
1

YIOOP FULL HISTORICAL INDEXING IN CACHE NAVIGATION

A Writing Report

Presented to

The Faculty of Department of Computer Science

San José State University

In Partial Fulfillment of

The Requirements for the Degree

Master of Science

By

Akshat Kukreti

May 2013

2

 © 2013

Akshat Kukreti

ALL RIGHTS RESERVED

3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

YIOOP FULL HISTORICAL INDEXING IN CACHE NAVIGATION

By

Akshat Kukreti

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__

Dr. Chris Pollett, Department of Computer Science Date

__

Dr. Chris Tseng, Department of Computer Science Date

__

Dr. Soon Tee Teoh, Department of Computer Science Date

4

Abstract

Yioop Full Historical Indexing In Cache Navigation

 This project adds new cache-related features to Yioop, an Open Source, PHP-based

search engine. Search engines often maintain caches of pages downloaded by their crawler.

Commercial search engines like Google display a link to the cached version of a web page

along with the search results for that particular web page. The first feature enables users to

navigate through Yioop's entire cache. When a cached page is displayed along with its

contents, links to cached pages saved in the past are also displayed. The feature also enables

users to navigate cache history based on year and month. This feature is similar in function to

the Internet Archive as it maintains snapshots of the web taken at different times. The contents

of a web page can change over time. Thus, a search engine caching web pages has to make

sure that the cached pages are fresh. The second feature of this project implements cache

validation using information obtained from web page headers. The cache validation mechanism

is implemented using Entity Tags and Expires header. The cache validation feature is then

tested for effect on crawl speed and savings in bandwidth.

5

Acknowledgements

 I would like to express my sincere gratitude to my Masters Project advisor, Dr. Chris

Pollett. Without his guidance, constant encouragement and support, the project would not have

been completed on time.

 I would also like to express my appreciation to Dr. Chris Tseng and Dr. Soon Tee Teoh

for their time, and for being part of my CS298 committee.

6

Contents

YIOOP FULL HISTORICAL INDEXING IN CACHE NAVIGATION ..1

1. Introduction ...9

2. Background ...11

2.1 Web Crawlers ..11

2.1.1 The Crawling Process ...11

2.2 Web Caches And Search Engines ...12

2.3 The Internet Archive and WayBack Machine ...14

2.3.1 The Internet Archive ..14

2.3.2 The WayBack Machine ...14

2.4 Yioop Search Engine Software ..17

2.4.1 Yioop's Model..17

3. Implementing The History Feature ..20

3.1 Modifying Yioop's Cache Request And Output Code ...20

3.2 Modifying Links Within Cache Pages ...21

3.3 History UI...23

4. Entity Tags And Expires Headers ..24

4.1 Entity Tags ..24

4.1.1 Experiment With Entity Tags, PHP, and cURL ..25

4.2 Expires Header ..26

5. Modifying Yioop's Fetcher ...27

6. Disk Access Experiment..29

7. Data Structure for Cache Page Validators ...31

7.1 B-Trees..31

7.2 B-Tree Implementation in PHP ..33

7.3 Augmenting Yioop's Queue Server ..34

7.4 Implementing the Cache Page Validation Feature ...35

7.4.1 Queue Server pseudo-code for storing Cache Page Validators35

7.4.2 Queue Server pseudo-code for Lookup of Cache Page Validation Data when producing

fetch batches ...36

7.4.3 Fetcher pseudo-code for Fetcher for handling Cache Page Validation Data37

8. Experiments ..38

7

8.1 Testing the effect on fetch batch creation time ...38

8.2 Determining effect of cache page validation on bandwidth ..41

9. Conclusion ..43

Bibliography ..44

8

List of Figures

Figure 1: Example of robots.txt Source: http://www.robotstxt.org/robotstxt.html11

Figure 2: Google's cache link Source: http://google.com ...13

Figure 3: Section of a cached page Source: http://google.com ..13

Figure 4: WayBack Machine interface Source: http://archive.org...15

Figure 5: Yioop crawl in a multiple Queue Server setting ..18

Figure 6: Searching within the cache ..21

Figure 7: Modified links within cached pages ..22

Figure 8: Redirection within the cache ..22

Figure 9: Yioop's History feature ...23

Figure 10: ETag extraction using PHP cURL ..25

Figure 11: ETag headers in PHP cURL ...26

Figure 12: Yioop Work Directory ...27

Figure 13: Cache page validation data written by Yioop's Fetcher ..28

Figure 14:Disk access experiment results ...30

Figure 15: A B-Tree with minimum degree 501 ...32

Figure 16: B-Tree node for cache page validation feature ...33

Figure 17: Cache page validators written by Queue Server...34

Figure 18: B-Tree nodes for cache page validators ...34

Figure 19: Table comparing fetch schedule write times ...38

9

1. Introduction

 The idea behind this project is to enhance Yioop's cache related functionality in terms of

displaying cached versions of web pages and maintaining cache freshness. The web is an

important source of information and is ever changing. Web pages that are active today may

become inactive tomorrow. The Internet Archive takes regular snapshots of the web so that

along with the current versions of web pages, previous versions are also accessible. It does not

however, support full text search on the archived pages. It would be an improvement; if, along

with the search results displayed by a search engine, users are also able to access cached

copies of the page taken at an earlier date, and also, be able to perform full text search on

cached pages. This is the motivation behind the first feature of this project which enables users

to view all cached copies of a web page. The feature keeps track of cached pages during

search time. A search engine may re-crawl a set of web pages after a certain number of days. If

the content of the page has not changed, bandwidth is wasted on downloading the page again.

Bandwidth can be saved by checking if a web page is still fresh. For example, Google uses If-

Modified-Since header for validating cached pages. The motivation behind the second feature of

this project is to experiment with a different way of validating cached versions of web pages

that uses Entity Tag and Expires header. The second feature keeps track of cached pages

during crawl time.

 This report describes the work done in my Masters project, and consists of the following

sections. The first section describes the background and preliminary work where I explored

Yioop! and the Internet Archive. The second section describes my experiments with Yioop!'s

cache request and output mechanism, modification of links within cached pages and,

implementing and testing a history feature that enables users to view all cached versions for a

web page. The third section describes my experiments with PHP, cURL and Entity Tags. The

fourth section describes how I modified Yioop!'s Fetcher program to separately send cache-

10

related data to the Queue Server. The fifth section describes my experiments for estimating a

lower bound on the lookup of ETags. It also describes my implementation the B-Tree data

structure for storage and lookup of ETags, and integration with Yioop!'s Queue Server for

scheduling. The sixth section describes experiments with the modified Yioop! code and their

results. The last section of the report is conclusion and future work.

11

2. Background

2.1 Web Crawlers

 Search engines use web crawlers to build their search index of the web. Web crawlers

are programs that visit links, download the web pages for those links, extract links from the

downloaded web pages, and repeat the process for the extracted links (Stefan Büttcher, 2010).

The responsibilities of a web crawler include de-duplicating web pages, re-crawling web pages

to ensure that the search index is up to date, assigning priority to web pages so that the most

important web pages are re-crawled before the less important ones. Web crawlers maintain a

priority queue of URLs that have already been seen to determine which URLs should be re-

crawled first (Stefan Büttcher, 2010).

2.1.1 The Crawling Process

 The crawling process starts with an initial set of URLs. The web crawler begins by

selecting URLs from the priority queue of URLs. Next, the web crawler performs Domain Name

Translation to determine the IP address for the URL. Before downloading a web page, a web

crawler must check if it is allowed to download that web page. Web site owners use "robots.txt"

file to indicate to web crawlers, the pages of the web pages it is allowed to crawl (About

/robots.txt). A "robots.txt" file contains directions along with paths to resources that the web

crawler may not download.

Figure 1: Example of robots.txt Source: http://www.robotstxt.org/robotstxt.html

12

 Figure 1 shows an example of a robots.txt file. The "User-agent: crawler-name" is at the

start of the file. It denotes the names of the crawlers for which, the instructions that follow, apply.

In the example, the * next to User-agent denotes that the instructions must be followed by all

web crawlers (Stefan Büttcher, 2010). The "Disallow: path" indicates that the web crawler must

not download the resource. In the example, Disallow: / indicates that all the web crawler must

not download any resource associated with the URL.

 After making sure that a page can be downloaded, the web crawler downloads the page.

The web crawler then processes the page to extract information about the page which includes

URLs. The page is then saved so that it may be added to the search engine's index. The URLs

extracted during processing of the downloaded pages are then added to the priority queue of

URLs. The web crawler then again extracts URLs from the priority queue, and the process

continues.

2.2 Web Caches And Search Engines

 A web cache is used to store copies of web pages accessed by the program maintaining

the web cache. Maintaining web caches is useful as recent copies of web pages can be

accessed without actually visiting the link for that particular web page. If a web page containing

information of interest is not active, but the web cache contains a recent copy of the web page,

the desired information can be obtained by accessing the cached copy (Web Cache).

 Search engines also make use of web caches for saving copies of documents

downloaded by their web crawlers. Commercial search engines like Google display the link to

the cached version of the web page along with the results of the search query. Figure 2 shows

how Google displays links to the cached version of a web page. Figure 3 shows what a cached

page looks like. The top of the page contains the date at which the web page was cached.

13

noarchive: The noarchive directive can be used to tell the web crawler that a particular web

page must not be archived. It can be specified using a <meta> tag within the contents of a web

page, or specified using the X-Robots tag in the page headers.

For example, <meta name="robots" content="noarchive"/>

 HTTP 1.1 200 OK

 (...)

 X-Robots-Tag: noarchive

 In this project, the new features modify how Yioop handles cached copies of web pages

during search time, and add a new method for validating cached pages during crawl time.

Figure 2: Google's cache link Source: http://google.com

Figure 3: Section of a cached page Source: http://google.com

14

2.3 The Internet Archive and WayBack Machine

2.3.1 The Internet Archive

 The Internet Archive is an internet library that maintains a vast collection of historical

web content. Its web page archive currently has 333 billion pages (Internet Archive).It was

established in 1996 by Brewster Kahle and Bruce Gilliat in San Francisco, California (Rackley,

2010). The Internet Archive uses Heritrix, an Open Source, Java-based web crawler, for

downloading content from the web (Rackley, 2010). For storing web crawls, the internet archive

uses the WARC file format. WARC files save the downloaded web resources along with the

meta-data associated with them such as encoding (WARC, Web ARChive File Format).

 The history feature of this project allows users to access all versions of a cached page.

This feature is similar to the Internet Archive as the entire history of cache pages is accessible

to the user. But the history feature allows users to do full-text searches on the cached pages

which is not supported by the Internet Archive.

2.3.2 The WayBack Machine

 Internet Archive's WayBack machine allows users to access the archived web pages.

The Wayback Machine allows users to enter the URL of the webpage for which they wish to see

the archived pages. On entering the URL, the Wayback Machine redirects to a page that

contains snapshots of the webpage grouped by years and months. Users can select year and

month to view a particular snapshot of the web page. There can be more than one snapshots

per day for a particular web page. The motivation behind the first feature of this project was to

provide a feature similar to the WayBack Machine in a search engine so that users are able to

access the archive of cached pages along with the latest version. The history feature in Yioop

displays linked to all cached versions of a web page, grouped by year and month.

15

Figure 4: WayBack Machine interface Source: http://archive.org

2.3.2.1 URL Modification In The WayBack Machine

 The Internet Archive modifies the URLs of web pages before caching them. The URLs

are modified so that they redirect to a cached page instead of the live page. The link is modified

by appending the time at which the page was cached, and the URL to a web prefix.

For example, consider the following modified link:

web.archive.org/web/20050214202400/http://www.google.com

Web page URL: http://www.google.com

Web Prefix: web.archive.org/web/

The number 20050214202400 Corresponds to the time at which the web page was cached.

Year: 2005

Day and Month: 0214 (February 14)

Time: 202400 (20:24:00)

16

 The URL is modified using JavaScript. When a user clicks on a particular date in the

WayBack Machine's history interface, the JavaScript calculates the date and time from the click

event, appends it to the Web prefix. The original URL is then appended after the date and time

to form the modified link. The user is then redirected to the archive page with the modified link.

 The history feature in this project also modifies links to cached pages. The link

modification is done server-side unlike the WayBack machine's client-side link modification.

17

2.4 Yioop Search Engine Software

 Yioop is an Open Source, PHP-based search engine software developed at Seek

Quarry by Dr. Chris Pollett (Pollett). Yioop allows users to crawl websites and create search

indexes for those websites. The indexing of website is done alongside the website crawl. After

stopping a crawl, the resultant search engine can be used for querying Yioop (Pollett). Yioop

uses the C-based multi-curl library for multi-threading, which it uses to download multiple web

pages concurrently. In order to implement cache page validation in Yioop, Yioop's crawl process

had to be modified to support extraction and use of cache page validators like Entity Tags and

Expires headers.

2.4.1 Yioop's Model

 Yioop requires a running web server in order to perform crawls and building search

indexes. The major components are listed below. Yioop can work on a single machine and also

in a distributed setting. In a distributed setting, each node consists of the components listed

below (Pollett).

1. Name Server: The Name Server is responsible for coordinating the crawl process. In a

distributed setting. The name Server is present in the node that is responsible for

coordinating the crawl.

2. Queue Server: The Queue Server program is responsible for maintaining a priority

queue for URLs. The Queue Server schedules URLs of websites to be downloaded and

also adds the downloaded pages to the search index.

3. Fetcher: The Fetcher program is responsible for downloading web pages.

18

2.4.1.1 How Yioop Works

 The Queue Servers create batches of URLs to be downloaded and save them in their

respective working directories. The Fetchers periodically look for URLs to be fetched. When

found, the Fetchers read in the batch of URLs to be fetched and download the web pages for

those URLs. After downloading the web pages, the Fetchers extract information from the web

page headers like and create summaries of downloaded web pages. The summaries are then

written back to the working directory. The URLs are hashed on to the id of Queue Servers to

make sure that the summary data goes to the correct Queue Server. The Queue Servers read

the summary data and incrementally add the data to the search index. The URLs extracted from

web page summaries are then added to the priority queue.

Figure 5: Yioop crawl in a multiple Queue Server setting

19

 Figure 5 depicts Yioop in a multiple Queue Server setting. The second feature of this

project augments the Fetcher to separately send the cache page validation data to the Queue

Server. The Queue Server is modified to store the cache page validation data received from

Fetchers, and use the saved cache page validation data when creating URL fetch batches for

the Fetcher.

20

3. Implementing The History Feature

3.1 Modifying Yioop's Cache Request And Output Code

 As a first step towards building the history feature, I modified Yioop's cache request and

output code. When Yioop displays the results of a search query, it also displays a link to the

cached version along with each search result. The following is an example of a link to a cached

page.

http://www.yioop.com/?YIOOP_TOKEN=7B-qsBHUu34|1354640487&

c=search&a=cache&q=sjsu&arg=http%3A%2F%2Fwww.sjsu.edu%2F&its=1336804999

 The parameter "a = cache" means that the search is taking place within the cache and

the parameter "its = 1336804999" is the timestamp at which the page was cached. When a

cache page is requested, Yioop searches for the specified timestamp. If a cached version of a

page exists for the specified timestamp, it is displayed. Otherwise, the a "no cache" is returned.

 I modified Yioop's code so that if the specified timestamp is not found, Yioop tries to look

for a timestamp that is nearest (past or future) to the specified timestamp that has a cached

page associated with it. If such a timestamp is found, the cached page is displayed. Otherwise

"no-cache" is returned.

21

Figure 6: Searching within the cache

3.2 Modifying Links Within Cache Pages

 In order to make sure that the links within a cached page also redirect to a cached page,

I augmented Yioop's URL canonicalization code so that the links within the cached pages follow

the cache search process in 3.1. The only difference is that the if no timestamp with a cached

page is found for a link within a cached page, the link redirects to the live page. The link

modification is similar to the modification done by the WayBack Machine. The modification

however , is done at server-side.

 In Figure 7, the link at the bottom of the page includes the flag "from_cache = true" to

indicate that the link is from a cached page. The timestamp is also appended to the link so that

it redirects within the cache before going to the live site. The modified link redirects to a cached

page as shown in Figure 8.

22

Figure 7: Modified links within cached pages

Figure 8: Redirection within the cache

23

3.3 History UI

 The history feature combines the work done in steps 3.2 and 3.3. Step 3.1 enabled

users to navigate from one cache page to another by changing the timestamp parameter in the

link. In this step I created a User Interface for navigating through cached pages. The interface

works by firs finding links to all cached pages for a given URL. When a cached version of a web

page is displayed, links to all cached versions are also displayed. For navigation, the User

Interface allows users to select the year and month so that they can choose the time for the

cached page. The links display the day and time for each year and month combination. The

history feature is controlled by a Toggle link above the extracted headers and summaries link. I

developed the history feature using PHP DOM and JavaScript.

Figure 9: Yioop's History feature

24

4. Entity Tags And Expires Headers

4.1 Entity Tags

 An Entity Tag or ETag is a unique identifier associated with web resource. It is a part of

the HTTP header (HTTP ETag). Whenever a resource with an ETag is modified, a new ETag is

generated for the modified resource. This can be used to compare different versions of the

same web resource. The difference in ETag values can tell that the versions of the web

resource are different. For all resources belonging to the same server, the ETags must be

unique. When making a request to a server, the following HTTP headers may be sent to check

the version of a particular resource. There are two types of ETags:

1. Strong ETag: Strong ETags are used to check if two resources are the same at every

byte (HTTP ETag). For example, ETag: "1cabfJk4c9"

2. Weak ETag: Weak ETags are used to check if two resources are similar. The resources

might not be identical. For example, ETag: W/"1cabfJk4c9"

 For checking if a resource has changed or not, the following HTTP headers may be sent

when making a request for a resource.

1. If-Match: ETag: If ETag matches the ETag value of the resource being requested, the

entire resource is returned. Otherwise, a status 402 (precondition failed) is returned.

2. If-None-Match: ETag: If ETag matches the ETag value of the resource being requested,

that means the resource has not been modified ant a status 302 (not modified) is

returned. Otherwise, the entire resource is returned.

25

4.1.1 Experiment With Entity Tags, PHP, and cURL

 As mentioned earlier, Yioop uses cURL, a library written in C language, for downloading

multiple pages concurrently. The second feature of this project uses ETags for validating

cached web pages. As the first towards developing the second feature of this project, I

experimented to learn how web pages can be downloaded using cURL and PHP, and also to

experiment with different ETag headers.

 I wrote a program that downloads a web page and checks if the page has an ETag

associated with it. If the ETag is found, the program extracts it. The program then again tries to

download the same web page, but with different ETag headers. This experiment helped me

understand how various ETag headers work. The cache page validation feature of this project

modifies Yioop's Fetcher to use ETags when downloading web pages.

Figure 10: ETag extraction using PHP cURL

26

Figure 11: ETag headers in PHP cURL

 Figure 11 shows the results of using different ETag headers with PHP and cURL.

4.2 Expires Header

 The Expires header is also part of HTTP. For a resource, the Expires header has the

date after which the resource will expire. The format of the Expires header is as follows (Header

Definitions)

Expires: HTTP-Date

For example, Expires: Sun, 05 May 2013 15:00:00 GMT

 The second feature if this project modifies Yioop's Queue Server to check if a web page

is still fresh. If yes, then the web page is not scheduled for download.

27

5. Modifying Yioop's Fetcher

 After learning about Entity Tags and Expires headers, the next step was to modify Yioop

so that it extracts ETags and Expires headers from web pages. As mentioned before, when the

Fetcher downloads a web page, it extracts information from the web page such as Content-

Type, Last-Modified etc. As the first step, I added the code for extracting ETags and Expires

header for a website to the code that downloads the URL. The ETags and Expires headers

were then saved with the website summaries, to be processed by the Fetcher.

 Based on the size of the downloaded pages, Yioop's Fetcher periodically writes web

page summaries, including extracted URLs to the Name Server so that it can be processed by

the Queue Server. This data is written to files that are processed by the Queue Server.

Figure 12: Yioop Work Directory

28

 Figure 12 shows the contents of the schedules directory within a Yioop instance's

working directory. The figure shows Index and Robot data that is written by the Fetcher. Data for

different crawl times is written separately.

 As shown in Figure 12, the Fetcher sends Robot Data and Index Data back to the

Queue Server. Robot Data is used to filter out what paths of the website Yioop is allowed to

crawl. The Index data is processed by the Queue Server for building the search index. The

Robot data has a lifetime of one day. After one day, the Robot data is deleted and fresh Robot

data is downloaded. I modified Yioop's Fetcher so that along with Index and Robot data, Cache

page validation data is also sent to the Queue Server.

Figure 13: Cache page validation data written by Yioop's Fetcher

 When information is extracted from the header of a web page, the modified code checks

if there is an ETag and an Expires header. If either is found, the URL, along with the ETag

and/or the Expires header is saved so that it can be written back to the Queue Server as cache

page validation data. If no ETag and no Expires header is found, the URL is not saved in cache

page validation data. The cache page validation data is then appended to Robot data and Index

data, and sent to the Queue Server.

29

6. Disk Access Experiment

 According to (WorlWideWebSize.com), the size of the indexed web is at least 14.37

billion pages. In order to validate a similar or number of cached web pages using by Entity Tags

and /or Expires tags, it is important that the solution be efficient in both storing the cache page

validators (ETags or Expires) headers, and also fast in lookup so that the crawl speed is not

affected.

 Let us assume that the average length of an ETag and a URL is 32 bytes. Then, in order

to store 1 billion URL-ETag pairs, total space required would be (32 + 32) * 1,000,000,000 bytes

that is 64,000,000,000 bytes or 64 GB. There are limits on the maximum file size allowed and

this limit varies from one file system to another. For example, the ext2 and ext3(second and

third extended file systems) allow the maximum file size to be between 16 GB and 2 TB. Sun's

ZFS on the other hand, allows maximum file size to be up to 16 Exabytes. The cache page

validation feature, apart from being able to work on modern file systems, should also be able to

work on file systems where the maximum allowable size is less than the values mentioned

above. According to (Comparison of file systems), the lowest maximum allowable file size is 2

GB for file systems like HFS and FAT16. Therefore I chose 2 GB as the size for my disk access

experiment.

 Using 2 GB as the file size, I conducted the following experiment to estimate a lower

bound on the time it takes to look-up values from a file. I populated a file with values written with

4 byte intervals. The values were randomly generated, and were between 1 and 1 million. The

first value was written at byte 0, the next one at byte 0 + length of first entry + 4 bytes, and so

on. The file was populated to 2 GB.

 When the Queue Server produces a fetch batch, the fetch batch consists of 5000 URLs.

Thus, the second feature of this project would require 5000 lookups during scheduling. The

30

lookup should be fast enough so that the crawl speed is not affected. I generated 5000 random

numbers along with their offsets within the file that was populated earlier. I did a lookup for

those 5000 values and recorded the total time taken for the lookup.

Figure 14:Disk access experiment results

 Figure 14 shows the results of the disk access experiment. The average time to do 5000

lookups for a file containing values at 4 byte offsets is 0.022 seconds. In order to do 5000

lookups on multiple files would require more time. Thus, the experiment helped me estimate the

least amount of time required for doing 5000 lookups.

31

7. Data Structure for Cache Page Validators

 After estimating the lower bound for doing 5000 lookups, the next step was to select an

appropriate data structure for storing cache page validation data. As discussed earlier, 5000

lookups on a huge volume of data would require lookups in multiple files. Therefore, an efficient

disk-based data structure would be required to save such large volumes of data and also

provide fast lookups.

7.1 B-Trees

 A B-Tree is a tree data structure that has a high branching factor. The branching factor

can be as high as 1000. The branching factor for a B-Tree is decided by a number called the

minimum degree of a B-Tree (Thomas H. Cormen, 2001). If the minimum degree of a B-Tree is

min_deg, then

1. Minimum number of keys for nodes other than the root node = min_deg - 1

2. Minimum number of child nodes for nodes other than the root node = min_deg

3. Maximum number of keys for any node = 2 * min_deg - 1

4. Maximum number of links for any node = 2 * min_deg

Consider a B-Tree with order 501. Then,

Maximum number of keys in root = 2 * 501 - 1 = 1001

Maximum number of children for root node = 1,002

Therefore, at root level, 1001 keys can be saved

Similarly level 1, each one of 1002 nodes will have 1001 keys. Therefore, number of keys after

completely filling up the first two levels = 1002 * 1001 = 1,003,002 keys

For level 2, number of keys = 1003003 * 1001 = 1,004,006,003 keys

32

Level 3, number of keys = 1004006004 * 1001 = 1,005,010,010,004 keys

 Thus, a B-Tree with minimum degree 1001 and height 3 can easily accommodate 100

billion keys. If the root node is kept in memory and each node is a file, then in order to do one

lookup, we would access only 3 files. Going back to our assumption about the length of URLs

and ETags, the size of a node would be 64 KB.

 Due to the above mentioned reasons, I chose the B-Tree data structure for implementing

the cache page validation feature. The B-Tree definition used in this project is defined in

(Thomas H. Cormen, 2001). Each node, whether internal, or leaf, stores the complete

information which is keys and values. Internal nodes also store links to child nodes.

Figure 15: A B-Tree with minimum degree 501

33

7.2 B-Tree Implementation in PHP

 For the cache page validation feature of this project, I implemented a B-Tree for storage

and lookup of cache page validation data. As explained above, I chose the minimum degree to

be 501. I also made use of Yioop's hash function for generating keys for the B-Tree. Each node

of the B-Tree consists of an array of key-value pair. The key-value pair consists of the hash of

the URL, calculated using Yioop's hash function, and the ETag/ Expires header as the value.

Each internal node of the B-Tree also stores the links to child nodes. Each node has an integer

id. Also, each internal node saves links to child nodes. The links are maintained using the node

ids.

Figure 16: B-Tree node for cache page validation feature

34

7.3 Augmenting Yioop's Queue Server

 As the next step, I modified Yioop's Queue Server to include the B-Tree implemented by

me in the previous step. During a web crawl, the Queue Server periodically checks if the

Fetcher has written Robot and Index data to the Name Server. If found, the Queue Server

incrementally adds the Index Data to the search index for the current crawl timestamp. In

section 5, I modified Yioop's Fetcher to separately send Cache Page Validation Data along with

Index and Robot Data. In this step, I modified the Queue Server to also check for Cache Page

Validation Data when it checks for Robot and Index Data. If found, the Queue Server reads the

data, and extracts the URL, ETag, and Expires header. The Queue Server then calculates the

hash of the URL using its own hash function. The hash of the URL serves as the key for each

key-value pair and, the ETag and Expires headers form the value. The hash of the URL, along

with the ETag and the Expires header are inserted into the B-Tree. A separate B-Tree is used

for each index timestamp and is saved in the work directory.

Figure 17: Cache page validators written by Queue Server

Figure 18: B-Tree nodes for cache page validators

35

7.4 Implementing the Cache Page Validation Feature

 After modifying the Queue Server, the next step was to integrate the modified Queue

Server with the modified fetcher program. I modified Queue Server to include lookup of ETags

and Expires headers when the fetch batch is made. If an ETag is found, it is sent to the Fetcher

along with the associated URL when sending the fetch batch. The Fetcher, on getting an ETag,

appends the HTTP header with the If-None-Match ETag header before downloading the web

page. On the other hand, if the Queue Server finds Expires Tags, it checks if the page is still

fresh. If yes, the URL is not scheduled. Otherwise, the URL is scheduled.

7.4.1 Queue Server pseudo-code for storing Cache Page Validators

 Following is a screen-shot showing the contents of a B-Tree node with Cache Page

Validation Data.

36

7.4.2 Queue Server pseudo-code for Lookup of Cache Page Validation Data

when producing fetch batches

37

7.4.3 Fetcher pseudo-code for Fetcher for handling Cache Page Validation

Data

Fetcher pseudo-code for downloading a web page using cURL

Fetcher pseudo-code downloading web pages, extracting cache page validation data, and

sending the data to the Queue Server

38

8. Experiments

 The aim of the second feature of this project was to experiment with a different feature

for cache page validation that uses Entity Tags and Expires headers. This section describes the

experiments done with the implemented cache page validation feature. The first experiment

determines the impact of the cache page validation feature on the crawl speed. The second

experiment measures savings in bandwidth due to ETags and Expires headers. The

experiments were conducted in a multiple Queue Server setting using two instances of Yioop.

The tests were conducted on a single machine.

8.1 Testing the effect on fetch batch creation time

 As mentioned earlier, the Queue Server maintains a priority queue of URLs to be

crawled. The Queue Server produces a fetch batch by selecting URLs from the priority queue.

For the first experiment, I recorded the time taken to create fetch batches. First, I crawled

100,000 pages using Yioop, but without the cache page validation feature. Then, I crawled

100,000 pages again using the cache page validation feature. The page re-crawl frequency was

set to 3 hours.

The following table gives a comparison of the time taken to write a fetch schedule, measured in

seconds for both the Queue Servers.

Figure 19: Table comparing fetch schedule write times

 Yioop without cache page validation Yioop with cache page validation

Queue Server 1

1. 0.0051290000000001 0.001525

2. 0.040342 0.004855

3. 0.001158 0.075212

4. 0.026641 0.045726

39

5. 0.66937 0.033845

6. 0.680713 0.962385

7. 0.638508 1.230332

8. 0.629087 0.957314

9. 0.639234 15.306216

10. 0.669248 15.788489

11. 0.762741 21.100715

12. 0.74138 24.837989

13. 0.677873 18.193379

14. 2.677664 20.571448

15. 1.67749 32.711314

16. 2.784278 23.794299

17. 2.443083 17.042238

18. 2.640033 26.596688

19. 0.015935 23.030196

20. 0.008443 20.791269

21. 0.04249 23.682045

Queue Server 2

1. 0.023429 0.010415

2. 0.681112 0.05673

3. 0.230002 0.001767

4. 0.670079 0.942093

5. 0.682405 0.605549

6. 0.677915 0.955226

7. 0.693039 20.635931

40

8. 0.663932 20.970049

9. 0.68279 20.368085

10. 0.678535 20.551323

11. 0.72232 16.540064

12. 0.666994 18.379397

13. 0.687878 27.736767

14. 0.760716 24.651495

15. 0.730754 18.515776

16. 0.729345 26.390242

17. 1.465243 19.291583

18. 0.962642 16.473845

19. 0.861857 16.899316

20. 1.715415 15.541988

21. 0.013842 16.077356

From the table, it can be seen that the least time taken for a B-Tree lookup was 15.3 seconds,

and the largest time taken was 32.7 seconds. The average times for Queue Server 1 and 2 are

calculated below.

For Queue Server 1

Average time taken for writing fetch batch schedule without cache page validation: 0.87596381

Average time taken for writing fetch batch schedule with cache page validation: 13.65511805

For Queue Server 2

Average time taken for writing fetch batch schedule without cache page validation: 0.714297333

41

Average time taken for writing fetch batch schedule with cache page validation: 14.36166652

Total Average time taken without cache page validation: 0.7951305715

Total Average time taken with cache page validation: 14.008391625

Conclusion: For a 100,000 page crawl, the cache page validation feature was on average

slower by 14 seconds due to B-Tree lookup.

8.2 Determining effect of cache page validation on bandwidth

 The aim of the second experiment was to determine the savings in bandwidth. For this

experiment, I recorded the URLs that were not scheduled by the Queue Server because of the

expires timestamp being greater than the current timestamp, and the URLs that return HTTP

status 304 Not Modified on download due no change in ETag. Then, using cURL, I downloaded

the web pages to determine their size. 100,000 web pages were crawled using the same

settings used in 8.1.

Findings:

1. Total time taken to crawl 100,000 pages = 8 hours

2. Total number of entries of cache page validation data stored in B-Tree = 54,939

3. Total number of URLs that were not re-crawled due to ETags and Expires headers =

412

4. Savings in MB for the URLs that were not re-crawled = 15.64 MB

5. Most URLs that resulted were not crawled due to ETag/Expires were image files.

Conclusion: For the 100,000 web page crawl with a re-crawl frequency of 3 hours, the total

time taken was 8 hours. A re-crawl frequency of 3 hours means that after every 3 hours, if a

URL that has been already downloaded is encountered by the Queue Server, it will be

scheduled again. From the figures mentioned above, it can be seen that during the 8 hour crawl,

42

only 412 URLs were re-crawled and resulted in a total of 15.64 MB. The number of URLs re-

crawled URLs is a small fraction of the total URLs with cache page validation data stored in the

B-Tree (0.7%). This small fraction resulted in total 15.64 MB savings. Therefore, based on the

re-crawl policy, as the number of re-crawled URLs increases, the savings will be more. Also, a

large number of URLs that were not re-downloaded were images. This is useful for both Yioop

and the source of the image as bandwidth is saved for both when images are not re-

downloaded. This holds true for other types of documents such as videos and PDF documents.

43

9. Conclusion

 Modern search engines often maintain caches of web pages and display the link to the

cached version when displaying the search results. But, only the latest cached version is

displayed. The Internet Archive maintains an archive of the web by taking periodic snapshots of

web pages but does not allow users to do a full-text search on the archived pages. Also, content

of the web keeps on changing and it is necessary for web crawlers to re-crawl pages to ensure

that their index is fresh. But, re-crawling web content that has not change can lead to wastage

of bandwidth. Google uses If-Modified-Since for validating its cached pages.

 This project implements two new cache-related features for Yioop search engine. The

first feature is a history feature that allows users to see all versions of cached pages maintained

by Yioop. This feature is an improvement over modern search engines as the entire cache

history is available to users. The feature also allows users to do full-text searches on cached

pages which is not available with the Internet Archive. The second feature of this project uses

Entity Tags and Expires headers to validate cached copies of web pages downloaded by

Yioop's crawler. The feature uses B-Trees for storage and lookup of cache page validation data.

 This history feature acts an archive of web pages cached by Yioop's crawler and will

provide users with a new functionality capable of performing searches on the entire history of

cached pages. The cache page validation slows down the Queue Server but is a promising

feature, and a good start towards developing more efficient ways of using ETags and Expires

headers for cache page validation. From the experiment, it can be seen that URLs re-crawled

using cache page validation feature resulted in savings in bandwidth. The future work includes

experimenting with B+ Trees that store all the data in the leaves, experimenting with different

crawl policies to determine impact on savings in bandwidth, and testing the cache page

validation feature on a multiple Queue Server setting on multiple machines.

44

Bibliography

About /robots.txt. (n.d.). Retrieved May 6, 2013, from robotstxt.org:

http://www.robotstxt.org/robotstxt.html

Comparison of file systems. (n.d.). Retrieved May 6, 2013, from Wiipedia:

http://en.wikipedia.org/wiki/Comparison_of_file_systems

Header Definitions. (n.d.). Retrieved May 6, 2013, from Worl Wide Web Consortium:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Hierarchical File System. (n.d.). Retrieved May 6, 2013, from Wikipedia:

http://en.wikipedia.org/wiki/Hierarchical_File_System

HTTP ETag. (n.d.). Retrieved May 6, 2013, from Wikipedia:

http://en.wikipedia.org/wiki/HTTP_ETag

Internet Archive. (n.d.). Retrieved May 3, 2013, from Internet Archive: http://archive.org/

Pollett, C. (n.d.). Yioop Documentation Version 0.94. Retrieved May 3, 2013, from SeekQuarry:

http://www.seekquarry.com/?c=main&p=documentation

Rackley, M. (2010). Internet Archive. Encyclopedia of Library and Information Sciences, Third

Edition , 1:1, 2966 - 2976.

Stefan Büttcher, C. L. (2010). Information Retrieval: Implementing and Evaluating Search

Engines. Cambridge, Massachusetts London, England: The MIT Press.

Thomas H. Cormen, C. E. (2001). Introduction to Algorithms Second Edition. Cambridge,

Massachussetts: The MIT Press.

WARC, Web ARChive File Format. (n.d.). Retrieved May 6, 2013, from digitalpreservation.gov:

http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml

Web Cache. (n.d.). Retrieved May 3, 2013, from Wikipedia:

http://en.wikipedia.org/wiki/Web_cache

WorlWideWebSize.com. (n.d.). Retrieved May 6, 2013, from WorlWideWebSize.com:

http://www.worldwidewebsize.com/

