IMPROVING YIOOP! USER SEARCH DATA USAGE

A Writing Report
Presented to
The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Tarun Pepira Ramaswamy

September 2012

© 2012
Tarun Pepira Ramaswamy

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY
The Undersigned Project Committee Approves the Project Titled
IMPROVING YIOOP! USER SEARCH DATA USAGE
by

Tarun Pepira Ramaswamy

APPROVED FOR THE DEPARTMENT OF
COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science Date

Dr. Mark Stamp, Department of Computer Science Date

Dr. Soon Tee Teoh, Department of Computer Science Date

ABSTRACT

IMPROVING YIOOP! USER SEARCH DATA USAGE

User data in the form of visited URL’s and search query provides a lot of
information about the user. This data can be utilized to provide some value-added
service to the end user. Commercial search engines like Google, Bing have started
taking advantage of these data and provide features like trending/popular

searches, personalized search results, etc.

This project aims to provide three user benefits using these user data. It
provides a visualization tool of user’s navigation history across the web. This
would help the users to better understand their search history. Secondly, it
improves the search results in Yioop by maintaining the user-searched queries
across various popular search engines (Google, Bing, Yahoo) locally in the user’s
machine and re-ranking the Yioop result. Finally, it provides a related search

feature using the local user search data.

ACKNOWLEDGEMENTS

| would like to thank my professor Dr. Chris Pollett for his help and guiding
me throughout the project. He has constantly motivated me to work hard for the
project. | would also like to thank my committee members Dr. Soon Tee Teoh and
Dr. Mark Stamp for their valuable time and support. And special thanks to my

friends for helping me with the testing and their feedback.

Table of Contents
 INEFOAUCTION e e e et s st sresaeeaeans 9
. Preliminary WOTK ..ottt ettt en e st e er et een e eneseraen s 11
2.1Building Firefox EXTENSION ..cc.ecvieiiieiiiiercee e esr e e 11
2.2Firefox’s HiStory Datacccecceeeiieceeeiee ettt ettt senaees 13
. User Data Visualization ...ttt 15
3.1Force Directed AIZOrithmcceeoiieiee et e e 15
3.2 IMPIEMENTALION .ueieeece e e et e e er s 18
. Re-rank Yioop RESUILc.eeeie ettt ettt s er s 21
4.1 User SEArch Datacouvueieieieenernie sttt e e s 21
4.2 IMPIemMENTAtION .ocveiee et et et e e s 22
T B =1 o | = RPN 28
. Related Keywords in Yioop RESUILcccveeeeecieececceece ettt 33
5.1Relevance CalCulation ...t e s e 33
5.2 IMPIemMeENTAtionoceeie et e e e 35
ST T =1 o 1o = TR 37
v CONCIUSION 1.t s e e ettt eb b es s e e e e e s 39

e R B I EINCES ettt e e e e e e ee e teeaee s e et reeaesaeaen e areaaseaaennanaaeeeneanans 40

Figure 1:
Figure 2:
Figure 3:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:

Figure 13:

List of Figures

Firefox EXTENSION STIUCTUIEcovevviviieiieiieieeeee et 12
INSTALLIAT o e s 12
ChromMe. MaNIfEST ..uiiiii s st e st s 13
MAINXU ettt ettt st st e e ae e e st et et eessessesbansens 13
The Places Database ... iereie ettt e s e s s 14
Pseudo code of Force Directed Algorithmccccceveeeveiece e, 17
Force Directed Graph using Canvasccceeueereerieeceesieeceeeee e eesveeene e 20
Database Schema of User Search dataccccooeveveincicininincecece e 21
PESUIL NIEFArCRY v e e st s s 24
Manipulating Yioop reSUILcccveecie ettt et v e e e enaees 25

Yioop result without the re-rank featureccoeeeeeveece e, 26
Re-ranked Yioop reSult ...t e 27
Recall comparison of Yioop and re-ranked Yioop resultccceeune.eee. 30

Precision comparison of Yioop and re-ranked Yioop result 31

Figure 14: Adding relevant SEArChEScoccveeceecieececcee ettt 35

Figure 15:
Figure 16:

Figure 17:

Yioop result page without the related keywordcccccvvevvecvvecnnenene. 36
Yioop related keywords featureceeceeecceieieccee e 36

Usability graph of Related Searchescococveveeeveieecece e 38

List of Tables

Table 1: Recall calculation of Yioop result Page.......cccvvveve e e e e, 29

Table 2: Precision calculation of Yioop resu

Table 3: Usability score of related searches

[t PAgE..uuieieriree e

1. Introduction

A search engine plays an important role in every user’s web experience.
Over the years, there has been a continuous effort in improving their
capabilities. One among them is providing customized search results based on
users past search activity. This is called as Personalized Search. In this, the
search engine gives useful and most relevant search results by keeping a
record of the users past searches. However, tracking of user’s search results
has lead to privacy concerns among the users. In this project, Yioop search
engine gives a personalized search experience without any compromise in
their privacy. Instead of storing the search history in server, it keeps the
records in user’s local machine. The project is written as a Firefox extension [1]
where the implementation is transparent to the user thus providing user

confidence.

One of Dr Pollett’s previous student, Vijaya Pamidi[5] created a similar
Firefox extension which captured user clicks but would send it to the Yioop
Server. Although it improved the Yioop search results over a period of time, it
didn’t provide immediate benefit to the user. This led to the non usage of this
extension. To make our extension user beneficial, the project provides a
visualization tool which draws a directed graph of the user visited URL’s. To
draw this graph, it makes use of the browser’s history data. In Firefox, the
browser history is stored as an SQlite database called the Places [9]. It also
provides special Storage API’s to access these data. The extension uses this

data and Canvas element of HTML5 to render the graph. And to make the

10

graph aesthetically pleasing, it makes use of Force Directed Algorithm [4] for

drawing the graph.

The project also improves the search results of Yioop using the users past
search data. The users past searches are stored as a separate file to provide
faster read/ write access and avoid the complex architecture of the browser’s
history. Having a separate file also helps the user search data easy to maintain.
Unlike other commercial search engines like Google, Bing, etc where the user
has no control over the search data stored in the server, here the user has full

control over these data for Yioop as the data is stored in the local machine.

The extension also tries to predict related searches based on the Yioop
search query. This feature is similar to related searches in other search engines

but uses only the user’s local search data to calculate it.

The initial part of the report explains about the building blocks for creating
a Firefox extension and also provides background information about the
browser’s History data. Then it describes in detail about the visualization tool
and its implementation. The next part contains details about the re-rank
feature and the experiments performed. The final part explains about the
related searches in Yioop result page with its implementation details and

experiments.

11

2. Preliminary Work

The project uses Firefox extension to build the visualization tool and to re-
rank Yioop’s search result. Implementing the project as an extension provides
number of benefits. It helps to build user confidence as the user can view the
code anytime. It can take advantage of Firefox’s Storage APl to access the
browser history data. And the most important benefit is in capturing the user
search results across multiple search engines in a transparent manner. Now,
let us look in detail about how to build a Firefox extension and how the user

history is stored in the browser.

2.1 Building Firefox Extension

The project uses Firefox extension to implement the features. Firefox
extensions allow developers to add functionality to the browser and enhance
the user interface in a way that is not directly related to the viewable content
of Web pages. Extensions are distinct from plug-in which help the browser to
display or play certain multimedia objects. In Firefox, the extensions are
packaged and distributed in ZIP files or Bundles, with the XPI (pronounced
“zippy”) file extension. An extension’s user interface is written using XUL

(pronounced “zool”), CSS and JavaScript.

12

A typical xpi file would have the below folder structure

my_extension.xpi: //Equal to a folder nomed my_extension/
/install.rdf //General information about your extension
/chrome.manifest //Registers you content with the Chrome engine
/chrame/
/chrome/content/ //Contents of your extension such as XUL and JavaScript files
/chrome/icons/default/* //Default Icons of the extension
/chrome/locale/* //Building an Extension# Localization
/defaults/preferences/*. js //Building an Extension# Defaults Files
/plugins/*
Jcomponents/*

/components/cmdline. js

Figure 1: Firefox Extension Structure

The basic components of the extensions are three files,
- install.rdf
- chrome.manifest and
- main.xul
install.rdf contains the id and version of the extension. It also specifies
required id, min and max version of the target application. Here, {ec8030f7-

c20a-464f-9b0e-13a3a9e97384} is the application ID of Firefox.

<?xml-version="1.0"2>

—I<RDF -xmlns="http://www.w3.0rg/1999/02/22 -rdf-syntax-ns#"
xmlns:em="http://www.mozilla.crg/2004/em-rdfi#">

—I<Description-about="urn:mozilla:install-manifest">
- -<em:id>yiocoptoolbar@seekquarry.com</em:id>
- -<em:version>l.8</em:version>
- -<em:type>2</em:type>
- -<em:opticonsURL>chrome://yiocoptoolbar/content/options.xul</em:optionsURL>

—1<!---Target-Application-this-extension-can-install-into,

| - -with-minimum-and-maximum-supported-versions. - --->-

—l<em:targetApplication>

= - -<Description>
--<em:id>{ec88@3@f7-c2@a-464f-9bGe-13a3a9e97384}</em:id>
--<em:minVersion>1l.5</em:minVersion>
- -<em:maxVersion>15.8.*</em:maxVersion>

| --</Description>

</em:targetApplication>

<!---Front-End-MetaData--->
- -<em:name>Yiocop! -Toclbar</em:name>
- -<em:creator>Seekquarry.com</em:creator>
- -<em:description>Yioop!</em:description>
- -<em:homepageURL>http://www.yicop.com/</em: homepageURL>

</Description>
</RDF>

Figure 2: install.rdf

13

chrome.manifest contains the folder hierarchy, skin details and the main XUL

file which needs to be overlaid on the browser.

content- - - - -yiocoptoolbar- - - -chrome/content/
overlay-chrome://browser/content/browser.xul-chrome://yiooptoclbar/content/main.xul
skin-yiooptoolbar-classic/1.@-chrome/skin/:

Figure 3: chrome.manifest

main.xul has the functionality details of the extension. It includes the
JavaScript file that helps to achieve the functionality and also contains details

about how one wants to add the menu details.
<?xml-version="1.0"?>

-] <overlay-id="sample"
xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul" >

-<script-type="application/x-javascript”
src="chrome://yiocoptoolbar/content/main.js"- />
-] <menupopup - id="menu_ToolsPopup”>
-1+ ---<menuitem-id="yiocop_menu"-insertafter="javascriptConsole,devToolsSeparator”
-----label="Yioop| Search":
oncommand="openUILinkIn('chrome://yiooptoolbar/content/main.html’, 'current')" />
</menupopup>

</overlay>

Figure 3: main.xul

In this project, main.js would contain the logic to draw the graph and make use of
the search result to re-rank the Yioop result and calculate the related keywords. A

detailed description of this is discussed later.

14

2.2 Firefox History Data

Firefox uses a robust history management system called Places [9]. It stores the
history and bookmark data in a flexible and easy to access manner. Internally, it is a
SQlite database and uses the mozStorage interface. A partial database schema of

this database is shown below.

moz_input_history moz_bookmarks
'pvlac'ev_id” — : R
ot - .type.. e
e - e
new field moz_places / parent
id ' position
url ti_tle ; ; ; e
ie eyword id
e dateAdded
viéif_coﬁht o lastmodified
moz_historyvisits hiddeh -
id . typed
from_visit favicon_id | moz_favicons
place_id frecency ‘ \. d
visit_date s
ivisi.t_ityp.e» - oL
=
new field ékpiration

Figure 4: The Places Database
Although, the Places database has lots of information regarding bookmarks,
favicons, we focus only on the URL’s visited by the user and the navigation path of
the usage. These details can be extracted from moz_places and moz_historyvisits
table. From moz_historyvisits, we get the URL id of a page and the URL id of the
page from which it came/visited. Using this id, we can get the actual URL from the

moz_places table.

15

3. User Data Visualization

One of the main goals of the project was to show the user history in a
graphical way. This would give the user a visual tool to view their visited URL's.
The user history typically consists of the navigation history of users moving
from one website to another in form of user clicks or user searches. Tabulating
the list of the sites visited is one form of listing the visited websites. But,
displaying it in the form of graph would be more easily readable by the users.
For the graph, we can imagine the nodes as a particular website/web link and
the edges as the navigation path between the two web links. There are
different kinds of graph layouts available like Force-based layout, orthogonal
layout, Spectral layout, Circular layout, Tree layout, etc. In this project, we use
Force-based layout as it clearly represents the user navigation in an obvious

way.

3.1 Force Directed Algorithm

Force based layouts uses the Force Directed algorithm [6] to draw a
directed graph in an aesthetically pleasing way. The aesthetic criteria typically
consist of having the vertices evenly distributed, fewer crossing edges, equal
edge lengths and overall symmetry. In the Force directed model, the nodes of
the graph are assumed as a metal ring and the edges are considered to be
springs to form a mechanical system. The nodes are placed initially at some
random positions and the spring’s force will cause the nodes to move. The

nodes will finally come to rest at equilibrium.

16

In Force directed algorithms designed by Fruchterman & Reingold [4], there
are two forces that help to reach the state of equilibrium, Hooke’s force of

attraction and Coulomb’s force of repulsion.

Hooke’s Law : “If the spring is compressed or extended and released, it
returns to its original, or natural, length, provided the displacement is not too
great. We see that for small Ax the force exerted by the spring is approximately

proportional to A x. This result is known as Hooke’s Law.”[7]

F.=R(x-x)=-Rx

Where k is the force of constant of the spring

Coulomb’s Law: “It states that the magnitude of the Electrostatics force of
interaction between two point charges is directly proportional to the scalar
multiplication of the magnitudes of charges and inversely proportional to the
square of the distances between them.”[8]

[Fl = k1%

Iz

Where K. is the repulsion constant and qi, g, are the two point

charges.

In this algorithm, we randomly place the node in a given plane. Due to the
random position, forces get applied to the node by either pulling them
towards each other or by pushing them away from one other. This process

continues till the system comes to an equilibrium state.

17

This can be explained in detailed by the below pseudo-code of the

algorithm

-1//Place the nodes at random position and
//intialize their velocity to (0,0)

Loop

//Initialize the total kinetic energy
kinetic_energy = 9;
for each node

// Net force of this particular Node

net_force = (8, 8);

// Calculate the effect of Coulomb's Law

for each other node

net_force = net_force + Coulomb_repulsion (this_node, other_node);
next node
//Calculate the effect of Hooke's Law
for each spring connected to this node

net_force = net-force + Hooke_attraction (this_ncde, spring);
next spring

//Update the velocity of the node using a damping constant(@ < d < 1)

//Here, we are using the damping constant to be 0.5

this_node.velocity = (this_node.velocity + timestep * net_force) * 0.5

//Update the node's position
this_node.position = this_node.position + timestep * this_node.velocity

//Update the kinetic energy of the system

kinetic_energy = kinetic_energy + this_node.mass * (this_node.velocity)"2
next node

until kinetic_energy < ©.01 //A small

Figure 5: Pseudo code of Force Directed Algorithm

After assigning random positions to the node, we are calculating the force
on each node. For each node, we calculate the Coulomb’s force of repulsion
caused by all the other nodes in the system and the Hooke’s force of attraction
caused by the springs attached to this particular node. This net force is then

used to update the velocity of the node which moves the node to the new

18

position. This process is continued till the kinetic energy of the system
converges to zero or a really small value. Here, we chose the small value to be
0.01 to maintain a balance between the time taken to draw the graph and the

quality of the final graph.
3.2 Implementation

The algorithm is implemented using JavaScript as it is easy to add JavaScript
in the Firefox extension. For drawing the graph, we had the option of using
SVG or Canvas. We choose Canvas due to the popularity of HTML5 and its

wider support.

For drawing the graph, we are considering the unique URL’s as the nodes
and the spring to be the navigation across the URL’s. As discussed earlier,
Firefox provides the history data in the form a SQLite database. It also provides
Storage API’s to retrieve and manipulate the data.

The database can be opened by the below API,
var placeDb = Components.classes["@mozilla.org/browser/nav-history-service;1"]

.getService(Components.interfaces.nsINavHistoryService)
.QueryInterface(Components.interfaces.nsPIPlacesDatabase).DBConnection;

Once the connection is open, we can create sqgl statements and execute it
as shown below

var statement = placeDb.createStatement("SELECT * FROM moz_historyvisits; ");
statement.executeAsync();

Here, we get all the nodes i.e. unique visited URL’s from the tables

moz_places and moz_historyvisits using the below statement.

var statemt = placeDb.createStatement("SELECT distinct moz_places.url as URL
FROM moz_historyvisits, moz_places where moz_historyvisits.place_id =
moz_places.id;");

http:moz_places.id

19

var point = new Point(Vector.random(), 1.0, url);
Once the nodes are drawn, we need to get the edges. Edges are calculated
in a two step process. First, we find the “from_visit” attribute (which is the id
of the source URL link) and the destination URL from the moz_historyvisits

table.

var statement = placeDb.createStatement("SELECT moz_historyvisits.from_visit as
fromURLId, moz_places.url as toURL FROM moz_historyvisits, moz_places where

moz_historyvisits.place_id = moz_places.id;");

In the next step, for each of this source URL id’s we get their corresponding

source URL.

var stmt = placeDb.createStatement("SELECT moz_places.url as fromURLS FROM
moz_places WHERE moz_places.id IN (SELECT moz_historyvisits.place_id FROM

moz_historyvisits where moz_historyvisits.id = :fromhistoryURL)");

For each of these source-destination pair, we draw the spring.

applyStrings(ColumnFromURL, ColumnToURL);

Once we have the nodes and their corresponding edges, we can use the
Force directed algorithm to calculate and draw the graph. To show, the

animation effect, we redraw the graph for each iteration.

In this implementation, we tried for different constant values that could be
used as damping, repulsion and the timestep to update the velocity of the
node. After some observation based on the time taken to draw and the
overlap of the graph edges, we chose the damping constant to be 0.6,

timestep to be 0.5 and the repulsion constant as 90 for drawing the graph.

http:moz_historyvisits.id
http:moz_places.id
http:moz_places.id

In the graph, the edge tapers from the start node to the end node. The
edge is thicker at the source node and becomes thinner towards the

destination node. The below figure shows a sample graph.

165 S g (10 AT g e s o €Yy i widhin

¥R DT 3 % O || ey

AT SRt AN

Figure 6: Force Directed Graph using Canvas

20

21

4. Re-ranking Yioop Result

The second aim of the project is to provide a better search result in Yioop
using the user search data. For this, we need to filter the useful data that helps
to identify the search keyword and the corresponding URL’s the user clicked.
To achieve this, we store the user-clicked searches from popular search engine
like Google, Yahoo, Bing, Yioop etc. For this project, we are storing the user
clicks for only these search engines. However, it can be extended to other

search engines as well.
4.1 User Search Data

As explained in the previous section, Firefox provides a feature to store
history data in a SQLite database. However, continuous retrieval of data in this
normalized database could affect the performance of the query. Hence, we
create a separate SQLite database called yioop_HistoryData.sglite to capture

the keywords, the url links, the visit count and source of the data.

ColumnID Mame Type Mot Null Default Value Primary Key R
0 keyword TEXT 0 1
1 url TEXT 0 1
2 title TEXT 0 0
3 visitcount INTEGER 0 0
4 searchfrom TEXT 0 i
3 timestamp INTEGER 0 0

Figure 7: Database Schema of User Search data

As the name suggests, the “keyword” is the search query the user entered
in the search engine page, “url” is the destination url the user reached by

clicking on the search result, “title” represents the title of the result page,

22

“visitcount” represents the number of times this url got clicked for this
particular search query, “searchfrom” simply represents the search engine
from which this data got extracted and “timestamp” represents the time at
which the result was captured.

For any given query on the Yioop Search engine, it returns the search result
based on the data stored in the server. Since, these captured results are stored
in the user machine and not sent to the Yioop Server, the results on the server
is not influenced by these data. The extension now calculates the user clicked
results based on the user query and manipulates the Yioop Search result page
at runtime. The relevant search result can be selected based on the
“timestamp” or their “visitcount”. In this project, we calculate the result based
on the “visitcount” since, the more the user clicked on the particular link, the

greater its value.
4.2 Implementation

To re-rank the Yioop result page on the fly, we need to manipulate the
Document Object Model (DOM) of the page. There are three different
methods to intercept the loading web pages and modify their contents.
However, the use of these techniques depends solely on the requirement of
the project. In this project, we want to modify the content of the Yioop result

page based on the search query. For this, the use of Load Events is sufficient.

The other two techniques are HTTP Observers and WebProgess Listener.
HTTP Observers intercepts for HTTP notification sent for the HTTP request and

manipulates the content. If one needs a more controlled way of intercepting

23

and modifying the various stages of the web page load, WebProgessListener is
the better choice. It can be used to keep track of all the progress listeners for

each tab.

Let us discuss the LoadEvent technique used in the project in more detail.
In this technique, we add an event listener for the load event. The function
below adds an event listener on page load with the callback method

myExtension.init().

window.addEventListener("load", function load(event) {
window.removeEventListener("load", load, false);
myExtension.init();

}, false);

Once the listener is added, the next step is to put in the functionality code
to the myExtension function. The structure of myExtension would be

something as shown below.

var myExtension = {
init: function () {
// The event can be DOMContentLoaded, pageshow, pagehide, load or unload.
if (gBrowser)
gBrowser.addEventListener("DOMContentLoaded", this.onPagelLoad, false);

//Initialization logic can be put here

}s

onPageload: function (akEvent) {
//Code that manipulates the web page
}
s

Here, gBrowser is the global object that corresponds to each browser
window. By attaching the “DOMContentLoaded” event handler, gBrowser

allows to listen to all the tabs in a hassle free way.

In order to re-rank the results, we need to create new elements and update

the Yioop result page with these new elements. The re-rank is applied only to

24

the first page of the Yioop result page. The next pages will be showing the
actual results without the re-rank. In the Yioop result page, the results are
listed as a ‘div’ element with a className ‘result’. So, we get the
HTMLCollection having the className as ‘result’ and add the results as their

siblings. The result has the following structure.

Figure 8: ‘result’ hierarchy

To add the result, the exact HTML structure needs to be created and added
to the web page. HTMLCollection objects support the following methods to

modify the content of the webpage.

insertBefore(newElement, refElement) — This adds the newElement before
the refElement. Since, there is no insertAfter() function, insertBefore() can be
used as insertBefore(newElement, refElement.nextSibling) to get the same

effect.

replaceChild(newElement, oldElement) — This replaces the oldElement

with the newElement.

25

The below code creates such element and adds it to the Yioop result page.

//Get the element where we need to add new data

var

divResult = content.document.getElementsByClassName('result');

//Code that creates the element

var
var
var
var
var
var
var
var
var

"

divElement = content.document.createElement('div');

atlement = content.document.createElement('a');

pElement = content.document.createElement('p');

h2Element = content.document.createElement('h2");

pEcho = content.document.createElement('p');

pEmpty = content.document.createElement('p’');

tElement = content.document.createTextNede(colValues[1]);
echotext = content.document.createTextNode(colValues[@]);
countElement = content.document.createTextNode("visit_count:

"

+ colvalues[2] +

Source:" + colValues[3]);

//Code that combines these elements to form the 'result’' div element
divElement.setAttribute('class', 'result');
atlement.setAttribute('href', colValues[@]);
aElement.setAttribute('rel’, 'nofollow’);
pEcho.setAttribute('class’, 'echolink');
pElement.setAttribute('class’', 'serp-links-score');
atlement.appendChild(tElement);
pEcho.appendChild(echotext);
pElement.appendChild(countElement);
h2Element.appendChild(aElement);
divElement.appendChild(h2Element);
divElement.appendChild(pEcho);
divElement.appendChild(pEmpty);
divElement.appendChild(pElement);

//Inserts the element to the webpagel
divResult[@].parentNode.insertBefore(divElement, divResult[@]);

Figure 9: Manipulating Yioop result

Here, colValues[] array contains the keyword, title and the url of the result.

This is used to create the ‘result’ div element and added to current web page.

This code would come under the onPagelLoad section of the above Load Event

code. With this interception and manipulation of the result page, we can

successfully add the search results captured from other search engine pages.

26

Below is the example of a search for the keyword “fade”. The first figure
shows the current Yioop search result and the next figure shows the Yioop

result with the re-rank function.

‘v"."ﬂh’mvmﬂ
€ A yoapcn % TR ¥ i ' L | v L & -

Results: (0.789469 seconds. Showing 1 - 10 of 228709)
FLASH.; Céme hacer un Fade por ActionScript? - Feros del Web

www oroscemets ComMwiiF LASH RC2%REBFCHCINEImo_hacer_un_Fade_por_AconScnpt™d
FLASH L Como hater un Fade por AionScoript? De Foros oel Web Satar navagacion | buscar Puedas
hater aparecer o desaparece: | faden fade-cul) cuakases iImagen por medio . | bustar Pusdes rucet
aparecer o desaparccar { fade-in, fade-out) cuakyper imagan pq moom dd

Cached St tirks B 96 127 155234 Rark 1035 Relda?) S

United S Fade To Biys Brand ited S Fade To Biue Brand
Manufaciurers, Unte

ww'w AlDaba CorrcouysEarch'USARda 10.Due Drand gans faw

United Siates Fade To Blue Beand Jeans Choose Qualty . Fade To Bz Brand Jeans, Choose Qualty Uniied
States Fade To Ble Beand Jeans Products from Large . Brand Jeans Products from Large Detabase of
Unted States Fade To Bie Brand Jears Msr\lawnm Uneed

Cached Senvler Yirks P.205.206 1121 Rank B 53 R 50 63 Proa B 60 Score 0 88

Dynamic Drive DHTML Seripts- Texi Tcx tual tooltip 11 (fade into view)

www Jynamicdrnee cometmamiondeeSRtknfo2 Hm

FFL+IES+ Oprie Tenuawmol(ﬁoo 1t view) Author: Roy Wiitse | Homepage . veesion two of the onginal
textus! loclip scnpt | which fades ino vew desoiplve led when the

Cachod Sembar ylinks 2200 75 149 97 Rark 10 /8 Rel 23 85 Pron 10 00 Scorg U 14

Faded Reality Game Download for Mac | Big Fish Games

ww Dighshoames comdownioad gamesSHASTrHCYatad raalny indes Mt

Faded Realty Game Downkoad for Mac! Halp tor Mac! Help Monica sobe 3 aeadly mysieny! Download
Faded Realty for Mac . Faded Reaity Game Faded Raalty Game Download - Really Game Faded Realty
Game Download Sagn in Cant

Cached Similar iirks §208 77 152 198 Rark] 74 Rl 44 72 Proei 00 Scoen § 18
MEEK MILL - LYRICS

wari e olncs comTaded-100-long-teics-meek ol i

Meek Mil Faded Too Loog hnics These Faded 500 Long - Meek ME Faded 700 Long hnics These Faded
Too Long s are perdormed by Meek | hncs bare Unfortumately, we don't have the ncs for Faded Too Long
Dy Meak Ml yet. Check back

Cached Sumilar Wik 206 17 14348 Rark 12 10 Hel 33,71 Prot 0 00 Scors 61 3

m&m

e M QHEpoAne ca _\ u-(»h s l~}:'¢ AwnsBcommernt 714226

Figure 10: Yioop result without the re-rank feature

As shown in the below figure, the first result is being captured from the
Bing search engine. It has been placed at the top due to its higher visit count. If
there are many results coming from other search engine, we restrict to the top

five results calculated from user search data. This gives a good balance

27

between the Yioop’s actual result from the server and the results obtained

from the user search data.

€ B o yPOmy YT TONT Ve ol b AN AT AETIN 1 LA g e | Gooe PR w8

Web immoes Videos Mews Settes Sk C

&)
Yoo e
Results: (0.016185 seconds. Showing 1 - 10 of 228709

Related Searches | digiscam camera star fade Sesen ety from mear
fade: Definition, Synonyms from Answers.com / ol

HIp Mwww BNSWES comtopiTuce
wiat_count 2 Source hing

Hip Udctionary ieference combrowseade
wsi_cont 2 Scurca yahoa

ripts- T | !)
Wi Gynamicdive ComedynemicindecSinkane2 hem
FF1+ 165+ Ope7+ Tastual oot N (fade into view) Author Roy Whitte | Homepage | vesson two ¢f the angnal
t0ual fooBp Sonpt | which fades info view dascripive tead when the
Cachad Siméar Inbioks °208 75 14907 Runk 20 18 Ret 33 65 Prox 10 00 S

FADE - Wik the free dia
hitplen wiipeda onpWhkiFADE

wisl_count 1 Souine yahoo

Play Fade_a free onine game on Keongregate
Hip D KOngreQate comigamestiozencanviade
wiat_cunt 1 Sowce g

9

FLASH;; Céma hacer un Fade por ActeaScript? - Fores del Web
wirnlorcadeived comwikiFLASH %C2%BFC%CI%BIMo_hacer_1n_Fsde por_AckoeScoipthiF -

Figure 11: Re-ranked Yioop result

28

4.3 Testing

Here, we shall discuss some tests of the relevance of re-ranking the search
results in the Yioop result page. In our experiments, we are using the feedback
given by five volunteers who tested this feature and scored it based on how

relevant the results were for the searches.

First, they were asked to search for a particular keyword in Yioop search
engine and give a score of number of relevant results shown in the result page.
Then, we added the re-rank feature and asked them to give a score of relevant
search results. The effectiveness of the search result is calculated using two

standard measures called precision and recall.

Precision [11] is the fraction of the result set that are relevant and Recall

[11] is the fraction of relevant documents that appear in the result set.
Precision = |Rel N Res|/|Res|
Recall = |Rel m Res|/|Rel]

In this experiment, we have used some common terms like games, poetry,
dogs and maps as the search term. It also shows three variants of the re-
ranked Yioop result page, with three, five and eight results from the user

search data.

On gquerying, the findings are as given in the below table.

Query Ty TRy3 TRYS TRyg Reca"y Reca"Ryg Reca"Rys Reca"Ryg

games 5 6.4 8.2 9.6 0.29 0.37 0.48 0.56

poetry 4.8 8 104 11.2 0.3 0.5 0.65 0.7

dogs 1.2 4.6 6 7.8 0.1 0.38 0.5 0.65

maps 24 56 6.2 6.8 0.24 0.56 0.62 0.68

Table 1: Recall calculation of Yioop result Page

Where,

T, — Average relevant results from 5 users for Yioop

Trys — Average relevant results from 5 users for re-ranked Yioop with 3 user data
Trys — Average relevant results from 5 users for re-ranked Yioop with 5 user data
Trys — Average relevant results from 5 users for re-ranked Yioop with 8 user data
Recall, — Recall for Yioop

Recallgys — Recall for re-ranked Yioop with 3 user data

Recallgys — Recall for re-ranked Yioop with 5 user data

Recallzyg — Recall for re-ranked Yioop with 8 user data

29

The graphical representation of the recall values would like

0.8
0.7 M Yioop
0.6
0.5 W Re-Rank Yioop
0.4 with 3 Result
0.3 W Re-Rank Yioop
0.2 with 5 result
0.1 M Re-Rank Yioop
with 8 result
0
games poetry dogs maps

Figure 12 — Recall comparison of Yioop and re-ranked Yioop result

As we can see, the recall value improves with the addition of user data in
the Yioop Search result page. The greater the number of user data included,

the higher the recall value obtained.
Now, let’s calculate the precision value for these data.

Here,
P, — Precision for Yioop
Pry3 — Precision for re-ranked Yioop with 3 user data

Prys — Precision for re-ranked Yioop with 5 user data

Prys — Precision for re-ranked Yioop with 8 user data

31

Query Ty Tevs Tevs Trys Py Prvs Prvs Prys
Terml 5 6.4 8.2 9.6 0.5 049 054 0.53
Term2 438 8 104 112 048 061 069 0.62
Term3 1.2 4.6 6 7.8 0.12 035 0.4 0.43
Term4 2.4 5.6 6.2 6.8 0.24 043 041 037

The graphical representation of the precision is as follows

Table 2: Precision calculation of Yioop result Page

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

games

poetry

dogs

maps

M Yioop

M Re-Rank Yioop
with 3 Result

M Re-Rank Yioop
with 5 result

M Re-Rank Yioop
with 8 result

Figure 13 — Precision comparison of Yioop and re-ranked Yioop result

32

Here, as the number of user search result increases, the precision of the
result page also increases except for the maps keyword. We can also see that
the precision increases with the number of user search result being included in
result page, but after a certain point the score improves slowly. In the above
graph, the re-ranked Yioop result page with five user data added seems to be

fine balance between the precision and the usability of the final result page.

33

5. Related Keywords in Yioop

The third aim of the project is to give related search queries for a given
keyword. Since, we are already capturing the user search data to re-rank the

result page; we make use of the same data to calculate the related keywords.
5.1 Relevance Calculation

There are different ways we can calculate the relevance of the keyword for
a particular search query. We have different parameters like timestamp and

visit count that helps in this calculation.

The simplest way is to calculate the result based on the timestamp of the
user search data. In this, the keywords having the latest timestamp are shown
as the related keywords. However, these keywords may not be related to
given search query. If the user is lucky, they might get some useful related

queries.

The second way is to calculate the result based on the visit count of the
user search data. In this, the keywords having a higher visit count is given
preference and shown in the result. It is highly probable that this gives a better

result as these are results that user used most often.

In this project, we use Okapi BM25[10] ranking function to rank the
matching search result based on its relevance to given search query. BM25 is a
bag of words information retrieval function that ranks the set of documents

based on the query.

The BM25 score is calculated by the below formula,

flgi, D) - (k1 +1)
(¢ D)+ ky - (1 —b+b- 12y

avgdl

score(D, Q) = Zﬂ: IDF(g;) - f
i=1

where, IDF(q;) is the inverse document frequency,
f(qi,D) is the q/s term frequency in the given document,
k; and b are free parameters with k; =[1.2, 2.0] and b =0.75
|D| is the length of the document D and

avgdl is the average document length

Inverse Document Frequency(IDF) is computed as shown below

N —n(q;)+0.5
n(q;) +0.5

IDF(qg;) = log

where, N is the total number of documents and

n(q;) is the number of documents containing q;

34

In this case, documents relate to the visited urls and query relates the

search keywords.

35

5.2 Implementation

The process of adding elements to the document is similar to the one
discussed earlier. We intercept the web page when the DOM content get

loaded and insert the new elements into the document.

//Get the related search results
getRecentSearches();
var rsLength = recentSearch.length;

//Create a template to add the new walues

var divHelement = content.document.createElement('div'};

var textHelement = content.document.createTextMode("Related Searches :");
divHelement.setAttribute('class', 'serp-stats');
divHelement.appendChild(textHelement);

for(i = ®; i < rsLength; i+) {
wvar spaceHelement = content.document.createTextNode("\t");
divHelement.appendChild(spaceHelement);
war aHelement = content.document.createElement('a'});
aHelement.setAttribute("href', "http:/ www.yicop.com/?g9="+ recentSearch[i]};
wvar dataHelement = content.document.createTextNode(recentSearch[i]);
aHelement.appendChild(dataHelement);
divHelement.appendChild(aHelement);

b

//Add the elements to the Yioop! result page
divResult[®].parentNode.insertBefore(divHelement, divResult[@]);

Figure 14- Adding relevant searches

Here, recentSearch is array containing the relevant keywords for the
particular search. The code then iterates through this array and adds the

element to the result page.

The below figure shows the current view of the Yioop result page and the

next figure shows the Yioop result with the related keywords feature.

36

L J e T T T e —

mmmu

Vuc;'“. | camers

Results: (1 A52152 seconds, Showing 1 -10 of 16174986)

Shop Daginl 2m0AM ¥ Shop Digeal Camaras. 350V Camners

mwuﬂ
Taedwin, Mgnops, tabkas, POS aecyoncs, Aol comenss SOMWAIS, Qanmes, Col ohons, home
Cachied Seniler Yoks 2210 .52 208 185 fewrk 1710 foed 25 200 Proc 800 Score 9 24

hd 'IM EWEM!—BCWH

Fighart com Soes to buy By A Fagkart pom Soee 16 buy Camers
Accossones Buy Camera Acosssory orkne in Inda. Accessories ACCessory colne in indn. Accessones
Lens, Tnpeos, h

Bags. Car
Cached Sevehie YRS 230017067 240 Rank 10 98 Fual 24,00 Fraw & 00 Scone 3 00

e OO0 COMTVWAT IOt Ll + SN s NN e
Buy hign quadey whoksale Cameras & Photo drectly Tom oo Chineso . Cameras £ Fhoto aliectly Yom top
Cherwso rafatie Camveras & PHoto whotesakins on DHgaw com
Gusimed Seialee DRI 12442 15 186 flack 17 74 fhed 2008 Prus 1 00 Scnre & 00
= . - M
W ITADRSTE COMU T
youi Live Trafic See local Enfic condtions ard nftc cameras Motie Dawelond the hne spp! Mam
Cochad Sevilar Yarks .04 1299 102 Fown 15 01 Fed 8 75 $ros & 00 Scoes 8 88

Beat Buy - Computers, Video Gemes, TVa, Cameras, Applances, Phones

waw heuttayy com
worce A computum, Mo guimes eevimons, dotil camersn g3 players mobile phores & spplances
Cacted Sersiar Tirks B 104 D4 272 OF Kok 11 07 e 1719 Pros A 01 Seme 801

Figure 15- Yioop result page without the related keyword

The highlighted area in the below figure shows the related keywords for the

given search query.

€D o P TTIDDD | O b DA AT T IR ytp—" ! B
Web mages ikoz lews

U7) TR
Voo [eme Sewn

Results: [1,.338805 seconds. Shawing 1 - 10 of 16097963}
slaled Searches | digiscam camars star fads

camera on
Teth Sn mbcpedin oWk FCamery
wisil_coure | Spece gntge

uwuuooucm)

Snop Digrts Camaras, 35K Cameen Equipment, Piotograpty, S2op Digral Comerss, I15WM Cameea
Equpenert, Photogiaginy. Fhoto Panlers,

Cached S Yinka 1840422230 Furk 11 5% Hel 30 57 P) 00 Soore 8 01

om
mn Wotops, tatkess. PCo L1 mcumm

mnuun (umrmub(wlm

Fhigkart com. Skore 10 buy C A Buy C: A y - Figkat com Sioee (o buy Camers
Accessonies &numﬂmum- Arcessones . Accessory otdne in nda. Accessones
Lens, Topods, Bags, Sp B £l

Ca
Cached Soméar Thoks P80 1TS47.240 Fark 40 95 Fet 24 00 Prioe 8 00 Srowe 4 08

Figure 16- Yioop Related searches

37

5.3 Testing

Here, we tried to experiment with different number of related searches to
be displayed in the search page and asked the user to vote for their best
choice. For this, five users who have a fair knowledge of computer use and
search engine use. The users were asked to rate in terms of effectiveness (how
relevant the terms where) and satisfaction (how user friendly the results were

displayed).

The below table represents the result based on the number of results being

shown to the user.

Number of Related Effectiveness Satisfaction Overall
Search terms

1 34% 36% 33%
2 40% 44% 42%
3 48% 50% 49%
4 54% 56% 55%
5 60% 64% 62%
6 66% 64% 65%
7 68% 50% 59%
8 70% 44% 57%

Table 3: Recall calculation of Yioop result Page

38

The graphical representation of the overall score will be as shown below.

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00% 7T T T

123 456 7 8

Number of Related Keywords

—+Effectiveness

—Satisfaction

~*Qverall

Figure 17- Usability graph of Related Searches
As seen in the above figure, the effectiveness of the related search
increases with the increase in the number of keywords but the user satisfaction
decreases because of the cluttering of the result page. It seems to have the
highest overall score when number of search terms are six and score deteriorates

with the increase in the keywords.

39

6. Conclusion

There are many ways we can improve the search experience of the
Yioop user. In this project, we have focused on the user search history to
improve Yioop. We have created a Firefox extension that provides user benefit
by giving a graphical representation of the user-clicked pages. With this, user
could be able to see the history instead of reading through the list of searches.

This extension also re-ranks the Yioop result based on the user-clicked
links in other search engines. By using the top five results in the Yioop result,
the average recall value has improved from 0.23 to 0.56 for these four search
queries. This shows that the re-rank feature has improved the relevant results.
Also, the average precision value has improved from 0.33 to 0.51. This shows
that the re-rank feature has improved the count of more relevant results than
the irrelevant ones. Both these measures show that the re-rank feature

provides a better personalized search experience to the user.

The extension also provides a list of related keywords for a given search
query. Based on the experiments performed, displaying six related keywords
provide better user experience. By taking advantage of the past user searches,
this project improves the overall search experience and search result of Yioop

USers.

40

7. References

[1] Pbb., Verruckt., Brettz9., Voronwe., Chee, Philip., Crookedfoot., . . .
NikolayBot. (2012). Building an extension | MDN. Retrieved from
https://developer.mozilla.org/en/Building_an_Extension

[2] Shen, Xuehua., Tan, Bin and Zhai, ChengXiang. (2005). Implicit User
Modeling for personalized Search. ACM 1595931406/05/0010

[3] Skierpage., Imorchard., Takenbot., Jking3142., jswisher., Andismith., . ..
Dria. (2012). Canvas Tutorial| MDN. Retrieved from
https://developer.mozilla.org/en/Canvas_tutorial

[4] Fruchterman, M. J., and Reingold, M. (1991). Graph drawing by force
directed placement. Software — Practice and Experience, 21, 1129-1164

[5] Vijaya Pamidi. (2010). Smart Search: A Firefox Add-On to Compute a Web
Traffic Ranking. Retrieved from
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Fall10/vijaya
/CS%20298%20Project%20Report.pdf

[6] Force-based algorithms (graph drawing). (2012). Retrieved from
http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)

[7] P. A. Tipler.(1982). Physics, 2nd edn. New York, Worth Publishers

[8] Coulomb’s law. (2012). Retrieved from
http://en.wikipedia.org/wiki/Coulomb%27s_law

[9] Romano, Asaf., Deakin, Neil., Mills, Dan. and Spitzer, Seth. (2012). Places |
MDN. Retrieved from https://wiki.mozilla.org/Places

[10] Okapi BM25. (2012). Retrieved from
http://en.wikipedia.org/wiki/Okapi_BM25

http://en.wikipedia.org/wiki/Okapi_BM25
https://wiki.mozilla.org/Places
http://en.wikipedia.org/wiki/Coulomb%27s_law
http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Fall10/vijaya
https://developer.mozilla.org/en/Canvas_tutorial
https://developer.mozilla.org/en/Building_an_Extension

[11] Pollett, Chris. (2011). CS297 Fall 2011. Retrieved from
http://www.cs.sjsu.edu/faculty/pollett/267.1.11f/

[12] Skierpage., Takenbot., Taken., Dfrios., Mickiboy., Sheepy., . .. Amaltas.
(2012). SVG|MDN. Retrieved from
https://developer.mozilla.org/en/SVG

41

https://developer.mozilla.org/en/SVG
http://www.cs.sjsu.edu/faculty/pollett/267.1.11f

