
Improving Yioop! User Search Data

Usage

PROJECT ADVISOR : DR. CHRIS POLLETT

COMMITTEE MEMBERS: DR. MARK STAMP & DR. SOON TEE TEOH

Agenda

 Introduction

 Project Goal

 Background

 User Data Visualization

 Re-rank Yioop Result

 Related keywords

 Test and Result

 Demo

Introduction

 Users past search history can be used to provide customized search

results.

 Commercial search engines like Google, Bing provide this feature

called as Personalized search.

 However, storing of this user data in the server has some privacy

concerns.

Project Goal

 The goal of the project is to use the user search data and provide

valuable features to Yioop User without any privacy issue

 Provide a visualization tool to see the search history

 Customize Yioop Search result based on past user searches

 Provide related searches

Background

 We use Firefox extension for building the features because

 Build user confidence as user can view the code

 Provides Storage API to access browsers history

 Easy to implement using popular scripting language like Javascript

Firefox Extension

 Extensions allow users to add functionality to the browser and

enhance the user interface.

 They are distributed in the form of zip bundle with a xpi (pronounced

“zippy”) extension.

 Basic component of the extension

 install.rdf

 chrome.manifest

 main.xul

Basic Components

 install.rdf – It contains details like unique id, version, min and max

version of the target application details, etc. This file is read for

installation.

 chrome.manifest – It contains folder hierarchy, skin details and the

xul file to be overlaid on the browser.

 main.xul – It contains the UI details that needs to be overlaid on the

browser. It also adds functionality by including JavaScript files.

User Data Visualization

 One of the user benefits is to provide a visualization graph of the

users past search history.

 In this graph, the nodes represent the unique urls visited and the

edge represents the navigation path to reach the url.

 For this, we are using Force directed algorithm to draw the directed

graph.

Force Directed Algorithm

 In this algorithm, there are two forces assigned at the edges and the nodes

 Hooke’s Law - If the spring is compressed or extended and released, it returns to

its original, or natural, length, provided the displacement is not too great.

 Fx = -k(x - x0) = -kx Where k is the force of constant of the spring

 Coulomb’s Law - The magnitude of the Electrostatics force of interaction

between two point charges is directly proportional to the scalar multiplication

of the magnitudes of charges and inversely proportional to the square of the

distances between them.

 |F| = ke |q1q2|/r2

 Where Ke is the repulsion constant and q1, q2 are the two point charges.

Force Directed Algorithm

Sample Graph

Re-rank Yioop Result

 The second goal of the project is to provide customized search

result based user’s past searches.

 Capture user searches and store it in the local machine.

 Re-rank the Yioop result page at runtime based on these data.

User Data for re-rank

 Capture user search data from other search engines like Google,

Yahoo, Bing, Yioop.

Field Information

keyword The search query user entered in the search

engine

url The destination url the user reached by

clicking the search result

title Title of the destination page

visitcount Keeps track of the number of visits

searchfrom Keeps track of the search engine

timestamp Keeps an update of the latest time stamp

Storage of user data

 The user searches are stored in the local machine.

 It is stored in the form of sqlite database.

 Why?

 It is lightweight

 Easy to access using javascript

 Readily available apis for data manipulation

How to manipulate the Yioop

Result Page?

 Three ways to manipulate the Document Objet Model (DOM)

 Load Events – Add a listener when the Yioop result page loads and start

manipulating the DOM.

 HTTP Observer – In this, the page is captured at the HTTP notification

event and update it.

 WebProgressListeners – More sophisticated way of intercepting and

modifying at various stages of load event

Re-Rank Yioop Result

 Uses the “visitcount” to determine whether the result is included in

the Yioop page.

 Use the “Load Event” method to manipulate the data.

 window.addEventListener("load", function load(event) {

 window.removeEventListener("load", load, false);

 myExtension.init();

}, false);

var myExtension = {

 init: function () {

 // The event can be DOMContentLoaded, pageshow, pagehide, load or unload.

 if (gBrowser)

 gBrowser.addEventListener("DOMContentLoaded", this.onPageLoad, false);

 //Initialization logic can be put here

 },

 onPageLoad: function (aEvent) {

 //Code that manipulates the web page

 }

};

Existing Yioop Search Result

Re-ranked Yioop Result Page

Related keywords

 The final goal is to provide related keywords in the Yioop result

based on the past searches.

 Use the past user search keywords and calculate the most relevant.

 We use Okapi BM25 to calculate the related keywords.

Okapi BM25

 where, IDF(qi) is the inverse document frequency,

 f(qi,D) is the qi’s term frequency in the given document,

 k1 and b are free parameters with k1 = [1.2, 2.0] and b = 0.75

 |D| is the length of the document D and

 avgdl is the average document length

 where, N is the total number of documents and

 n(qi) is the number of documents containing qi.

Related Keyword result

Demo

Tests and Result

 Used feedback from five volunteers to test the re-rank feature and

the related keyword feature

 Used the measure of Precision and Recall to calculate the

effectiveness of the feature.

 Precision is the fraction of the result set that are relevant

 Precision = |Rel  Res|/|Res|

 Recall is the fraction of relevant documents that appear in the result set.

 Recall = |Rel  Res|/|Rel|

Re-rank result

 Recall comparison of Yioop and Re-Ranked Yioop Result

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

games poetry dogs maps

Yioop

Re-Rank Yioop
with 3 Result

Re-Rank Yioop
with 5 result

Re-Rank Yioop
with 8 result

Re-rank result

 Precision comparison of Yioop and Re-Ranked Yioop Result

Related keywords



Conclusion

 The project improves the Yioop user experience by using the users

past searches.

 The re-rank feature has improved the mean recall value from 0.23 to

0.56 when top 5 results are added.

 The re-rank feature has improved the mean precision value from

0.33 to 0.51 when top 5 results are added.

 The related keywords is most effective with the maximum of 6

relevant results.

Questions

