop for importing and indexing records from a variety of formats (e.g., data

base records, specialized archive formats, and plain text files).

Having selected an index and optionally specified a query, the next step is to

decide between bulk and manual labeling. The former case is simpler, and is useful

if one already has a training set for a particular problem. In this case, all candidate

documents (i.e., documents in the index that optionally match a query) are given

the same label—specified by the user as either positive or negative. To take

advantage of this method, the user would import the positive examples from the

training set into one index, and the negative examples into another,4 then perform

two bulk labeling operations, one for each index. Bulk labeling may take a while if

there are a lot of candidate documents, but it is extremely efficient relative to

manual labeling. Of course, this is only possible because the examples have already

4 Or, alternatively, add a special meta word to each example specifying whether it is positive or
negative. Then the positive examples can be selected by specifying the positive meta word as the
query.

50

been pre-sorted into positive and negative groups; usually this will only be the case

for data sets used as benchmarks for machine learning research.

Manual Labeling

The more common case will be that a user wants to build a classifier for some

novel class, and has no preexisting set of examples to leverage. This is the scenario

that active learning (introduced in section 2.3) was developed for, the goal being to

reduce the number of documents that the user must label by always selecting for

labeling the candidate document that the classifier can learn the most from. If active

learning is working well, then the classifier should be able to gain more accuracy

from each document added to the training set than if documents to be labeled were

selected randomly. From the user’s perspective, however, the interface is the same.

After selecting an index, specifying an optional query, and choosing manual

labeling, the user is presented with a record summarizing the first document to be

labeled. The record includes the document title, its URL,5 a summarized

description (similar to the brief description one sees under each search result on

Google and other popular search engines), and whether the current classifier thinks

this document is in the class of interest or not, and with what confidence. To the

left of the record, the user is presented with three buttons: “in the class”, “not in

5 For simplicity, the term “URL” here is used somewhat loosely. Because Yioop supports crawl-
ing archived records stored in databases and other files, not every document has a URL such as
“http://www.example.com”. Instead, some documents may have a string of the form “record:hash”,
where the hash uniquely identifies the record.

51

the class”, and “skip”. Clicking one of these options sends the user’s choice—paired

with the document’s unique identifier—to the server.

The server adds the document and its associated label to the training set,

re-trains the classifier on the improved training set, selects the next document to be

labeled, and sends it back to the client (i.e., the web browser), where the display is

updated. The record for the just-labeled document is shaded according to the choice

the user made, and pushed down to make room for the new record. Because the old

record is still visible, the user may change its label or retroactively skip it at any

time, causing a new request to be sent to the server to update the classifier

accordingly.

JavaScript and Asynchronous Requests

Manually labeling documents is the most interactive aspect of building a

classifier, and as such it is important that its interface is both responsive and easy

to use. Normal HTTP requests are not suited to highly interactive communication

between the client and server because they require the interface on the client to be

rebuilt from scratch with each new request. Doing this for each document labeled

would not only waste time on the client, it would create extra work for the server,

which would have to repeatedly generate a lot of HTML that remains the same

between labeling operations (such as the administrative frame, the form for

changing the class label, and so on).

52

Fortunately, modern web browsers support JavaScript, Document Object

Model (DOM) manipulation, and the XmlHttpRequest object, which enables

JavaScript code to make asynchronous requests to the same server from which the

JavaScript was served, and read the server response, all without reloading the page.

These resources together make it possible to write web pages that operate much like

desktop applications. The JavaScript code on these pages captures common events

such as button clicks, suppresses the default action, and instead makes an

asynchronous request to send some data (such as the label selected for a document)

to the server; the code then parses the server’s response to determine how to update

the client display. The interface for finding and labeling documents makes heavy use

of this pattern in order to improve responsiveness. In fact, the only operation on the

classifier “edit” page that causes it to be reloaded is changing the class label.

4.3.2 Client-Side Implementation

The implementation of the client interface for building the training set is not

particularly germane to this thesis, being more suited to a discussion of web design.

A brief sketch of the organization will, however, benefit the reader’s overall

understanding of how the classifier system fits into the Yioop framework.

Yioop consists mostly of static pages containing forms that are filled out on

the client and sent to the server, causing a new page to be loaded. Most of the

classification system does not deviate from this behavior, but the interface for

53

labeling documents certainly does. The JavaScript that implements this interface

resides in a single static file that is linked to the classifier “edit” page as a resource.

When the page is loaded, that file is requested, parsed, and executed by the web

browser. This initiates a JavaScript thread of execution that continues to run until

the page is navigated away from or reloaded. That thread takes care of sending

requests for new documents to label, displaying the record associated with a

document, shifting old records down, and sending new labels back to the server.

These requests are sent to a special ClassifierController that does not output

HTML, but instead responds to requests with data encoded in JavaScript Object

Notation (JSON).6 Thus the data sent back and forth between the web browser

and the server is drastically reduced relative to what would be required if a new

page were sent and rendered each time the user labeled a document.

The JavaScript that manages the interactive aspects of the client interface is

complemented by a small collection of additions to the global style sheet that Yioop

uses to style its bare HTML. These additions specify of a variety of small visual

tweaks, such as changing font sizes and colors, setting the background color for

document records that have been marked as positive or negative examples, and

setting the spacing between elements.

6 The JSON format has a similar purpose to XML in that it is designed to be easily machine-
readable, but unlike XML, it can be parsed by evaluating it as JavaScript—a facility built into every
modern web browser.

54

4.3.3 Server-Side Design

Each request made to the server to ask for the next document to be labeled,

or to add a label to a document, results in a flurry of activity and computation that

eventually settles down into a relatively compact response. Usually this response

contains a concise summary of the next document selected for labeling, and updated

classifier statistics such as the number of positive and negative examples, the

estimated accuracy, and the number of documents remaining in the candidate pool.7

Generating such a response requires a series of computations

that—unfortunately—can easily add up to an unacceptable delay on the client. As

a representative example, using density-weighted pool-based document sampling

(see section 2.3.1), the server must work its way through the following steps in order

to select the first document to be labeled from the candidate pool generated by

choosing a new index and query:

(1) Load the relevant classifier into memory from disk, including the matrix

representing all training documents, the vector of training labels, the

Features instance responsible for mapping between terms and feature

indices, and an instance of the Naive Bayes classification algorithm that has

been previously trained on the current training set.

7 Recall that the candidate pool consists only of those documents in the currently-selected index
that also optionally match a query. Thus the candidate pool may be quite large or quite small,
depending on the size of the selected index and the specificity of the query, if any.

55

(2) Create a new iterator for traversing through the documents in the selected

index that match the provided query, if any, and iterate through these

documents, checking each one against the set of existing training documents

(using a unique key), and removing any duplicates.

(3) Compute the density of each remaining candidate document, requiring

approximately N2 computations of the KL divergence between two

documents, where N is the size of the candidate pool.

(4) Create a small committee of new classification algorithm instances, each one

with a slightly different β column vector.

(5) For each candidate document, first classify it with each of the committee

members, then compute the disagreement between them. Multiply this

disagreement score by the document’s density score, and keep track of the

document with the largest product of the two.

(6) Use the current classification algorithm to classify the best candidate.

(7) Output the selected candidate and relevant statistics for the current

classifier.

The user has nothing to do while waiting for this process to complete, so in

order to maintain responsiveness, it is important that these operations be carried

out as quickly as possible. Many of them, however, do not take a constant amount

56

of time, and instead scale with either the number of candidate documents, or the

size of the existing training set. For example, if the training set contains several

thousand labeled documents, it can take quite a while to load all of those from disk

and into memory. Similarly, if there are several thousand candidate documents,

classifying each one a small number of times can add up to a significant delay, and

computing densities takes even longer.

Early experiments made it clear that PHP is not up to the task of carrying

out all of these operations on an arbitrary number of documents, and identified the

document density calculations as the limiting factor. With an empty training set,

loading fifty candidate documents and selecting the first document to be labeled

takes just under two seconds, while loading two hundred candidates takes a little

under twenty-two seconds. The latter delay is getting close to the default thirty

second PHP execution time limit for web requests, and regardless, is too long to

make a user wait for useful feedback. Furthermore, these delays represent the best

case, since there is no large training set to load from disk, and no expensive training

phase to be carried out, as when adding a new document label. It thus became clear

early on that the pool of candidate documents would need to be constrained to a

maximum size, certainly less than two hundred documents, and that speed would be

of primary importance in the design of the server-side procedure for selecting

documents for user labeling.

The remainder of this section breaks the description of the server-side design

57

SERVER CLIENT

Candidate
pool d4

Training
set

Feature
map

d1

d2

d3

d4

1, 2, 5, 6, 9, 11
4, 5, 6, 8, 9, 11

2, 3, 6, 7, 8, 13

1, 3, 4, 7, 8, 10

1

-1

-1

-1

, , … ,
d5

, ,
d12 d7 d7

,
d8

1

2

3

4

5

<d4, -1>

d4

d7

Figure 4.1: An overview of the labeling system. The darker gray boxes indicate state
before a user adds a new label, and the lighter gray boxes indicate state at the end
of the labeling operation. The circled numbers give the order of operations, starting
after the user clicks a link to mark the document d4 as not in the target class. On the
server, d7 is moved to the front of the candidate pool, replacing d4, which is converted
to a feature vector and placed in the training set. On the client, the record associated
with d7 takes the place of the (now-old) record for d4, pushing it down the page.

down into four parts: first, selecting documents to label; second, keeping track of

document labels; third, estimating classifier performance as the training set grows;

and last, feature selection. Figure 4.1 provides a high-level overview of the labeling

process, to be used as a reference throughout the discussion. It depicts the relevant

structures on the server and the client, and how they change when a user labels a

new document.

58

Selecting Documents to Label

Selecting documents for the user to label requires—at a minimum—a pool of

candidate documents. The classification system fills this pool from an iterator over

documents that come from the user-selected index, that optionally match a query,

and that have not been labeled already. Yioop has a convenient mechanism for

iterating over documents matching a query, so the classification system only needs

to take care of filtering out documents that have already received a label. Such

documents can occur in the iterator stream because two iterators created for

different queries (or even twice for the same query) have no memory of documents

that have been iterated over before.

Conveniently, a classifier has just such a memory in its collection of training

documents. Each document is uniquely identified by its URL, so by storing

documents in a hash table keyed by document URL, the classifier can efficiently

look up whether a given document has already been labeled. Any document in the

iterator stream that is also in the hash table is simply skipped. Note that this

system does not keep track of documents the user has manually skipped, since these

documents are never added to the training set; consequently it is quite possible for a

user to skip a document, then enter a new query and see the same document again.

This behavior may sometimes be annoying, but it is also useful because it allows

users to skip a document without making a final decision.

Iterating through candidate documents in this manner leverages Yioop’s

59

existing indices and web interface to help users find examples, but it does not

reduce the number of documents that the user must label in order to achieve a

target accuracy. To make progress toward that goal, the classification system uses

density-weighted pool-based document sampling, as discussed in section 2.3.1. A

small committee of k Naive Bayes classifiers is sampled once, then used to measure

the disagreement for each candidate document; this disagreement score is multiplied

by the document density, and the document with the largest product of

disagreement and density is selected for labeling.

The committee uses the Naive Bayes classification algorithm because it is

efficient, and it is possible to sample its β vector from the Dirichlet distribution

specified by the existing training data. This is accomplished by, for each term ti,

drawing weights from two Gamma distributions—Gamma(1 +N(ti, pos), 1) and

Gamma(1 +N(ti, neg), 1)—where N(ti, pos) is the number of times that term ti

occurs in positive examples, N(ti, neg) is the number of times it occurs in negative

examples, and the counts are incremented by one to smooth features that do not

occur at all in one class or the other. These drawn weights are treated as the new

counts for each feature, and used in the usual way to build the β vector for the

instance (see section 2.1.2).

As discussed previously, calculating candidate document densities takes time

quadratic in the size of the candidate pool, so the pool must be limited to a

maximum size, set by a constant. The larger this constant, the farther out into the

60

full stream of candidate documents the search for the best candidate can go, but the

longer it will take. Thus the maximum pool size captures a trade-off between

helpfulness and responsiveness. Ideally, it should be set so as to minimize the

number of documents that the user must label to obtain a desired accuracy, subject

to the constraint that the time to select a document never exceeds the PHP

execution time limit or the user’s patience. If the number of candidate documents is

larger than the pool size, then each time a document is labeled and removed, it is

replaced by a new candidate and the document densities of all candidates are

recalculated (because the removal of one document and addition of another will

usually change the probability of seeing each term).

Managing Labeled Documents

The second half of building the training set is keeping track of the labels that

the user assigns to documents, as well as the documents themselves. Each classifier

maintains two separate sets of documents: the pool of candidates for labeling, and

the training set, which contains all labeled documents. The candidate pool is

frequently cleared out and replenished as the user labels documents and changes the

index or query used to identify candidates. The training set, on the other hand,

generally only grows as documents from the candidate pool are labeled and

subsequently migrated over.

When a user first selects a label for a document in the web browser, a request

61

containing the document’s URL and the selected label is sent to the server. The

server removes the associated document from the candidate pool (replenishing the

pool if there are more candidates), adds the document’s terms to the Features

instance that keeps track of the vocabulary, and stores a transformed version of the

document—along with its label—in a hash table keyed by the document’s URL.

The transformed document is a binary feature vector—represented sparsely—where

the indices correspond to terms, and a value of one or zero indicates a term’s

presence or absence, respectively. These feature vectors are essentially the rows of

the matrix X defined in section 2.1.

When a user changes a document’s label, as opposed to adding a label for the

first time, the training set is updated to reflect the new label, and the classifier’s

Features instance is updated as well, to maintain accurate counts for each of the

terms that the document contains (since, for example, each term in the document

may have changed from appearing in a positive example to appearing in a negative

example). The process for retroactively skipping a document is similar, the main

differences being that a row is removed from the training set altogether, and rather

than just being shifted around, the counts maintained by the Features instance

strictly decrease.

62

Gauging Classifier Performance

In addition to updating the candidate pool, updating the vocabulary, adding a

new example document to the training set, and finding the next document to label,

each time a new document receives a label the server also trains several instances of

the Naive Bayes classification algorithm on the newly-augmented training set. The

Naive Bayes instances thus trained are used to classify the next document selected

for labeling (to give the user some insight into the classifier’s current bias for a given

document), and to provide an estimate of the accuracy that can be expected from a

classifier trained on the current training set. Naive Bayes is used instead of logistic

regression because there is already a lot going on, and the optimization step

employed by logistic regression would simply take too long to justify the extra

accuracy. This is not the classification algorithm that will ultimately be used to

classify new web pages—just a tool to help the user gauge how useful the current

training set is.

The current training set’s quality is estimated by setting aside a

randomly-selected fifth of its documents as a test set, then training a new Naive

Bayes instance on the remaining documents. The trained instance is used to classify

the documents in the test set, and the accuracy is recorded. This process is

repeated four times, each time rotating the previous test set into the new training

set, and an equal-sized section of the previous training set into the new test set. At

the end, all documents in the full training set have been used for both training and

63

testing, and the mean of the recorded accuracies serves as a proxy for the usefulness

of the overall training set. This measure is very noisy when the training set is small,

but becomes more reliable as the number of documents in the test sets grows.

Feature Selection

The preceding sections have often mentioned training a classification

algorithm on the current training set, but this is in fact a simplification that glosses

over a non-essential, but practical, extra step. As mentioned in the introduction to

text classification (see section 2.1), a lot of problems have a vocabulary containing

as many as ten thousand distinct terms, and this can be a problem both for training

and for classification, depending on the algorithm used. A large number of features

simply slows training down, and while this is not a serious problem for the Naive

Bayes algorithm, it can severely limit the practicality of logistic regression,

especially when time is at a premium.

Naive Bayes, on the other hand, is very sensitive to a large number of features

when classifying a document. The independence assumption tends to overvalue the

contributions of individual features, so that the consideration of a large number of

features biases the probability estimate to one extreme or the other. This behavior

often does not go so far as to make the classifier wrong, but it does make it

overly-confident. That undue confidence can, in turn, harm the effectiveness of the

disagreement measure used to select documents for labeling, since nearly every

64

document garners maximum disagreement.

A simple approach to combat both of these negative effects resulting from a

large number of features is to get rid of some of them, and this is exactly what the

classification system does before actually running any classification algorithm over

the training set. Specifically, the top N most informative positive and negative

features according to the χ2 feature selection algorithm are kept, and all other

document features are ignored. The number N should be a relatively small integer

(e.g., sixty) in order to both reduce training time for logistic regression and make

Naive Bayes a reasonable soft classifier.

This reduced feature set is another Features instance, derived from—but

independent of—the full feature set. The reduced set is used to sample the

committee for document selection, to train both the Naive Bayes and the final

logistic regression instances, and to classify new documents. In fact, the full feature

set is only kept around to maintain the term statistics used to select successively

better feature subsets as the training set grows. If, instead, only the most

informative features were kept each time a new example was added to the training

set, there would be no way for an initially-uninformative feature to gain ground over

time and eventually become an informative feature.

65

4.3.4 Server-Side Implementation

The concrete implementation details of the server-side process for building the

training set are, like the client-side details, relatively minor. The entry point for all

requests made by the client is the classify activity of the ClassifierController

class, referenced previously. This activity has two sub-activities reflected in the

structure of the previous sections: getdocs and addlabel. Both sub-activities begin

by loading the relevant classifier from disk, along with nearly all of its associated

data, and end by sending a JSON-encoded response back to the client. The

response always provides summary statistics for the classifier, whether they have

had reason to change or not, and the client always updates its display with these

potentially-new numbers.

Candidate documents are retrieved from an index using a crawl mix, which is

essentially an iterator over search results whose progress can be saved to disk,

making it possible to pick up iteration from where it left off on a previous request.

This interface is exactly what is needed to fill the candidate pool initially, then

replenish it as labeled documents are removed and placed in the training set. Crawl

mixes are stored in the Yioop database, so each time a new index or query is

requested by the client, the classifier activity deletes any previous crawl mix

record for the current classifier, and inserts a new one. The record for the last index

and query selected remains until the classifier is deleted, but it is never visible to

the user.

66

The committee size, k, used for measuring classification disagreement of

candidate documents is three; this number was adopted from McCallum and Nigam,

who found that larger committee sizes provide little benefit. The smoothing

parameter, λ, and the sharpness parameter, γ, used in the calculation of document

density are 0.5 and 3.0, respectively; again, these values were adopted from

McCallum and Nigam. The candidate pool is limited to fifty documents, based on

experimentation with how long it takes to calculate densities for that many

documents. For efficiency, the statistics—such as marginal word probabilities—used

to compute document densities are calculated once when the candidate pool is

initially filled, and updated incrementally as labeled documents are removed from

the pool and replaced by new candidates.

Standard PHP associative arrays are used as hash tables to store the

documents in the training set by key (recall that the key is the document URL), and

to store their labels as well. At most 250 randomly-selected documents are used to

estimate accuracy, resulting in two hundred documents being used for training, and

fifty for testing. This number was chosen by experimenting with the time that it

takes to run five training and testing rounds on that many documents. Finally, only

the top thirty and the top two hundred most informative features for documents are

used with the Naive Bayes and logistic regression algorithms, respectively.

67

4.4 Training a Classifier

Once a training set has been established for a class of interest, all that

remains to obtain a functioning classifier is a final round of training using the more

aggressive logistic regression algorithm. The classification algorithm’s output is the

column vector β such that, for a new document d′, β · d′ is a measure of the

likelihood that d′ is a positive instance of the class. This column vector is used

during a crawl to efficiently assign class labels to documents.

4.4.1 Design

Unlike the Naive Bayes text classification algorithm, which simply makes one

pass through the training data, and one more pass through each of the features to

build the vector β, logistic regression attempts to solve for the β that maximizes

the likelihood of the training data (see section 2.1.3). In practice, a solution to this

problem is always approximated by iteratively improving an initial guess for β,

where each successive improvement requires evaluating a function over the entire

training set. Consequently, logistic regression can often take a relatively long time

to converge on a solution. Nonetheless, the extra time is usually worth it, as logistic

regression often produces a more accurate classifier than Naive Bayes, and running

the logistic regression algorithm does not require any interaction with the user, so

responsiveness and usability are not a concern.

The primary concern, then, with letting logistic regression run to convergence

68

is hitting the execution time limit set by PHP—thirty seconds by default. In order

to avoid this limit, logistic regression, though initiated by a request from the web

client, must be carried out in a new training process that continues to run even once

the controller that initially handled the request has output its response and exited.

When this training process first begins it sets a flag on the classifier and saves it to

disk so that new requests will see that the classifier is currently being trained. After

logistic regression completes and the optimized β vector has been saved, the

training process removes the flag, signalling to future requests that the classifier has

been successfully finalized. The client takes advantage of this flag to periodically

check in with the server and update its display accordingly.

The specific algorithm used to maximize the likelihood of the training data is

lasso logistic regression using a Laplace prior, as presented in section 2.1.3. This

algorithm was shown to be particularly effective for text classification problems, and

has the benefit of being relatively easy to implement in PHP, since it requires no

involved matrix operations. The implementation was modified slightly from that

proposed by Genkin, et al. to use a “parameter sleeping” strategy that attempts to

avoid repeatedly updating parameters—components of the β vector—that appear to

have stabilized at some value. This is done because each parameter update step is

relatively expensive, and many parameters (even after feature selection) make only

a minor contribution to the overall log likelihood.

69

4.4.2 Implementation

Yioop already has a method for launching a new PHP executable from a web

request so that fetchers and queue servers may be started from the web interface.

The classification system uses this same mechanism to manage the training of a

logistic regression instance by adding a new executable script. The script takes the

name of a classifier as an argument, loads the appropriate classifier into memory,

sets the flag indicating that the classifier is being finalized, and initiates training on

the classifier’s logistic regression instance. A subset of the features are used in order

to limit training time to a few minutes. Once the logistic regression process

converges, the executable toggles the “training” flag off, and saves the trained

classifier back to disk. The value used to check for convergence and whether or not

a component of the β vector is sufficiently close to 0, ε, is set to 0.001.

4.5 Using a Classifier

Any finalized classifier may be used in a crawl by selecting its checkbox on the

“Page Options” page of Yioop’s administrative web interface. This final component

of the classification system resides on that page because it is specific to a single

crawl, whereas the other pages dealing with classification are for building classifiers

that might be used on many crawls. Once one or more classifiers have been selected,

starting the crawl will result in each crawled page being classified. If the score

computed by any classifier for a page exceeds a threshold, then a “class:label” meta

70

word (where label is the classifier’s name) is added to the page’s collection of meta

words.

4.5.1 Design

When the user selects one or more finalized classifiers and saves the “page

options,” a compressed, serialized representation of each selected classifier prepared

solely for classification (i.e., stripped of any resources used only during training), is

saved to the file of crawl options. When the crawl starts, these options are

distributed to the fetchers, where the classifiers are decompressed and unserialized.

Thus all fetchers have identical copies of each active classifier, and they only load

each classifier into memory once—at the start of a crawl.

During the crawl, after a page has been fetched and processed, it is passed in

sequence to each active classifier. If a classifier determines that the page belongs to

the class that the classifier has been trained to recognize, then it adds the

appropriate “class:label” meta word to it. Thus, as a single page is passed along the

chain of active classifiers, it may be marked as belonging to several independent

classes. Additionally, each classifier adds a sequence of related meta words that

represent the pseudo-probability that the page belongs to the class.

An example will serve better here than an explanation of the scheme. If an

“ad” classifier estimated that the probability of a particular page containing

advertising was .74, and the hard classification threshold were set to .5, the classifier

71

would add the meta words “class:ad”, “class:ad:50plus”, “class:ad:60plus”,

“class:ad:70plus”, and “class:ad:70” to the page. Later, a user could use these extra

meta words to search for pages that were classified as containing advertising with

successively higher levels of confidence (or, more usefully, to search for pages that

were not classified as containing advertising with high confidence). The final meta

word is included to make it possible to search for specific intervals, in addition to

anything over a particular threshold.

4.5.2 Implementation

The only fields of a classifier that are relevant to classification at crawl time

are the trained logistic regression instance and the reduced Features instance. The

latter is required to map the terms of a new page into a feature vector like those

used to train the classifier, and the former contains the β vector whose dot product

with the feature vector yields an estimated probability that the page belongs to a

class. In order to be considered an instance of a class, a page must have an

estimated probability of belonging to the class, p ≥ .5.

72

Chapter 5

Experiments

This chapter presents several experiments that were carried out to assess how

well the classification system meets three of the four main criteria developed in

chapter 3. The three criteria tested were effectiveness, efficiency, and responsiveness,

leaving out usability. As discussed previously, the system’s usability is difficult to

test quantitatively, and is not the primary focus of this project. Thus, instead of

testing usability with an experiment, a set of guidelines were developed and followed

in the design and implementation of the system. See section 3.4 for a discussion of

these guidelines, and the previous chapter for how they were incorporated into the

system’s design and implementation.

The remaining criteria were tested on a corpus of Internet advertisements [6]

built to investigate the possibility of automatically blocking certain advertisements

placed on content providers’ websites through advertising networks such as Google

AdWords.1 The advertisements placed on twelve different websites were collected

and shown to their corresponding content providers, who rated each on a 1–5 scale

of acceptability; any advertisement rated below three was labeled as unacceptable.

1 Content providers (e.g., blog owners, newspapers, special interest websites, etc.) often monetize
their efforts by signing up with advertising networks, which automatically place their customers’
advertisements on signed-up providers’ websites. The network collects money from a customer
wishing to place an advertisement, takes a cut, and pays the rest to the content providers on whose
websites the advertisement was placed.

73

Each advertisement is represented by text collected from the advertisement

itself, and from its landing page. All words were stemmed and additionally

annotated according to whether they were found in the advertisement text, or on

the landing page, either within the title or the headings. This corpus was chosen

because it is representative of the kind of data that Yioop can extract from websites

during crawls, and because detecting advertisements—especially some

advertisements and not others—is a motivating use cases for adding web page

classification to Yioop. Furthermore, the corpus authors also employed active

learning methods to train a classifier on the corpus, and their published results

provide a useful point of comparison to Yioop’s own active learning approach.

5.1 Experimental Setup

The following sections are divided according to the performance criteria that

they investigate. Each experiment uses the Internet advertisements corpus described

previously, which contains 4,143 instances of textual representations of

advertisements. Mesterharm and Pazzani used 3,000 instances for training and 1,143

for testing, repeating each experiment fifty times on fifty different permutations of

the data. Unfortunately, because Yioop’s classification system cannot comfortably

handle training on that many instances, the size of the training set in the

experiments presented here is limited to 500 instances, though the number of test

instances is kept the same. For similar reasons, each experiment is repeated ten

74

times on ten different permutations of the training and test data, instead of fifty.

Although Yioop’s classification system is implemented as a web interface, as a

practical matter the experiments are mostly carried out using a command-line tool

that automates the training and classification process. This setup will provide a

lower bound on those experiments that measure time as the dependent variable,

since directly manipulating the server state removes all of the overhead introduced

by the web browser, and by its communication with the server. In these cases, some

anecdotal evidence is given for the delay that the user can expect when using the

web interface to carry out an equivalent operation.

5.2 Effectiveness

Classification effectiveness is measured by the classifier’s error rate when

classifying test instances. The first experiment measures error rate as a function of

the number of training instances, where it is expected that the error rate will

decrease as the number of training examples increases. Both a lasso logistic

regression (with and without active learning) and a Naive Bayes classifier were run

on successively larger training sets, up to a maximum size of 500, with a reduced

feature set of the top two hundred most informative features selected according to

the χ2 algorithm. The Naive Bayes algorithm would not be used in practice to

classify web pages, but is shown here for comparison with the lasso logistic

regression implementation. With each addition of ten new training documents, each

75

0.1

0.2

0.3

0.4

0 100 200 300 400 500
Training Set Size

E
rr
or

Algorithm
Active LR

Logistic Regression

Naive Bayes

Figure 5.1: Classification error by training set size, using lasso logistic regression (with
and without active learning) and Naive Bayes classifiers. The ribbons are bound by
the lower and upper quartiles of the distribution of error observations at each test
point, and the points are the means. Note that the y-axis reaches its minimum at .1,
and not at zero.

classifier was used to classify all 1,143 test documents, and the error rate recorded.

The results of ten different runs with ten different permutations of the training and

76

test data were averaged, with the results shown in figure 5.1.

Mesterharm and Pazzani report error rates starting at approximately .4 for as

few as ten training instances, and dropping down to approximately .1 for 3,000

training instances. Because the lasso logistic regression implementation that the

Yioop classification system employs cannot efficiently train on the full 3,000

instances, and even with fewer instances uses feature selection and other

optimizations in order to cut down on training time, it is expected that the error

rate achieved at each step will be somewhat worse. This expectation is borne out by

the figure, which shows that logistic regression approaches an error rate of .18 as the

number of training instances reaches five hundred. While certainly not ideal, this is

an acceptable error rate considering the relatively small size of the training set, and

good enough to be useful for classifying web pages. It is interesting to note that

while the Naive Bayes algorithm ultimately falls behind logistic regression, it stays

very close up to a little under two hundred training instances, and is consistently

slightly better. This behavior is likely due to the logistic regression algorithm

overfitting to the relatively small number of training examples despite regularization.

Logistic regression with active learning appears to—on average—provide a

clear benefit over the other algorithms when the training set is very small (less than

100 documents), but rather quickly loses its edge, and appears to converge with

logistic regression without active learning. This behavior is likely due to the

relatively small candidate pool that Yioop’s active learning algorithm presently

77

uses—only fifty documents. With the current strategy and pool size, the active

learning algorithm never has more than a 49-document lead over the other

algorithms, and as the size of training set grows this advantage appears to become

less valuable. Either increasing the pool size, or throwing away some portion of the

pool on each iteration in order to draw in more documents (a hybridization of the

online and pool-based approaches) would likely help the active learning algorithm

maintain its lead.

5.2.1 Feature Selection

The classification system uses feature selection with the Naive Bayes

algorithm in order to make it a better soft classifier, and with the logistic regression

algorithm to speed up training time. Feature selection rarely—if ever—reduces the

error rate, but it can often significantly reduce training and classification time

without greatly increasing the error rate. A second experiment was carried out to

see how expanding or reducing the feature set affects the error rate. The setup is

essentially the same as the first experiment, but with a maximum of only 250

training documents, and the classification algorithm fixed to logistic regression. Five

separate trials were conducted with classifiers limited to using the top 25, 50, 100,

200, and 400 most informative features; again, each trial was repeated ten times,

and the results averaged to create figure 5.2.

There is no clear benefit to adding more features. All of the error rates are

78

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250
Training Set Size

E
rr
or

Features
25

50

100

200

400

Figure 5.2: Classification error by training set size, for several logistic regression
classifiers (trained without active learning) using successively more features. Note
that the y-axis reaches its minimum at .1, and not at zero.

fairly close throughout, but with one hundred features showing a small advantage

early on, and two hundred taking the lead when there are 250 documents in the

training set. Using four hundred features appears to yield slightly worse

79

performance than using either one or two hundred, but the gap narrows as more

documents are added. Using less than one hundred features seems to be clearly

worse throughout. These results suggest a policy of using as many features as

possible, subject to the constraint that they do not make training and classification

too costly. To maximize performance for training sets of all sizes, it may be

beneficial to use more aggressive feature selection for a new classifier, and gradually

increase the number of allowed features as examples are added.

5.3 Efficiency

Having determined that the lasso logistic regression classifier is effective, the

next question is how much it slows down the crawl process. Classifying documents

using either the Naive Bayes or the lasso logistic regression classifier should be

efficient since both algorithms simply convert an incoming document to a feature

vector and compute its dot product with the β column vector. Thus to the extent

that crawling is slowed down, it should be a function of the number of features in

the β vector, which is controlled by feature selection. The more features that are

used to train the final classifier, the longer it should take to classify a page.

In order to explore the effect of classification on crawl times, a third

experiment was carried out using three otherwise-identical lasso logistic regression

classifiers trained without active learning, and with the maximum number of

features set to 50, 200, and 400, respectively. These classifiers were used to classify

80

documents during three separate crawls, all over the same set of documents, and the

average time to process a fetched page recorded. As a baseline for comparison, a

fourth crawl with no classification was performed. Because there is no way to

automate the crawl process, this experiment was not repeated.

Table 5.1: The time to process a single fetched page without classification, and using
three classifiers trained with 50, 200, and 400 features, respectively.

Features None 50 200 400
Time per page (s) 0.0030 0.0033 0.0034 0.0040

As table 5.1 makes clear, the extra overhead from classification at crawl time

is insignificant. One could easily classify web pages using several classifiers, each

trained with several thousand features, and the impact on the number of pages

crawled per hour would be negligible. Thus, given a trained classifier, adding labels

to documents via meta words at crawl time is efficient and perfectly viable.

5.4 Responsiveness

The final criterion to measure quantitatively is responsiveness in the interface

for manually labeling documents. Recall that when the user submits a request for a

new document to label, or to provide a label for a document, the server must do a

lot of work that depends on the size of the candidate pool, the size of the training

set, and the amount of feature selection. The user has nothing to do while waiting

for the server to respond, so it is important that it respond relatively quickly.

81

The major contributors to this response time are loading a classifier from disk,

refreshing the candidate pool, selecting a new candidate, training a Naive Bayes

instance on the updated training set, and saving the classifier back to disk. As

discussed in section 4.3, the most significant factor among these is refreshing the

candidate pool, since doing so requires calculating new candidate document

densities. This operation takes time quadratic in the number of candidate

documents, which completely dominates all other operations. Figure 5.2 illustrates

this point by measuring the time to load a new candidate and the time to label a

document while varying the size of the candidate pool.

Table 5.2: The time to load a new candidate and label a document with document
pool sizes of 50, 100, and 200.

Pool Size Load Time (s) Label Time (s)
50 1.59 1.60

100 5.61 5.39
200 21.52 20.61

Note that the time to label a document is approximately the same as the time

to load in an initial document set. This is because both operations require

refreshing the candidate pool and calculating document densities. The labeling

operation is perhaps slightly faster because it only adds a single new document to

the candidate pool before calculating densities, rather than having to fill the pool

entirely. As more documents are added to the training set, the times listed in

82

table 5.2 will increase due to the necessity of loading more data in from disk and

training Naive Bayes on a larger training set, but they will continue to be

dominated by the density calculations.

83

Chapter 6

Conclusion

The Yioop web page classification system exhibits classification performance

close to published results for the same data set, and can be used without

significantly slowing down the crawl process. Thus, at the very least, provided that

the user can build a representative training set, the resulting classifier should be

accurate enough to be useful. In order to help build such a training set, a web

interface is provided to guide the user through identifying candidate documents and

adding labels to them. The back end to this interface searches through a pool of

candidate documents on the user’s behalf, and attempts to identify the document

for which having a label would most improve accuracy.

Yioop’s facility for searching and iterating through arbitrary crawl indices

provides an excellent foundation for labeling documents, and demonstrates how

well-suited the search engine environment is to the task of building training sets.

Not only does it provide a convenient means for the user to direct the search for

example documents, it provides the classification system with a way to store and

access those documents, which it would otherwise have to do itself. Moving beyond

training, the search engine is also an excellent place to apply classification, as it

essentially provides a steady stream of new documents to label, and a convenient

84

mechanism—meta words—to store assigned labels for future use. Thus the search

engine and classification system have a kind of symbiotic relationship, where the

search engine provides a framework for managing documents, and the classification

system (with the user’s help) augments that framework with the capability to

identify complex document properties.

6.1 Future Work

One of the benefits of Yioop’s administrative web interface is that multiple

users can access it at the same time in order to carry out different tasks. Presently

however, as discussed in section 4.2, the way in which classifiers are stored to disk

can result in unexpected, nondeterministic behavior if two users attempt to modify

a classifier at the same time. One way to resolve this issue would be to introduce

finer-grained control over what gets saved to disk, so that two users could

coordinate the collection of training examples. Another approach would be to

attach a notion of ownership to classifiers, so that only one user would ever have

write access; a generalized facility for managing access to resources in the Yioop

framework is presently being investigated by another graduate student.

With regard to classification itself, lasso logistic regression appears to achieve

good accuracy, but is limited by its expensive training time as the size of the

training set (either the number of examples or the number of features) grows. A

promising alternative approach to training a logistic regression classifier on a large

85

training set is stochastic gradient descent, which works by repeatedly updating the

β vector in order to maximize the likelihood of individual, randomly-selected

training examples [1]. This method requires far fewer passes over the entire training

set, but after an appropriate number of iterations, still approximates an optimal

solution to the logistic regression problem.

Finally, the present system is limited to making independent binary

classification decisions on crawled documents, which makes it impossible for two

classifiers to assign mutually exclusive labels. This decision simplifies the interface

for building a single classifier, but restricts the overall space of classifiers that may

be created. As mentioned in section 4.1, one way to maintain the simplicity of the

current interface, yet enable the creation of mutually exclusive classifiers, would be

to provide a mechanism to group classifiers together. This could be implemented,

for example, by enabling a classifier to be specified as a meta classifier composed of

other classifiers. Given a document to label, the meta classifier would poll its

constituents and combine their decisions according to a chosen rule. This same

mechanism could be used to implement more complex ensemble classifiers, as

discussed in section 2.1.4.

86

Bibliography

[1] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[2] S. Büttcher, C. Clarke, and G. Cormack. Information retrieval: Implementing
and evaluating search engines. The MIT Press, 2010.

[3] A. Genkin, D. Lewis, and D. Madigan. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49(3):291–304, 2007.

[4] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[5] T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. Machine learning: ECML-98, pages 137–142, 1998.

[6] C. Mesterharm and M. J. Pazzani. Active learning using on-line algorithms. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 850–858. ACM, 2011.

[7] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of english words. In
Proceedings of the 31st annual meeting on Association for Computational
Linguistics, pages 183–190. Association for Computational Linguistics, 1993.

[8] F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

[9] P. Tan et al. Introduction to data mining. Pearson Education India, 2007.

[10] Y. Yang and J. Pedersen. A comparative study on feature selection in text
categorization. In Machine Learning: International Workshop then Conference,
pages 412–420. Morgan Kaufmann Publishers, Inc., 1997.

[11] T. Zhang and F. J. Oles. Text categorization based on regularized linear
classification methods. Information retrieval, 4(1):5–31, 2001.

87

