

IMPROVING YIOOP! USER SEARCH DATA USAGE

A Writing Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tarun Pepira Ramaswamy

September 2012

2

© 2012

Tarun Pepira Ramaswamy

ALL RIGHTS RESERVED

3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

IMPROVING YIOOP! USER SEARCH DATA USAGE

by

Tarun Pepira Ramaswamy

APPROVED FOR THE DEPARTMENT OF

COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science Date

Dr. Mark Stamp, Department of Computer Science Date

Dr. Soon Tee Teoh, Department of Computer Science Date

4

ABSTRACT

IMPROVING YIOOP! USER SEARCH DATA USAGE

User data in the form of vįϵ̲ζβ ̀Άͪϳ̨ Κ̎β ̨ζΚ̤Ψϲ ̣͍ζ̤͟ ̡̤̕͘ϵβζ̨ Κ ̲̇̕ ̕π

information about the user. This data can be utilized to provide some value-added

service to the end user. Commercial search engines like Google, Bing have started

taking advantage of these data and provide features like trending/popular

searches, personalized search results, etc.

This project aims to provide three user benefits using these user data. It

provides a visualization tool of userϳ̨ navigation history across the web. This

would help the users to better understand their search history. Secondly, it

improves the search results in Yioop by maintaining the user-searched queries

across various popular search engines (Google, Bing, Yahoo) locΚ̇̇͟ ϵ̎ ̲ϲζ ̨͍ζ̤ϳ̨

machine and re-ranking the Yioop result. Finally, it provides a related search

feature using the local user search data.

5

ACKNOWLEDGEMENTS

I would like to thank my professor Dr. Chris Pollett for his help and guiding

me throughout the project. He has constantly motivated me to work hard for the

project. I would also like to thank my committee members Dr. Soon Tee Teoh and

Dr. Mark Stamp for their valuable time and support. And special thanks to my

friends for helping me with the testing and their feedback.

6

Table of Contents

1.	 Introduction ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ.9

2.	 Preliminary Work ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ..11

2.1Building Firefox Extension ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ11

2.2Fϵ̤ζπ̕͞ϳ̨ Hϵ̨̲̤̕͟ DΚ̲Κ ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ13

3.	 User Data Visualization ..ϱϱϱϱϱϱϱϱϱϱϰϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ15

3.1Force Directed Algorithm ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ15

3.2 Implementation ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ18

4.	 Re-rank Yioop Result ..ϱϱϰϰϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ21

4.1 User Search Data ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ..21

4.2 Implementation ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ22

4.3 Testing ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ28

5.	 Related Keywords in Yioop Result ϱ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ33

5.1Relevance Calculation .ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ33

5.2 Implementation ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ35

5.3 Testing ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϲ϶
	

6.	 Conclusion ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲϸ

7.	 References ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϳ΄

7

List of Figures

Figure 1: Firefox Extension Structure ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϱϱϱϰϰϰϱ
	

Figure 2: install.rdf ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϱϰϱ
	

Figure 3: chrome.manifest ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲ
	

Figure 3: main.xul ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲ
	

Figure 4: The Places Database ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϳ
	

Figure 5: Pseudo code of Force Directed Algorithm ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ϶
	

Figure 6: Force Directed Graph using Canvas .ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱ΄
	

Figure 7: Database Schema of User Search data ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰ
	

Figure 8ϯ ϲ̤ζ̨͍̲̇ϳ ϲϵζ̤Κ̤Ψϲ͟ ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϱϳ
	

Figure 9: Manipulating Yioop result ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϱϰϱϱϱϰϱϴ
	

Figure 10: Yioop result without the re-rank feature ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϵ
	

Figure 11: Re-ranked Yioop result ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϱϱϰϰϱϱϱ϶
	

Figure 12: Recall comparison of Yioop and re-ranked Yioop result ..ϱϱϱϱϱϱϰϱϰϲ΄
	

Figure 13: Precision comparison of Yioop and re-ranked Yioop result .ϱϱϱϱϱϱϲϰ
	

Figure 14: Adding relevant searches ..ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲϴ
	

Figure 15: Yioop result page without the related keyword ϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲϵ
	

Figure 16: Yioop related keywords feature ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲϵ
	

Figure 17: Usability graph of Related Searches ...ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϲϷ
	

8

List of Tables

Table 1: ΆζΨΚ̇̇ ΨΚ̇Ψ͍̇Κ̲ϵ̎̕ ̕π ̒ϵ̡̕̕ ̤ζ̨͍̲̇ ΃ΚϨζϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϱϸ

Table 2: ΃̤ζΨϵ̨ϵ̎̕ ΨΚ̇Ψ͍̇Κ̲ϵ̎̕ ̕π ̒ϵ̡̕̕ ̤ζ̨͍̲̇ ΃ΚϨζϱϱϱϱϱϱϱϱϱϱϰϱϱϱϱϱϱϱϰϲϰ

Table 3: Usability score of relatζβ ̨ζΚ̤Ψϲζ̨ϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϱϰϰϲ϶

9

1. Introduction

! ̨ζΚ̤Ψϲ ζ̎Ϩϵ̎ζ ̡̇Κ̨͟ Κ̎ ϵ̡̤̲̍̕Κ̲̎ ̤̇̕ζ ϵ̎ ζ͘ζ̤͟ ̨͍ζ̤ϳ̨ ͙ζΧ ζ̡͞ζ̤ϵζ̎Ψζϰ

Over the years, there has been a continuous effort in improving their

capabilities. One among them is providing customized search results based on

users past search activity. This is called as Personalized Search. In this, the

search engine gives useful and most relevant search results by keeping a

̤ζΨ̤̕β ̕π ̲ϲζ ̨͍ζ̨̤ ̡Κ̨̲ ̨ζΚ̤Ψϲζ̨ϰ H͙̕ζ͘ζ̤ϭ ̲̤ΚΨ̄ϵ̎Ϩ ̕π ̨͍ζ̤ϳ̨ ̨ζΚ̤Ψϲ ̤ζ̨̨͍̲̇

has lead to privacy concerns among the users. In this project, Yioop search

engine gives a personalized search experience without any compromise in

their privacy. Instead of storing the search history in server, it keeps the

̤ζΨ̤̕β̨ ϵ̎ ̨͍ζ̤ϳ̨ ̇̕ΨΚ̇ ̍ΚΨϲϵ̎ζϰ ϼϲζ ̡roject is written as a Firefox extension [1]

where the implementation is transparent to the user thus providing user

confidence.

ͷ̎ζ ̕π D̤ ΃̇̇̕ζ̲̲ϳ̨ ̡̤ζ͘ϵ̨͍̕ ̨̲͍βζ̲̎ϭ ̋ϵ́Κ͟Κ ΃Κ̍ϵβϵ̘ϴ̙ Ψ̤ζΚ̲ζβ Κ ̨ϵ̍ϵ̇Κ̤

Firefox extension which captured user clicks but would send it to the Yioop

Server. Although it improved the Yioop search results over a period of time, it

βϵβ̎ϳ̲ ̡̤̕͘ϵβζ ϵ̍̍ζβϵΚ̲ζ Χζ̎ζπϵ̲ ̲̕ ̲ϲζ ̨͍ζ̤ϰ ϼϲϵ̨ ̇ζβ ̲̕ ̲ϲζ ̎̎̕ ̨͍ΚϨζ ̕π ̲ϲϵ̨

extension. To make our extension user beneficial, the project provides a

vϵ̨͍Κ̇ϵͤΚ̲ϵ̎̕ ̲̇̕̕ ͙ϲϵΨϲ β̤Κ̨͙ Κ βϵ̤ζΨ̲ζβ Ϩ̤Κ̡ϲ ̕π ̲ϲζ ̨͍ζ̤ ͘ϵ̨ϵ̲ζβ ̀Άͪϳ̨ϰ To

draw this graph, it makes use ̕π ̲ϲζ Χ̨̤͙̕ζ̤ϳ̨ ϲϵ̨̲̤̕͟ βΚ̲Κ. In Firefox, the

browser history is stored as an SQlite database called the Places [9]. It also

provides special Storagζ !΃͛ϳ̨ ̲̕ ΚΨΨζ̨̨ ̲ϲζ̨ζ βΚ̲Κϰ ϼϲζ ζ̲͞ζ̨̎ϵ̎̕ ̨͍ζ̨ ̲ϲϵ̨

data and Canvas element of HTML5 to render the graph. And to make the

10

graph aesthetically pleasing, it makes use of Force Directed Algorithm [4] for

drawing the graph.

The project also improves the search results of Yioop using the users past

search data. The users past searches are stored as a separate file to provide

πΚ̨̲ζ̤ ̤ζΚβ̄ ͙̤ϵ̲ζ ΚΨΨζ̨̨ Κ̎β Κ͘̕ϵβ ̲ϲζ Ψ̡̍̇̕ζ͞ Κ̤Ψϲϵ̲ζΨ̲͍̤ζ ̕π ̲ϲζ Χ̨̤͙̕ζ̤ϳ̨

history. Having a separate file also helps the user search data easy to maintain.

Unlike other commercial search engines like Google, Bing, etc where the user

has no control over the search data stored in the server, here the user has full

control over these data for Yioop as the data is stored in the local machine.

The extension also tries to predict related searches based on the Yioop

search query. This feature is similar to related searches in other search engines

Χ͍̲ ̨͍ζ̨ ̎̇̕͟ ̲ϲζ ̨͍ζ̤ϳ̨ ̇̕ΨΚ̇ ̨ζΚ̤Ψϲ βΚ̲Κ ̲̕ ΨΚ̇Ψ͍̇Κ̲ζ ϵ̲ϰ

The initial part of the report explains about the building blocks for creating

a Firefox extension and also provides background information about the

Χ̨̤͙̕ζ̤ϳ̨ Hϵ̨̲̤̕͟ βΚ̲Κϰ ϼϲζ̎ ϵ̲ βζ̨Ψ̤ϵΧζ̨ ϵ̎ βζ̲Κϵ̇ ΚΧ͍̲̕ ̲ϲζ ͘ϵ̨͍Κ̇ϵͤΚ̲ϵ̎̕ ̲̇̕̕

and its implementation. The next part contains details about the re-rank

feature and the experiments performed. The final part explains about the

related searches in Yioop result page with its implementation details and

experiments.

11

2. Preliminary Work

The project uses Firefox extension to build the visualization tool and to re-

̤Κ̎̄ ̒ϵ̡̕̕ϳ̨ ̨ζΚ̤Ψϲ ̤ζ̨͍̲̇ϰ ̡͛̍̇ζ̍ζ̲̎ϵ̎Ϩ ̲ϲζ ̡̤́̕ζΨ̲ Κ̨ Κ̎ ζ̲͞ζ̨̎ϵ̎̕ ̡̤̕͘ϵβζ̨

number of benefits. It helps to build user confidence as the user can view the

Ψ̕βζ Κ̲̎͟ϵ̍ζϰ ̲͛ ΨΚ̎ ̲Κ̄ζ Κβ͘Κ̲̎ΚϨζ ̕π Fϵ̤ζπ̕͞ϳ̨ ϶̲̤̕ΚϨζ !΃͛ ̲̕ ΚΨΨζ̨̨ ̲ϲζ

browser history data. And the most important benefit is in capturing the user

search results across multiple search engines in a transparent manner. Now,

let us look in detail about how to build a Firefox extension and how the user

history is stored in the browser.

2.1 Building Firefox Extension

The project uses Firefox extension to implement the features. Firefox

extensions allow developers to add functionality to the browser and enhance

the user interface in a way that is not directly related to the viewable content

of Web pages. Extensions are distinct from plug-in which help the browser to

display or play certain multimedia objects. In Firefox, the extensions are

packaged and distributed in ZIP files or Bundles, with the XPI (pronounced

϶ͤϵ̡̡͟Ϸ̗ πϵ̇ζ ζ̲͞ζ̨̎ϵ̎̕ϰ An extensionϳs user interface is written using XUL

̡̖̤͍̎̎̕̕Ψζβ ϶ͤ̇̕̕Ϸ̗ϭ �϶϶ Κ̎β ͦΚ͘Κ϶Ψ̤ϵ̡̲ϰ

12

A typical xpi file would have the below folder structure

Figure 1: Firefox Extension Structure

The basic components of the extensions are three files,

- install.rdf

- chrome.manifest and

- main.xul

install.rdf contains the id and version of the extension. It also specifies

required id, min and max version of the target application. Here, {ec8030f7-

c20a-464f-9b0e-13a3a9e97384} is the application ID of Firefox.

Figure 2: install.rdf

13

chrome.manifest contains the folder hierarchy, skin details and the main XUL

file which needs to be overlaid on the browser.

Figure 3: chrome.manifest

main.xul has the functionality details of the extension. It includes the

JavaScript file that helps to achieve the functionality and also contains details

about how one wants to add the menu details.

Figure 3: main.xul

In this project, main.js would contain the logic to draw the graph and make use of

the search result to re-rank the Yioop result and calculate the related keywords. A

detailed description of this is discussed later.

14

2.2 Firefox History Data

Firefox uses a robust history management system called Places [9]. It stores the

history and bookmark data in a flexible and easy to access manner. Internally, it is a

SQlite database and uses the mozStorage interface. A partial database schema of

this database is shown below.

Figure 4: The Places Database

Although, the Places database has lots of information regarding bookmarks,

πΚ͘ϵΨ̨̎̕ϭ ͙ζ π̕Ψ̨͍ ̎̇̕͟ ̎̕ ̲ϲζ ̀Άͪϳ̨ ͘ϵ̨ϵ̲ζβ Χ͟ ̲ϲζ ̨͍ζ̤ Κ̎β ̲ϲζ ̎Κ͘ϵϨΚ̲ϵ̎̕ ̡Κ̲ϲ ̕π

the usage. These details can be extracted from moz_places and moz_historyvisits

table. From moz_historyvisits, we get the URL id of a page and the URL id of the

page from which it came/visited. Using this id, we can get the actual URL from the

moz_places table.

15

3. User Data Visualization

One of the main goals of the project was to show the user history in a

graphical way. This would give the user a visual tool to view thζϵ̤ ͘ϵ̨ϵ̲ζβ ̀Άͪϳ̨ϰ

The user history typically consists of the navigation history of users moving

from one website to another in form of user clicks or user searches. Tabulating

the list of the sites visited is one form of listing the visited websites. But,

displaying it in the form of graph would be more easily readable by the users.

For the graph, we can imagine the nodes as a particular website/web link and

the edges as the navigation path between the two web links. There are

different kinds of graph layouts available like Force-based layout, orthogonal

layout, Spectral layout, Circular layout, Tree layout, etc. In this project, we use

Force-based layout as it clearly represents the user navigation in an obvious

way.

3.1 Force Directed Algorithm

Force based layouts uses the Force Directed algorithm [6] to draw a

directed graph in an aesthetically pleasing way. The aesthetic criteria typically

consist of having the vertices evenly distributed, fewer crossing edges, equal

edge lengths and overall symmetry. In the Force directed model, the nodes of

the graph are assumed as a metal ring and the edges are considered to be

springs to form a mechanical system. The nodes are placed initially at some

̤Κ̎β̍̕ ̡̨̕ϵ̲ϵ̨̎̕ Κ̎β ̲ϲζ ̨̡̤ϵ̎Ϩϳ̨ π̤̕Ψζ ͙ϵ̇̇ ΨΚ̨͍ζ ̲ϲζ ̎̕βζ̨ ̲̕ ̍ove. The

nodes will finally come to rest at equilibrium.

16

In Force directed algorithms designed by Fruchterman & Reingold [4], there

Κ̤ζ ̲͙̕ π̤̕Ψζ̨ ̲ϲΚ̲ ϲζ̡̇ ̲̕ ̤ζΚΨϲ ̲ϲζ ̨̲Κ̲ζ ̕π ζ̣͍ϵ̇ϵΧ̤ϵ͍̍ϭ H̄̕̕ζϳ̨ π̤̕Ψζ ̕π

Κ̲̲̤ΚΨ̲ϵ̎̕ Κ̎β �͍̇̍̕̕Χϳ̨ π̤̕Ψζ ̕π ̤ζ̡̨͍̇ϵ̎̕ϰ

Hooke’s Law : ϶If the spring is compressed or extended and released, it

returns to its original, or natural, length, provided the displacement is not too

great. We see that for small Δx the force exerted by the spring is approximately

proportional to Δ x. This result is known as Hooke’s Law.”[7]

F = -k(x - x) = -kx
x 0

Where k is the force of constant of the spring

Coulomb’s Law: “It states that the magnitude of the Electrostatics force of

interaction between two point charges is directly proportional to the scalar

multiplication of the magnitudes of charges and inversely proportional to the

square of the distances between them.”[8]

|F| = k
e

2

21 ||

r

qq

Where Ke is the repulsion constant and q1, q2 are the two point

charges.

In this algorithm, we randomly place the node in a given plane. Due to the

random position, forces get applied to the node by either pulling them

towards each other or by pushing them away from one other. This process

continues till the system comes to an equilibrium state.

17

This can be explained in detailed by the below pseudo-code of the

algorithm

Figure 5: Pseudo code of Force Directed Algorithm

After assigning random positions to the node, we are calculating the force

on each node. For each node, we calculate the Coulombϳs force of repulsion

ΨΚ̨͍ζβ Χ͟ Κ̇̇ ̲ϲζ ̲̕ϲζ̤ ̎̕βζ̨ ϵ̎ ̲ϲζ ̨̨̲͟ζ̍ Κ̎β ̲ϲζ H̄̕̕ζϳ̨ π̤̕Ψζ ̕π Κ̲̲̤ΚΨ̲ϵ̎̕

caused by the springs attached to this particular node. This net force is then

used to update the velocity of the node which moves the node to the new

18

position. This process is continued till the kinetic energy of the system

converges to zero or a really small value. Here, we chose the small value to be

0.01 to maintain a balance between the time taken to draw the graph and the

quality of the final graph.

3.2 Implementation

The algorithm is implemented using JavaScript as it is easy to add JavaScript

in the Firefox extension. For drawing the graph, we had the option of using

SVG or Canvas. We choose Canvas due to the popularity of HTML5 and its

wider support.

F̤̕ β̤Κ͙ϵ̎Ϩ ̲ϲζ Ϩ̤Κ̡ϲϭ ͙ζ Κ̤ζ Ψ̨̎̕ϵβζ̤ϵ̎Ϩ ̲ϲζ ͍̎ϵ̣͍ζ ̀Άͪϳ̨ Κ̨ ̲ϲζ ̎̕βζ̨

Κ̎β ̲ϲζ ̨̡̤ϵ̎Ϩ ̲̕ Χζ ̲ϲζ ̎Κ͘ϵϨΚ̲ϵ̎̕ ΚΨ̨̨̤̕ ̲ϲζ ̀Άͪϳ̨ϰ As discussed earlier,

Firefox provides the history data in the form a SQLite database. It also provides

϶̲̤̕ΚϨζ !΃͛ϳ̨ ̲̕ ̤ζ̲̤ieve and manipulate the data.

The database can be opened by the below API,

var placeDb = Components.classes["@mozilla.org/browser/nav-history-service;1"]
.getService(Components.interfaces.nsINavHistoryService)
.QueryInterface(Components.interfaces.nsPIPlacesDatabase).DBConnection;

Once the connection is open, we can create sql statements and execute it
as shown below

var statement = placeDb.createStatement("SELECT * FROM moz_historyvisits; ");
statement.executeAsync();

Here, we get all the nodes i.e. ͍̎ϵ̣͍ζ ͘ϵ̨ϵ̲ζβ ̀Άͪϳ̨ π̤̍̕ ̲ϲζ ̲ΚΧ̇ζ̨

moz_places and moz_historyvisits using the below statement.

var statemt = placeDb.createStatement("SELECT distinct moz_places.url as URL
FROM moz_historyvisits, moz_places where moz_historyvisits.place_id =
moz_places.id;");

http:moz_places.id

19

var point = new Point(Vector.random(), 1.0, url);

Once the nodes are drawn, we need to get the edges. Edges are calculated

ϵ̎ Κ ̲͙̕ ̨̲ζ̡ ̡̤̕Ψζ̨̨ϰ Fϵ̨̤̲ϭ ͙ζ πϵ̎β ̲ϲζ ϶π̤̍̒̕͘ϵ̨ϵ̲Ϸ Κ̲̲̤ϵΧ͍̲ζ ̖͙ϲϵΨϲ ϵ̨ ̲ϲζ ϵβ

of the source URL link) and the destination URL from the moz_historyvisits

table.

var statement = placeDb.createStatement("SELECT moz_historyvisits.from_visit as

fromURLId, moz_places.url as toURL FROM moz_historyvisits, moz_places where

moz_historyvisits.place_id = moz_places.id;");

͛̎ ̲ϲζ ̎ζ̲͞ ̨̲ζ̡ϭ π̤̕ ζΚΨϲ ̕π ̲ϲϵ̨ ̨͍̤̕Ψζ ̀Άͪ ϵβϳ̨ ͙ζ Ϩζ̲ ̲ϲζϵ̤ Ψ̤̤̕ζ̨̡̎̕βϵ̎Ϩ

source URL.

var stmt = placeDb.createStatement("SELECT moz_places.url as fromURLS FROM

moz_places WHERE moz_places.id IN (SELECT moz_historyvisits.place_id FROM

moz_historyvisits where moz_historyvisits.id = :fromhistoryURL)");

For each of these source-destination pair, we draw the spring.

applyStrings(ColumnFromURL, ColumnToURL);

Once we have the nodes and their corresponding edges, we can use the

Force directed algorithm to calculate and draw the graph. To show, the

animation effect, we redraw the graph for each iteration.

In this implementation, we tried for different constant values that could be

used as damping, repulsion and the timestep to update the velocity of the

node. After some observation based on the time taken to draw and the

overlap of the graph edges, we chose the damping constant to be 0.6,

timestep to be 0.5 and the repulsion constant as 90 for drawing the graph.

http:moz_historyvisits.id
http:moz_places.id
http:moz_places.id

20

In the graph, the edge tapers from the start node to the end node. The

edge is thicker at the source node and becomes thinner towards the

destination node. The below figure shows a sample graph.

Figure 6: Force Directed Graph using Canvas

21

4. Re-ranking Yioop Result

The second aim of the project is to provide a better search result in Yioop

using the user search data. For this, we need to filter the useful data that helps

̲̕ ϵβζ̲̎ϵπ͟ ̲ϲζ ̨ζΚ̤Ψϲ ̄ζ͙̤̕͟β Κ̎β ̲ϲζ Ψ̤̤̕ζ̨̡̎̕βϵ̎Ϩ ̀Άͪϳ̨ ̲ϲζ ̨͍ζ̤ Ψ̇ϵΨ̄ζβϰ

To achieve this, we store the user-clicked searches from popular search engine

like Google, Yahoo, Bing, Yioop etc. For this project, we are storing the user

clicks for only these search engines. However, it can be extended to other

search engines as well.

4.1 User Search Data

As explained in the previous section, Firefox provides a feature to store

history data in a SQLite database. However, continuous retrieval of data in this

normalized database could affect the performance of the query. Hence, we

create a separate SQLite database called yioop_HistoryData.sqlite to capture

the keywords, the url links, the visit count and source of the data.

Figure 7: Database Schema of User Search data

As the ̎Κ̍ζ ̨͍ϨϨζ̨̨̲ϭ ̲ϲζ ϶̄ζ͙̤̕͟βϷ ϵ̨ ̲ϲζ ̨ζΚ̤Ψϲ ̣͍ζ̤͟ ̲ϲζ ̨͍ζ̤ ζ̲̎ζ̤ζβ

ϵ̎ ̲ϲζ ̨ζΚ̤Ψϲ ζ̎Ϩϵ̎ζ ̡ΚϨζϭ ϶͍̤̇Ϸ ϵ̨ ̲ϲζ βestination url the user reached by

Ψ̇ϵΨ̄ϵ̎Ϩ ̎̕ ̲ϲζ ̨ζΚ̤Ψϲ ̤ζ̨͍̲̇ϭ ϶̲ϵ̲̇ζϷ ̤ζ̡̤ζ̨ζ̨̲̎ ̲ϲζ ̲ϵ̲̇ζ ̕π ̲ϲζ ̤ζ̨͍̲̇ ̡ΚϨζϭ

22

϶͘ϵ̨ϵ̲Ψ͍̲̎̕Ϸ ̤ζ̡̤ζ̨ζ̨̲̎ ̲ϲζ ͍̎̍Χζ̤ ̕π ̲ϵ̍ζ̨ ̲ϲϵ̨ ͍̤̇ Ϩ̲̕ Ψ̇ϵΨ̄ζβ π̤̕ ̲ϲϵ̨

̡Κ̤̲ϵΨ͍̇Κ̤ ̨ζΚ̤Ψϲ ̣͍ζ̤͟ϭ ϶̨ζΚ̤Ψϲπ̤̍̕Ϸ ̨ϵ̡̍̇͟ ̤ζ̡̤ζ̨ζ̨̲̎ ̲ϲζ ̨ζΚ̤Ψϲ engine

π̤̍̕ ͙ϲϵΨϲ ̲ϲϵ̨ βΚ̲Κ Ϩ̲̕ ζ̲̤͞ΚΨ̲ζβ Κ̎β ϶̲ϵ̍ζ̨̲Κ̡̍Ϸ ̤ζ̡̤ζ̨ζ̨̲̎ ̲ϲζ ̲ϵ̍ζ Κ̲

which the result was captured.

For any given query on the Yioop Search engine, it returns the search result

based on the data stored in the server. Since, these captured results are stored

in the user machine and not sent to the Yioop Server, the results on the server

is not influenced by these data. The extension now calculates the user clicked

results based on the user query and manipulates the Yioop Search result page

at runtime. The relevant search result can be selected based on the

϶̲ϵ̍ζ̨̲Κ̡̍Ϸ ̤̕ ̲ϲζϵ̤ ϶͘ϵ̨ϵ̲Ψ͍̲̎̕Ϸϰ ͛̎ ̲ϲϵ̨ ̡̤́̕ζΨ̲ϭ ͙ζ ΨΚ̇Ψ͍̇Κ̲ζ ̲ϲζ ̤ζ̨͍̲̇ ΧΚ̨ζβ

̎̕ ̲ϲζ ϶͘ϵ̨ϵ̲Ψ͍̲̎̕Ϸ ̨ϵ̎Ψζϭ ̲ϲζ ̤̍̕ζ ̲ϲζ ̨͍ζ̤ Ψ̇ϵΨ̄ζβ ̎̕ ̲ϲζ ̡Κ̤̲ϵΨ͍̇Κ̤ ̇ϵ̎̄ϭ ̲ϲζ

greater its value.

4.2 Implementation

To re-rank the Yioop result page on the fly, we need to manipulate the

Document Object Model (DOM) of the page. There are three different

methods to intercept the loading web pages and modify their contents.

However, the use of these techniques depends solely on the requirement of

the project. In this project, we want to modify the content of the Yioop result

page based on the search query. For this, the use of Load Events is sufficient.

The other two techniques are HTTP Observers and WebProgess Listener.

HTTP Observers intercepts for HTTP notification sent for the HTTP request and

manipulates the content. If one needs a more controlled way of intercepting

23

and modifying the various stages of the web page load, WebProgessListener is

the better choice. It can be used to keep track of all the progress listeners for

each tab.

Let us discuss the LoadEvent technique used in the project in more detail.

In this technique, we add an event listener for the load event. The function

below adds an event listener on page load with the callback method

myExtension.init().

window.addEventListener("load", function load(event) {

window.removeEventListener("load", load, false);

myExtension.init();

}, false);

Once the listener is added, the next step is to put in the functionality code

to the myExtension function. The structure of myExtension would be

something as shown below.

var myExtension = {

init: function () {

// The event can be DOMContentLoaded, pageshow, pagehide, load or unload.
if (gBrowser)

gBrowser.addEventListener("DOMContentLoaded", this.onPageLoad, false);

//Initialization logic can be put here
},

onPageLoad: function (aEvent) {

//Code that manipulates the web page
}

};

Here, gBrowser is the global object that corresponds to each browser

͙ϵ̎β͙̕ϰ �͟ Κ̲̲ΚΨϲϵ̎Ϩ ̲ϲζ ϶DͷͰ�̲̎̕ζ̲̎ͪ̕ΚβζβϷ ζ͘ζ̲̎ ϲΚ̎β̇ζ̤ϭ Ϩ�̨̤͙̕ζ̤

allows to listen to all the tabs in a hassle free way.

In order to re-rank the results, we need to create new elements and update

the Yioop result page with these new elements. The re-rank is applied only to

24

the first page of the Yioop result page. The next pages will be showing the

actual results without the re-rank. In the Yioop result page, the results are

̇ϵ̨̲ζβ Κ̨ Κ ϲβϵ͘ϳ ζ̇ζ̍ζ̲̎ ͙ϵ̲ϲ Κ Ψ̇Κ̨̨ͱΚ̍ζ ϲ̤ζ̨͍̲̇ϳϰ ϶̕ϭ ͙ζ Ϩζ̲ ̲ϲζ

HϼͰͪ�̇̇̕ζΨ̲ϵ̎̕ ϲΚ͘ϵ̎Ϩ ̲ϲζ Ψ̇Κ̨̨ͱΚ̍ζ Κ̨ ϲ̤ζ̨͍̲̇ϳ Κ̎β Κββ ̲ϲζ ̤ζ̨̨͍̲̇ Κ̨ ̲ϲζϵ̤

siblings. The result has the following structure.

Figure 8: ϲ̤ζ̨͍̲̇ϳ ϲϵζ̤Κ̤Ψϲ͟

To add the result, the exact HTML structure needs to be created and added

to the web page. HTMLCollection objects support the following methods to

modify the content of the webpage.

insertBefore(newElement, refElement) ̌ This adds the newElement before

the refElement. Since, there is no insertAfter() function, insertBefore() can be

used as insertBefore(newElement, refElement.nextSibling) to get the same

effect.

replaceChild(newElement, oldElement) ̌ This replaces the oldElement

with the newElement.

25

The below code creates such element and adds it to the Yioop result page.

Figure 9: Manipulating Yioop result

Here, colValues[] array contains the keyword, title and the url of the result.

ϼϲϵ̨ ϵ̨ ̨͍ζβ ̲̕ Ψ̤ζΚ̲ζ ̲ϲζ ϲ̤ζ̨͍̲̇ϳ βϵ͘ ζ̇ζ̍ζ̲̎ Κ̎β Κββζβ ̲̕ Ψ͍̤̤ζ̲̎ ͙ζΧ ̡ΚϨζϰ

This code would come under the onPageLoad section of the above Load Event

code. With this interception and manipulation of the result page, we can

successfully add the search results captured from other search engine pages.

26

�ζ͙̇̕ ϵ̨ ̲ϲζ ζ͞Κ̡̍̇ζ ̕π Κ ̨ζΚ̤Ψϲ π̤̕ ̲ϲζ ̄ζ͙̤̕͟β ϶πΚβζϷϰ ϼϲζ πϵ̨̤̲ πϵϨ͍̤ζ

shows the current Yioop search result and the next figure shows the Yioop

result with the re-rank function.

Figure 10: Yioop result without the re-rank feature

As shown in the below figure, the first result is being captured from the

Bing search engine. It has been placed at the top due to its higher visit count. If

there are many results coming from other search engine, we restrict to the top

five results calculated from user search data. This gives a good balance

27

Χζ̲͙ζζ̎ ̲ϲζ ̒ϵ̡̕̕ϳ̨ ΚΨ̲͍Κ̇ ̤ζ̨͍̲̇ π̤̍̕ ̲ϲζ ̨ζ̤͘ζ̤ Κ̎β the results obtained

from the user search data.

Figure 11: Re-ranked Yioop result

28

4.3 Testing

Here, we shall discuss some tests of the relevance of re-ranking the search

results in the Yioop result page. In our experiments, we are using the feedback

given by five volunteers who tested this feature and scored it based on how

relevant the results were for the searches.

First, they were asked to search for a particular keyword in Yioop search

engine and give a score of number of relevant results shown in the result page.

Then, we added the re-rank feature and asked them to give a score of relevant

search results. The effectiveness of the search result is calculated using two

standard measures called precision and recall.

Precision [11] is the fraction of the result set that are relevant and Recall

[11] is the fraction of relevant documents that appear in the result set.

Precision = |Rel  Res|/|Res|

Recall = |Rel  Res|/|Rel|

In this experiment, we have used some common terms like games, poetry,

dogs and maps as the search term. It also shows three variants of the re-

ranked Yioop result page, with three, five and eight results from the user

search data.

29

On querying, the findings are as given in the below table.

Query TY TRY3 TRY5 TRY8 RecallY RecallRY3 RecallRY5 RecallRY8

games 5 6.4 8.2 9.6 0.29 0.37 0.48 0.56

poetry	 4.8 8 10.4 11.2 0.3 0.5 0.65 0.7

dogs 1.2 4.6 6 7.8 0.1 0.38 0.5 0.65

maps 2.4 5.6 6.2 6.8 0.24 0.56 0.62 0.68

Table 1: Recall calculation of Yioop result Page

Where,

Ty ̌ Average relevant results from 5 users for Yioop

TRY3 ̌ Average relevant results from 5 users for re-ranked Yioop with 3 user data

TRY5 ̌ Average relevant results from 5 users for re-ranked Yioop with 5 user data

TRY8 ̌ Average relevant results from 5 users for re-ranked Yioop with 8 user data

Recally ̌ Recall for Yioop

RecallRY3 ̌ Recall for re-ranked Yioop with 3 user data

RecallRY5 ̌ Recall for re-ranked Yioop with 5 user data

RecallRY8 ̌ Recall for re-ranked Yioop with 8 user data

32

Here, as the number of user search result increases, the precision of the

result page also increases except for the maps keyword. We can also see that

the precision increases with the number of user search result being included in

result page, but after a certain point the score improves slowly. In the above

graph, the re-ranked Yioop result page with five user data added seems to be

fine balance between the precision and the usability of the final result page.

33

5. Related Keywords in Yioop

The third aim of the project is to give related search queries for a given

keyword. Since, we are already capturing the user search data to re-rank the

result page; we make use of the same data to calculate the related keywords.

5.1 Relevance Calculation

There are different ways we can calculate the relevance of the keyword for

a particular search query. We have different parameters like timestamp and

visit count that helps in this calculation.

The simplest way is to calculate the result based on the timestamp of the

user search data. In this, the keywords having the latest timestamp are shown

as the related keywords. However, these keywords may not be related to

given search query. If the user is lucky, they might get some useful related

queries.

The second way is to calculate the result based on the visit count of the

user search data. In this, the keywords having a higher visit count is given

preference and shown in the result. It is highly probable that this gives a better

result as these are results that user used most often.

In this project, we use Okapi BM25[10] ranking function to rank the

matching search result based on its relevance to given search query. BM25 is a

bag of words information retrieval function that ranks the set of documents

based on the query.

34

The BM25 score is calculated by the below formula,

where, IDF(qi) is the inverse document frequency,

f(qi,D) is the qiϳ̨ ̲ζ̤̍ π̤ζ̣͍ζ̎Ψ͟ ϵ̎ ̲ϲζ Ϩϵ͘ζ̎ β̕Ψ͍̍ζ̲̎ϭ

k1 and b are free parameters with k1 = [1.2, 2.0] and b = 0.75

|D| is the length of the document D and

avgdl is the average document length

Inverse Document Frequency(IDF) is computed as shown below

where, N is the total number of documents and

n(qi) is the number of documents containing qi.

In this case, documents relate to the visited urls and query relates the

search keywords.

35

5.2 Implementation

The process of adding elements to the document is similar to the one

discussed earlier. We intercept the web page when the DOM content get

loaded and insert the new elements into the document.

Figure 14- Adding relevant searches

Here, recentSearch is array containing the relevant keywords for the

particular search. The code then iterates through this array and adds the

element to the result page.

The below figure shows the current view of the Yioop result page and the

next figure shows the Yioop result with the related keywords feature.

36

Figure 15- Yioop result page without the related keyword

The highlighted area in the below figure shows the related keywords for the

given search query.

Figure 16- Yioop Related searches

37

5.3 Testing

Here, we tried to experiment with different number of related searches to

be displayed in the search page and asked the user to vote for their best

choice. For this, five users who have a fair knowledge of computer use and

search engine use. The users were asked to rate in terms of effectiveness (how

relevant the terms where) and satisfaction (how user friendly the results were

displayed).

The below table represents the result based on the number of results being

shown to the user.

Number of Related Effectiveness Satisfaction Overall
Search terms

1 34% 36% 33%

2 40% 44% 42%

3 48% 50% 49%

4 54% 56% 55%

5 60% 64% 62%

6 66% 64% 65%

7 68% 50% 59%

8 70% 44% 57%

Table 3: Recall calculation of Yioop result Page

38

The graphical representation of the overall score will be as shown below.

Figure 17- Usability graph of Related Searches

As seen in the above figure, the effectiveness of the related search

increases with the increase in the number of keywords but the user satisfaction

decreases because of the cluttering of the result page. It seems to have the

highest overall score when number of search terms are six and score deteriorates

with the increase in the keywords.

39

6. Conclusion

There are many ways we can improve the search experience of the

Yioop user. In this project, we have focused on the user search history to

improve Yioop. We have created a Firefox extension that provides user benefit

by giving a graphical representation of the user-clicked pages. With this, user

could be able to see the history instead of reading through the list of searches.

This extension also re-ranks the Yioop result based on the user-clicked

links in other search engines. By using the top five results in the Yioop result,

the average recall value has improved from 0.23 to 0.56 for these four search

queries. This shows that the re-rank feature has improved the relevant results.

Also, the average precision value has improved from 0.33 to 0.51. This shows

that the re-rank feature has improved the count of more relevant results than

the irrelevant ones. Both these measures show that the re-rank feature

provides a better personalized search experience to the user.

The extension also provides a list of related keywords for a given search

query. Based on the experiments performed, displaying six related keywords

provide better user experience. By taking advantage of the past user searches,

this project improves the overall search experience and search result of Yioop

users.

40

7. References

[1] Pbb., Verruckt., Brettz9., Voronwe., Chee, Philip., Crookedfoot., . . .
NikolayBot. (2012). Building an extension | MDN. Retrieved from
https://developer.mozilla.org/en/Building_an_Extension

[2] Shen, Xuehua., Tan, Bin and Zhai, ChengXiang. (2005). Implicit User
Modeling for personalized Search. ACM 1595931406/05/0010

[3] Skierpage., Imorchard., Takenbot., Jking3142., jswisher., Andismith., . . .
Dria. (2012). Canvas Tutorial| MDN. Retrieved from
https://developer.mozilla.org/en/Canvas_tutorial

[4] Fruchterman, M. J., and Reingold, M. (1991). Graph drawing by force
directed placement. Software ̌ Practice and Experience, 21, 1129-1164

[5] Vijaya Pamidi. (2010). Smart Search: A Firefox Add-On to Compute a Web
Traffic Ranking. Retrieved from
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Fall10/vijaya
/CS%20298%20Project%20Report.pdf

[6] Force-based algorithms (graph drawing). (2012). Retrieved from
http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)

[7] P. A. Tipler.(1982). Physics, 2nd edn. New York, Worth Publishers

̘Ϸ̙ �͍̇̍̕̕Χϳ̨ ̇Κ͙. (2012). Retrieved from
http://en.wikipedia.org/wiki/Coulomb%27s_law

[9] Romano, Asaf., Deakin, Neil., Mills, Dan. and Spitzer, Seth. (2012). Places |
MDN. Retrieved from https://wiki.mozilla.org/Places

[10] Okapi BM25. (2012). Retrieved from
http://en.wikipedia.org/wiki/Okapi_BM25

http://en.wikipedia.org/wiki/Okapi_BM25
https://wiki.mozilla.org/Places
http://en.wikipedia.org/wiki/Coulomb%27s_law
http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Fall10/vijaya
https://developer.mozilla.org/en/Canvas_tutorial
https://developer.mozilla.org/en/Building_an_Extension

41

[11] Pollett, Chris. (2011). CS297 Fall 2011. Retrieved from
http://www.cs.sjsu.edu/faculty/pollett/267.1.11f/

[12] Skierpage., Takenbot., Taken., Dfrios., Mickiboy., Sheepy., . . . Amaltas.
(2012). SVG|MDN. Retrieved from
https://developer.mozilla.org/en/SVG

https://developer.mozilla.org/en/SVG
http://www.cs.sjsu.edu/faculty/pollett/267.1.11f

