A summary on
Chapter 15: Web Search
Chapter 16: XML Retrieval

By Akshat Kukreti
Web Search

- Web pages are gathered by a Crawler and stored by the search engine.
- The snapshot of the web is refreshed on a regular basis.
- Web graph: Sites contain many web pages that link to web pages in other sites.
- Indexable web: Those pages that should be considered for inclusion in a general purpose web search engine.
Web Search

• Navigational queries, Informational queries, Transactional queries.

• Ranking
 – Static rank during indexing process
 – Dynamic rank = Static rank + query-dependent features (term proximity, frequency)
Web Search

• PageRank of a page depends on
 – PageRank of pages that have outgoing links to it
 – PageRank of sinks (pages with no outgoing links).

• On applying the PageRank formula we get a system of linear equations with number of variables = number of pages.

• Fixed point iteration
 – Guess the value of variables, apply to right hand side.
 – Iterate till the change in values from iteration to iteration drops below a certain value.
Web Search

• Extended PageRank
 – Uses Jump vector for random jumps
 – Uses follow matrix $F[i,j] = \text{probability of reaching page } j \text{ from page } i \text{ when following a link.}$

• PageRank variants
 – Personalized PageRank: High jump velocities to pages of personal interest (Bookmarks etc.).
 – Topic-oriented PageRank/Focused PageRank: High jump probabilities to pages that are related to a topic.
Web Search

• Web Crawlers
• Download web pages, extract links from them and do the same with the extracted links.
• Issue: Scale and speed of the crawl process.
• Crawler must download pages concurrently from multiple sites.
• Avoid re-downloading pages and retry if download fails
• Respect the wishes of the site it visits. Robots.txt
• Should not interfere with the normal functioning of the website it visits.
• Maintain a Priority Queue of Indexes for crawling and re-crawling (Updating the index).
Web Search

- Components of a Crawler

1. URL
2. Domain Name Translation
3. Robots Exclusion
4. Download
5. Post processing
6. Priority Queue
7. Cache
8. Archive

THE WEB

URL/IP Address

Page

URLs
Yioop! Search Engine software

• An open source search engine software developed in PHP.
• Uses it’s own web archiving format for scalability.
• Provides users with a web-based and a function API.
• Uses the multi-curl library (written in C language) for multithreading.
Yioop! Search Engine Software

- Managing fetcher and queue server through Yioop!'s web interface and command line interface
Yioop! Search Engine software

• Yioop!’s model
• In a distributed setup, each node has a web server running.
• **Name Server**: The node that is the coordinator for crawls.
• **Queue Servers**: Processes that manage indexing and scheduling jobs
• **Fetchers**: Processes responsible for downloading of web pages.
Yioop! Search Engine software

- Name server setup
Yioop! Search Engine Software

• Yioop!’s model contd...

• Fetchers ping name server to get the current crawl and the list of queue servers.

• Fetchers then request queue servers for messages and schedules in a round-robin manner.

• Schedule: Data to process

• Messages: Control information
Yioop! Search Engine software

• Yioop!’s model contd..
• Queue servers generates schedules
• Fetchers process the schedule and POST the results (summaries of web pages) to the queue server’s web server
• The data is written to a set of received files.
• The queue server then merges the results with the index.
• Queue servers maintain the Priority queue of URLs
Yioop! Search Engine software

- Detects if a website is congested. If yes, slows down the crawling of the site.
- Supports domain name caching
- Allows users to dynamically change crawl settings. For example, adding new seed sites to an active crawl.
XML Retrieval

• XML header:
 • `<?xml version = “1.0” encoding = “UTF-8”?>`
 • `<article journal = “IEEE TKDE” volume = “9” number = “2” year = “1997”>`

• `<name/>` Empty element tag

• Element name
• Value
• Attribute
• Attribute, Value pair
XML Retrieval

- As XML elements nest, they can be viewed as a tree.
- An XML retrieval is framed as a tree-matching or path-matching problem.
- XPath, NEXI and Xquery
XPath

• Provides a standard notion for specifying sets of elements and other nodes in XML documents.
• Path expressions specify sets of document elements.
• /article/body/section (top level sections)
• /article/body/section/section (level two sections)
• Predicates
 – /article/body/section[2] (second section in document order)
 – //section/title (all section titles)
NEXI

• XPath does not support ranked retrieval.
 – Exact match semantics like Boolean algebra and Region algebra
 – Uses contains
 • //article//section[contains(.,dogs)]

• NEXI (Narrow Extended XPath I)
 – Narrows path expressions to a subset of those included in Xpath
 – Provides extension for ranked retrieval
 – Replaces contains with about
 – //article//section[about(.,dogs)]
 – Allows path elements to be combined using Boolean operators “and” and “or”.
 – Supports wildcards in path expressions.
XQuery

• Extends Xpath with facilities for manipulating and transforming XML documents.
• Allows dynamic construction of XML documents. The output itself is an XML
• XQuery operations operate on ordered sequences of nodes and values.
• FLWOR – for, let, where, order by, return.
Indexing and Query Processing

• XML Indexing and query processing problems not handled by region algebra
• Recursive nesting of elements
 – //section/section
• Direct containment relationships
 – /article/body/section/p
• Extended Inverted List ADT
 – (start, end, depth)
Indexing and Query Processing

• Methods
 – `first(term)`
 • Returns first tuple
 – `last(term)`
 • Returns last tuple
 – `next(term, current)`
 • Returns first tuple starting after current position
 – `prev(term, current)`
 • Returns last tuple starting before current position
Ranked retrieval

• Queries represented as term vectors
 – <“text”,”compression”>

• Queries represented as path expressions
 – /article/body/section[about(./title,”memory requirements”)]

• Strict interpretation
 – Return only top level sections.

• Loose interpretation
 – Return sections, subsections and so on...
Ranked Retrieval

• Content-only task
 – Ranking elements according to term vectors

• Content-and-structure task
 – Ranking elements according to path

• Method
 – Ignore about function and rank based on term vectors