
Yioop Full Historical Indexing In 
Cache Navigation

Akshat Kukreti



Agenda

• Introduction

• History Feature

• Cache Page Validation Feature

• Conclusion

• Demo



Introduction

• Project goals

– History feature for enabling access to all versions 
of cached pages

– Cache page validation feature using ETags and 
Expires

• Experiment to determine effect on crawl speed and 
bandwidth



History Feature

• Search engines often maintain caches of web 
pages

• Link to cached version displayed along with 
search results

• Only latest version of cached page is 
accessible

• History feature displays links to all cached 
pages.



History Feature

• Step 1: Modified Yioop’s cache request and 
output code

– If a cached page is not present for a given 
timestamp, find the nearest timestamp that has a 
cache.



History Feature

http://www.yioop.com/?YIOOP_TOKEN=tY2g3exv6nM|1369213911&c=se
arch&a=cache&q=walmart&arg=http%3A%2F%2Fwww.walmart.com%2F&i
ts=1355768914



History Feature

• Step 2: Modified links within cached web 
pages so that they follow Step 1

– Modification done is similar to that done by the 
WayBack Machine. 

– WayBack Machine uses JavaScript.

– History Feature modifies links during link 
canonicalization



History Feature



History Feature

• Step 3: Implemented History UI

– Displays links to all versions of cached pages with 
Day and Time

– User can change Year and Month to view links



History Feature



Cache Page Validation Feature

• ETags: Unique identifiers associated with web 
resources

– Part of HTTP

– When a web resource is modified, the ETag is 
changed

HTTP/1.1 200 OK 
Content-Type: text/html 
Last-Modified: Mon, 24 Dec 2012 08:54:24 GMT 
Accept-Ranges: bytes 
ETag: "4455a945b4e1cd1:0"
Date: Wed, 22 May 2013 10:25:10 GMT Content-
Length: 2292



Cache Page Validation Feature

• ETag  headers: Tacked on to HTTP header 
when making a request
– If-Match: “etag”

• If “etag” matches ETag of requested resource, entire 
resource is downloaded

• Otherwise, Status 412 Precondition failed is returned 

– If-None-Match: “etag”
• If “etag” matches ETag of resource, resource has not 

been modified

• Status 304 Not Modified is returned by the server



Cache Page Validation Feature

• Expires header: Tells when a web resource will 
expire.

HTTP/1.1 200 OK 
Date: Wed, 22 May 2013 10:58:05 
GMT Server: Apache 
Accept-Ranges: none 
Cache-Control: max-age=86400 
Expires: Thu, 23 May 2013 10:58:05 GMT
Vary: Accept-Encoding 
Transfer-Encoding: chunked 
Content-Type: text/html; charset=UTF-8 



Cache Page Validation Feature

• ETag experiment with PHP, cURL, and ETag 
headers



Cache Page Validation Feature

• Yioop’s components

Name Server



Cache Page Validation Feature

• Step 1: Modified Fetcher code

Queue Server

Fetcher
Download web pages

Extract ETags, Expires header

Robot Data
Index Data
Cache Page Validation Data



Cache Page Validation Feature

• Disk access experiment

– Queue Server URL fetch batch size = 5000

– Data structure for cache page validators should be fast 
to lookup 5000 entries among millions of URLs

– Storage issues

• No limit on ETag length

• Limit on maximum file size depends on file system

– Performed experiment with 5000 lookups on a 2GB 
file with 4 byte offsets. 

• Total time taken = 0.22 seconds (lower bound)



Cache Page Validation Feature

• Data structure for storing ETags and Expires 

– B-Tree

• High branching factor reduces  tree height

• Reduced height means reduced number of disk lookups

• Scalable with large number of keys



Cache Page Validation Feature

• B-Tree implementation for storing ETags and 
Expires

– ETags and Expires headers stored as key-value 
pairs

– Key = hash(URL) using Yioop’s hash function

– Value = ETag and Expires timestamp

– Each node can have up to 1000 key-value pairs



Cache Page Validation Feature

Node Id

keys = array(array(key1, array(ETag, Expires)), 
array(key2, array(ETag, Expires)), …)

Links = array(child1_id, child2_id, …)

B-Tree node for cache page validation feature



Cache Page Validation Feature

• Step 2: Modified Queue Server code

Queue Server

Periodically save ETags and Expires headers

Lookup ETags and Expires headers 
using URL during fetch batch 
creation

Fetcher

URLs to be downloaded



Cache Page Validation Feature

• Queue Server pseudo-code



Cache Page Validation Feature

• During Fetch batch creation



Cache Page Validation Feature

• Fetcher pseudo-code



Cache Page Validation Feature



Cache Page Validation Feature

• Experiment to see if the cache page validation 
feature is feasible
– Performed web crawl

– Number of pages crawled = 100, 000

– Using Yioop’s default set of seed sites

– Page re-crawl frequency = 3 hours

– Two Queue Servers and two Fetchers on a single 
machine

• One crawl each for Yioop without cache page 
validation, and Yioop with cache page validation



Cache Page Validation Feature

• Experiment 1: Comparison of average time taken 
by Queue Server to create fetch batch

– Noted down the time taken by the cache page 
validation feature and compared with time taken by 
Yioop without cache page validation 

– Conclusion: B-Tree lookup took 14 seconds on average 

• Serialization/de-serialization in PHP

Without cache page validation With cache page validation

0.8 seconds 14 seconds



Cache Page Validation Feature

• Experiment 2: Determining savings in 
bandwidth

– Noted down URLs that weren’t scheduled by 
Queue Server

– Noted down URLs that returned Status 304 on 
being requested by Fetcher

– Results:

– Total URLs stored in B-Tree = 54,939



Cache Page Validation Feature

• Results contd…

– Total URLs re-crawled with cache page validators = 
412 (0.7% of total URLs in B-Tree)

– Total savings in bandwidth = 15 MB

– Savings due to Expires: 12 MB

– Savings due to ETags: 3 MB

– Savings in images

• Savings for both Yioop and the source 



Conclusion

• History feature enables users to view entire 
history of web pages cached by Yioop. 

– Enables full text search on all cached versions

• Cache page validation feature is promising 

• Improvements and Future Work

– Use methods other than serialization for storing nodes

– Experiment with other disk-based data structures. For 
example B+ Trees.

– Test on a larger crawl with multiple machines




