
Improving Yioop! User Search Data Usage

A Writing Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tarun Pepira Ramaswamy

December 2011

2

Table of Contents

1. Introduction………………………………………………………………………………………………3

2. Deliverable 1: Firefox Extension with Preference pane………………………………4

3. Deliverable 2: Simple Graph using Canvas/SVG…………………………………………6

4. Deliverable 3: Index User Clicks in the Yioop Search Result Page……………….9

5. Conclusion………………………………………………………………………………………………..11

6. References.………………………………………………………………………………………………12

3

1. Introduction

One of Dr.Pollett’s previous student, Vijaya Pamidi wrote a Firefox extension

which captures the URL‘s visited in Firefox and sends these to the Yioop Search

Engine. One of the disadvantages of this extension is the lack of user benefit for

sending the data to Yioop. This led to non usage of the extension. Also, the relevance

of the URL data sent by the extension is computed in an ad hoc way.

The main goal of my project is to add a visualization component to this Firefox

extension encouraging the users to use this extension. The visualization will show

the user navigation across the visited URL’s providing user benefit. The extension will

also have a preference pane to accept user configurable data like username and

password. Currently, the user clicks on the Yioop search result page are not

captured. This extension should capture the user clicks on Yioop search result page

and send it to the Yioop Search Engine. My project will also implement a

theoretically sound way of computing the relevance of these data, based on modern

web reputation systems.

4

2. Deliverable 1: Firefox extension with a preference pane

2.1 Goal

The objective of the deliverable is to create a simple Firefox extension with

a preference pane.

2.2 Description

Extensions allow developers to add functionality to the browser and

enhance the user interface in a way that is not directly related to the viewable

content of Web pages. In Firefox, the extensions are packaged and distributed in

ZIP files or Bundles, with the XPI (pronounced “zippy”) file extension. The

extensions user interface is written using XUL (pronounced “zool”), CSS and

JavaScript.

The basic components of the extensions are install.rdf, chrome.manifest

and the main.xul file. Install.rdf contains the id and version of the extension. It

also specifies required id, min and max version of the target application. The

chrome.manifest contains the folder hierarchy, skin details and the main XUL file

which needs to be overlayed.

An example of the content within a typical XPI file

/install.rdf //General information about your extension
/chrome.manifest //Registers you content with the Chrome engine
/chrome/
/chrome/content/ //Contents of your extension like XUL and js file
/chrome/icons/default/* //Default Icons of the extension
/chrome/locale/* //Building an Extension# Localization
/defaults/preferences/*.js //Building an Extension# Defaults Files
/plugins/*
/components/*
/components/cmdline.js

http:components/cmdline.js
http:defaults/preferences/*.js

5

In this deliverable, I created a Firefox extension that has a simple

preference pane. It also shows a pop up message when a user clicks any link in

the webpage. The snapshots below show these features.

6

3. Deliverable 2: Simple Graph using Canvas/SVG

3.1 Goal

The objective of the deliverable is to use a force directed algorithm

(Fruchterman& Reingold, 1991) in calculating the nodes position in the graph and

draw it using SVG or Canvas.

3.2 Description

SVG

Scalable Vector Graphics (SVG) is an XML markup language for describing

two-‐dimensional vector graphics. It does not lose any quality if they are zoomed

or re-‐sized.

This is a sample code to draw a circle using SVG

<circle cx="350" cy="90" r="50" fill="blue" />

And this is the sample code to draw a line using SVG is
<line x1="100" y1="50" x2="350" y2="90"

style="stroke:rgb(50,250,0); stroke-width:2" />

Canvas

<canvas> is an HTML element which can be used to draw graphics via

scripting (usually JavaScript). For example, it can be used to draw graphs,

make photo compositions, create animations or even do real-‐time video

processing.

7

This is a sample code to draw a circle using Canvas:

var canvas = document.getElementById("myCanvas");

var context = canvas.getContext("2d");

context.beginPath();

context.arc(50, 50, 20, 0, 2 * Math.PI, false); //First 3

parameters are centerX, centerY, radius

context.fillStyle = "#8ED6FF";

context.fill();

context.lineWidth = 1;

context.strokeStyle = "black";

context.stroke();

And this is the sample code to draw a line using Canvas:

var canvas = document.getElementById("myCanvas");

var context = canvas.getContext("2d");

context.moveTo(50, 50); //x and y co-ordinates for point1

context.lineTo(100, 100); //x and y co-ordinates for point2

context.stroke();

Force Directed Algorithm

Force directed algorithms are a class of algorithms for drawing graphs in

an aesthetically pleasing way. The generally accepted aesthetic criteria are

• Distribute vertices evenly in the frame

• Minimize edge crossings

• Make edge lengths uniform

• Reflect inherent symmetry

• Conform to the frame

For this deliverable, we are using the algorithm proposed by Fruchterman

& Reingold, 1991 in the paper "Graph drawing by force-‐directed placement" to

calculate the node positions.

Each node is initialized with a random position, a mass (currently, fixed to

value 1), velocity (0, 0) and force (0, 0). The pseudo code for the algorithm is

8

Loop

 kinetic_energy = 0;
for each node

// running sum of total force on this particular node
 net_force = (0, 0);
for each other node

net_force = net_force +
 Coulomb_repulsion (this_node, other_node);

next node

for each spring connected to this node
net_force = net-force +

 Hooke_attraction (this_node, spring);
next spring

// without damping, it moves forever and the damping
//constant is fixed to 0.5 (0 < damping < 1)
this_node.velocity = (this_node.velocity +

 timestep * net_force) * 0.5
this_node.position = this_node.position +

timestep * this_node.velocity
kinetic_energy = kinetic_energy + this_node.mass *

(this_node.velocity)^2
next node

until kinetic_energy < 0.01 //A small constant

We are using canvas to draw the graph as it felt simpler and easy to

manage. This is the snapshot of the graph on which Force Directed algorithm is

used.

9

4. Deliverable 3: Index User Clicks in the Yioop Search Result Page

4.1 Goal

The objective of the deliverable is to send the user clicked URL’s in the

Yioop search result page to the search engine.

4.2 Description

Currently, the user clicked URL’s in the Yioop search result page is

not captured. This can be achieved by capturing these data and send to a

controller in the Yioop search engine. Then, the controller creates a data

file with this information in the schedules folder of the Yioop data. The

Yioop search engine indexes the data later.

I have modified the extension developed by Vijaya Pamidi, Dr.

Pollett's previous student to capture these data and send it to Yioop. On

clicking the link in the Yioop Search result page, the following function gets

called.

function addData(event) {
var language = content.document.
 getElementsByTagName("html")[0].

getAttribute("lang");

if(language == null){
language = content.document.

getElementsByTagName("html")[0].
getAttribute("xml:lang");

}

var queryURL = window.content.location.href;

var word = queryURL.split("q=").pop().replace("+"," ");

var URL = event.target.href;

var time = new Date();

var yioopurl = "http://localhost:85/yioop/";

http://localhost:85/yioop

10

var record = word + "|:|" + URL + "|:|" + queryURL
+ "|:|" + time + "|:|" + language + "\n";

var present = queryURL.indexOf("yioop.com");

if(present != -1) {

uploadAsyc(yioopurl, record);

}

}

The uploadAsync() sends the data to Yioop server.

function uploadAsync() {

var params = "c=traffic&u=root&p=&a=toolbarTraffic&b="
+ record;

var xhr = new XMLHttpRequest();
xhr.open("POST", url, true);
xhr.setRequestHeader("Content-Type", "application/x-www-
form-urlencoded");
xhr.send(params);

}

In the Yioop Server part, there is a traffic_controller.php which reads the

parameter sent by the extension code and writes to the schedules folder with the

below folder structure

ToolbarData<timestamp>/<timestamp>/At<timestamp>From<localAddress>WithH

ash<HashValue>.txt

http:queryURL.indexOf("yioop.com

11

5. Conclusion

As the part of CS297, I have created components which would be helpful

in the final implementation of CS298. The Firefox extension with preference pane

created in deliverable1 acts as building block for storing the user provided data.

The simple graph created in deliverable2 has the implementation of the force

directed algorithm. It can be extended to add animation and legends to provide

detailed information about the visited URL’s. The third deliverable indexes the

user clicked URL’s in the Yioop search result page.

In CS298, I will be adding animation to graph and show the URL

information in the generated graph. I will also implement a theoretically sound

way of computing the relevance of the user visited URL’s based on modern web

reputation system.

12

6. References

[1] Building an extension. (2011). Retrieved December 05, 2011, from
https://developer.mozilla.org/en/Building_an_Extension

[2] SVG. (2011). Retrieved December 05, 2011, from https://developer.mozilla.org/en/SVG

[3] Canvas Tutorial. (2011). Retrieved December 05, 2011, from
https://developer.mozilla.org/en/Canvas_tutorial

[4] Fruchterman, M. J., and Reingold, M. 1991. Graph drawing by force-‐directed placement.
Software – Practice and Experience, 21, 1129-‐1164

[5] Smart Search: A Firefox Add-‐On to Compute a Web Traffic Ranking. (2011). Retrieved
December 05, 2011, from http://www.cs.sjsu.edu/faculty/pollett/masters
/Semesters/Fall10/vijaya/CS%20298%20Project%20Report.pdf

[6] Force-‐based algorithms (graph drawing). (2011). Retrieved December 05, 2011, from
http://en.wikipedia.org/wiki/Force-‐based_algorithms_(graph_drawing)

http://en.wikipedia.org/wiki/Force-�-based_algorithms_(graph_drawing
http://www.cs.sjsu.edu/faculty/pollett/masters
https://developer.mozilla.org/en/Canvas_tutorial
https://developer.mozilla.org/en/SVG
https://developer.mozilla.org/en/Building_an_Extension

