
CS 297 Report

Yioop! Full Historical Indexing In Cache Navigation

By

Akshat Kukreti

SJSU ID: 008025342

Email: akshat.kukreti@sjsu.edu

Project Advisor: Dr. Chris Pollett

Professor,

Department of Computer Science

San José State University

One Washington Square

San José, CA 95112.

Introduction

The aim of this project is to add new features to the Yioop! search engine that enable users

to navigate through Yioop!'s cache of crawled files. When Yioop! displays the results of a

query, it also displays a link to the cached version of the web page. One enhancement is to

enable the user to access all the cached versions of the page through the given link. This

feature is similar to that of The Internet Archive. A second new feature is to modify all the

links in cached pages so that they redirect within the index before redirecting to the live

page. The third aim of the project is to incorporate Entity Tags (ETags) in Yioop!'s queue

server program so that when a re-crawl is done, the ETags can be used to maintain latest

version of cached pages.

This report describes the work done during the Fall 2012 semester in preparation for the

final project. This consisted of a sequence of deliverables in which I experimented with

Yioop!'s caching mechanism and Entity Tags.

For Deliverable 1, I modified Yioop!'s cache request and output code so that when a

timestamp other than the current timestamp is specified in a URL, it looks for the

timestamp nearest to the specified timestamp that has the cached version of the page

specified by the URL. For Deliverable 2, I built on deliverable 1 by modifying Yioop!'s code

for URL canonicalization. The modified code canonicalizes URLs so that they redirect

within the index before redirecting to the live site. For Deliverable 3, I modified Yioop!'s

User Interface for cached versions of web pages. When a cached web page is displayed,

links to all cached versions that are present in the archive are also displayed. For

Deliverable 4, I wrote an experiment using PHP and cURL for extracting ETags from web

pages and using them with ETag headers.

Deliverable 1: Modify Cache Request and Output Code so that it looks for a

timestamp, nearest in future, to the timestamp specified in the cached request.

Along with search results, Yioop! also displays links to cached web pages. The link to the

cached version of a web page also contains a timestamp argument, that corresponds to the

time at which the page was cached. Following is an example of a cached link.

http://www.yioop.com/?YIOOP_TOKEN=7B-

qsBHUu34|1354640487&c=search&a=cache&q=sjsu&arg=http%3A%2F%2Fwww.sjsu.ed

u%2F&its=1336804999

The parameter a=cache means that the type of search is a search within the cache and the

its parameter is the UNIX timestamp corresponding to the cached version of the URL.

If the its parameter is specified, Yioop! looks for the specified timestamp. If a cached

version of the page associated with the URL exists for the specified timestamp, it is

displayed. Otherwise, a cache not found message is displayed.

For my first deliverable, I modified Yioop!'s code so that first it looks for the specified

timestamp. If a cached version is not available for the specified timestamp, a search is made

for the nearest future timestamp that has a cached version of the web page. If such a

timestamp is found, the associated cached web page is displayed. If such a timestamp is not

found, a cache not found message is displayed.

Screenshot for Deliverable 1:

First the timestamp specified in the URL is searched. If not found, the nearest future

timestamp that has a cached version of the page is found.

Deliverable 2: Modify links within cached pages so that they redirect within the

cache before going to the live site.

In Yioop!, when a link in a cached web page is clicked, it redirects to the live version of the

web page. In order to have complete cache navigation, the link should redirect to a page in

the cache.

URL canonicalization: Canonicalization is a process by which two quantities can be

represented in a standard form. The standard or canonical form can be used to determine

whether two or more quantities are similar. In search engines, if a URL is converted into a

canonical form, the search engine crawler can make use of the canonical URL to determine

if the URL has already been visited. If the crawler finds a URL that has a canonical form

similar to a URL that has already been seen, the crawler doesn't visit the URL.

For Deliverable 2, I made changes to the code that is responsible for canonicalization of

URLs. I modified the URLs to include the index timestamp of their respective index. I also

added an identifier to the URLs. On clicking a URL on a cached page, the specified

timestamp is looked up. If the timestamp is not found, the nearest future timestamp is

looked up that has a cached version of the web page for the URL. If no such timestamp is

found, the identifier tacked to the URL is used to redirect it to the live version of the web

page.

Following is an example of a link within a cached page.

http://localhost/yioopFinal/?c=search&a=cache&q&arg=CACHELINKhttp%3A%2F%2Fww

w.google.com%2Fmobile%2F%3Ftab%3DwD&its=1353185182

The its parameter is the same as seen in Deliverable 1. CACHELINK is the identifier that

identifies links within a cached page.

Screenshot 1 for Deliverable 2:

The modified link first searches in the cache.

Screenshot 2 for Deliverable 2:

On clicking the link shown on the previous screenshot, the cached version of the page was

displayed.

Deliverable 3: Display links to all cached pages on the cached version of a web page.

In Yioop!, when the cached version of a web page is displayed, one way to navigate to

another cached page is by changing the timestamp parameter. A more user friendly way to

do the same would be through an interface that allows users to select the date for which

they wish to see the cached page.

For my third deliverable, I extended Deliverable 1 by extracting links to all cached versions

for a given web page. I then created a User Interface for displaying the extracted links. The

Interface allows users to choose the year and month for which they wish to see links for the

cached page. On choosing a year and month, the links for the specified year and month

combination are displayed in the form of a list. This feature is similar to The Internet

Archive as it allows users to choose a time in the past, and view the snapshot of their

desired webpage taken at that time.

Screenshot for Deliverable 3:

The screenshot shows that there are four snapshots for November 2012 for

http://www.youtube.com/.

Deliverable 4: ETag experiments

Entity Tags: An Entity tag is a unique identifier associated with a resource available on the

web. It is a part of the HTTP protocol and can be used to determine if a resource has

changed over time. An ETag can be used with the HTTP header when making an HTTP

request. Following are the headers available for ETags:

1. If-Match:"ETag value": If "ETag value" matches the ETag of the resource, entire

contents of the resource are returned. Otherwise, a Status 402 (precondition failed) is

returned.

2. If-None-Match:"ETag value": If "ETag value" matches the ETag of the resource or if * is

given, it means that the resource hasn't changed. In that case a Status 304 (not modified)

is returned. Otherwise, entire contents of the resource are returned.

For my last deliverable, I wrote an experiment for extracting ETags from web pages. The

code was written using PHP and cURL(a library for transferring data using various

protocols, including HTTP).

The program downloads the contents of a webpage using HTTP. It then checks if the page

headers include an ETag. If found, the ETag is extracted. After extracting the ETag, the

program attaches the ETag value to the ETag headers discussed above. The headers are

then used for making requests for the web page downloaded earlier.

Screenshots for Deliverable 4:

1. Etag extraction

The contents of the web page are downloaded and the ETag is extracted from the header.

2. Results of using the extracted ETag value with ETag headers.

The screenshot shows the responses obtained for different ETag headers.

Conclusion

This semester, I experimented with Yioop!'s cache navigation. For Deliverable 1, I changed

how Yioop! handles request for cached pages to enable searching across multiple indexes.

For Deliverable 2, I extended Deliverable 1 by modifying links within cached pages so that

they search for a cached version of the page before redirecting to the live page. For

Deliverable 3, I created a user interface that allows user to view links to all cached versions

of a web page. Users can select the desired year and month and view links accordingly. For

my last deliverable, I experimented with ETags using PHP and cURL. Through this project I

gained an understanding of Yioop!'s mechanism for handling cache requests. I also learned

about Entity tags and how they can be used to make sure that a web page is up to date.

Next semester, I will incorporate ETags in Yioop!'s queue server program so that when a

re-crawl is done, ETags can be used to make sure that the index is up to date. The re-crawl

will be done incrementally based on the number of index partitions. For example, after

creating ten index partitions, Partition 1 is re-crawled. After twenty index partitions,

Partitions 1 and 2 are re-crawled, and so on.

References

1. [Buttcher 10] Information Retrieval: Implementing and Evaluating Search Engines.
Stefan Buttcher, Charles L.A. Clarke, Gordon V. Cormack. The MIT Press. 2010.

2. [Kahle 96] Archiving the Internet. Brewster Kahle. Internet Archive. 1996.

3. [Rackley 09] Internet Archive. Marilyn Rackley. Library, Harvard University, Cambridge,
Massachusetts, U.S.A. 2009.

