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Objective:  
 
The objective of this deliverable was to study the 
Google’s and Yioop’s Page Rank algorithm and suggest a 
method to rank the short links in Yioop.  
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Two popular algorithms were introduced in 1998 to rank web 
pages by popularity and provide  better search results. They are: 
 

•HITS (Hypertext Induced Topic Search) 
•Page Rank 

 
 HITS was proposed by Jon Kleinberg who was a young 
scientist at IBM in Silicon Valley and now a professor at Cornell 
University. 

 
Page Rank was proposed by Sergey Brin and Larry Page, 
students at Stanford University and the founders of Google. 
 
 

 

Background 



The Web’s hyperlink structure forms a massive directed 
graph.[1]  

 
 
 
 
 
 
 
The nodes in the graph represent web pages and the 
directed arcs or links represent the hyperlinks.[1] 

 
Hyperlinks into a page are called inlinks and point into 
nodes and outlinks point out from nodes. They are discussed 
in details later. [1] 

 
 
 



The theses underlying both HITS and Page Rank can be briefly 
stated as follows: 
 

Page Rank 
 
Proposed by Sergey Brin and Larry Page 

 
Thesis: A web page is important if it is  
pointed to by other important web pages.[1] 
 

HITS 
 
Proposed by Jon Kleinberg 

 
Thesis: A page is a good hub (and therefore 
 deserves a high hub score) if it points to good  
authorities, and a page is a good authority if it  
is pointed to by good hubs.[1] 
 
 



 Page Rank is a numeric value that represents the 
importance of a page present on the web. 

 
When one page links to another page, it is effectively casting 
a vote for the other page. 

 
More votes implies more importance. 

 
Importance of the page that is casting the vote determines 
the importance of the vote. 

 
 
 

 
 

Introduction to Page Rank 



 
 
 

 A web page is important if it is pointed to by other 
important web pages. 
 

 Google calculates a page's importance from the votes cast 
for it.  
 

 Importance of each vote is taken into account when a page's 
Page Rank is calculated.  
 

Page Rank is Google's way of deciding a page's importance.  
 

It matters because it is one of the factors that determines a 
page's ranking in the search results. 

 

Page Rank Notation- “PR” 

 



The original Page Rank algorithm which was described by 
Larry Page and Sergey Brin is given by 
 

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) 
 
where, 
 
• PR(A) – Page Rank of page A 
• PR(Ti) – Page Rank of pages Ti which link to page A 
• C(Ti) - number of outbound links on page Ti 
• d - damping factor which can be set between 0 and 1 

Algorithm 



A simple way of representing the formula is, (d=0.85) 
 

Page Rank (PR) = 0.15 + 0.85 * (a share of the Page Rank of 
every page that links to it) 

 
The amount of Page Rank that a page has to vote will be 
its own value * 0.85.  

 
This value is shared equally among all the pages that it 
links to. 

 
Page with PR4 and 5 outbound links > Page with PR8 and 
100 outbound links. 

 
 



The calculations do not work if they are performed just once. 
 
Accurate values are obtained through many iterations. 

 
Suppose we have 2 pages, A and B, which link to each other, and 
neither have any other links of any kind. 

 
Page Rank of A depends on Page Rank value of B and Page Rank of B 
depends on Page Rank value of A. 

 
We can't work out A's Page Rank until we know B's Page Rank, and we 
can't work out B's Page Rank until we know A's Page Rank. 

 
But performing more iterations can bring the values to such a stage 
where the Page Rank values do not change. 

 
Therefore more iterations are necessary while calculating Page Ranks. 



Types of Links 

(1) Inbound links or Inlinks 
 

Inbound links are links into the site from the outside. 
 Inlinks are one way to increase a site's total Page Rank.  
Sites are not penalized for inlinks. 

 
(2) Outbound links or Outlinks 
 

Outbound links are links from a page to other pages in a site or 
other sites.  

 
(3) Dangling links  
 

Dangling links are simply links that point to any page with no 
outgoing links. 

 
 



It includes the following topics: 
 
Original Summation Formula for Page Rank 

 

Matrix Representation of the Summation Equations 
 

Problems with the Iterative Process 
 

Notation of Page Rank Model 
 

Adjustments to the Basic Model 
 

Computation of Page Rank Vector 
 

 The page rank equation is as follows, 
 

Mathematics of Google Page Rank 



Original Summation Formula for Page Rank 

The Page Rank of a page Pi
 
 , denoted r(Pi) is the sum of page 

ranks of all pages pointing into Pi
 
 ,  

 
 
 
where, 
 
 
 

- the set of pages pointing to  

- the number of outlinks from page  

value is unknown in the beginning of the calculation 



All pages are given equal page rank 1/n. 
 
n is number of pages in Google’s index of Web. 

 
The equation in the previous slide is used to compute          for each   
          in the index. 

 
The  equation is iteratively applied substituting the previous values. 

 
The following notation can be used to define the iterative procedure. 
 
 

where, 
 
                    - Page rank of         at iteration k+1 and with initial ranks 1/n 



Example 
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Fig1: Directed graph representing web of six pages 



Iteration 0 Iteration1 Iteration2 Rank at iteration 2 

R0(P1)=1/6 R1(P1)=1/18 R2(P1)=1/36 5 

R0(P2)=1/6 R1(P2)=5/36 R2(P2)=1/18 4 

R0(P3)=1/6 R1(P3)=1/12 R2(P3)=1/36 5 

R0(P4)=1/6 R1(P4)=1/4 R2(P4)=17/72 1 

R0(P5)=1/6 R1(P5)=5/36 R2(P5)=11/72 3 

R0(P6)=1/6 R1(P6)=1/6 R2(P6)=14/72 2 

Table 1: First few iterations using the iteration formula on 
the graph with six pages 



Matrix Representation of the Summation Equations 

The summation symbol ∑ is replaced with matrices. 
 
At each iteration, a Page Rank vector (single 1xn vector) 
holding all the page rank values is computed. 

 
A hyperlink nxn matrix H and a 1xn row vector        are 
introduced. 

 
H is a row normalized hyperlink matrix with                      , if 
there is a link between node I to node j and 0 otherwise. 
 
 



P1 P2 P3 P4 P5 P6 

P1 0 1/2 1/2 0 0 0 

P2 0 0 0 0 0 0 

P3 1/3 1/3 0 0 1/3 0 

P4 0 0 0 0 1/2 1/2 

P5 0 0 0 1/2 0 1/2 

P6 0 0 0 1 0 0 

The H matrix for the graph in Figure 1 is given by, 

H = 

Using the matrix notation the iteration equation can be re-written as, 



Few observations obtained from the Matrix equation  are as 
follows, 
 
Each iteration involves one vector matrix multiplication, which 
requires O(n2) computation and n is the size of square matrix H. 

 
H is a very sparse matrix including many 0s. It requires minimal 
storage and matrix multiplications involving sparse matrices 
requires O(nnz(H)) computation, where nnz(H) is the number of 
non zeros in H. 

 
The iterative process is a simple linear stationary process. It is 
the classical power method applied to H. 

 
H looks like a stochastic transition probability matrix  for a 
Markov chain. The dangling nodes in a network  create the zero 
rows in the matrix.  
 
  
 



Problems with the Iterative process 

Two problems occurred when Brin and Page started the 
iterative process with п(0)T   = 1/neT , where eT is the row vector 
of all 1s. They are: 
 
Rank Sink 
Cycles 
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Fig 2: Rank Sink Fig 3: Cycles 



Rank Sink 
 

One page accumulates more page rank at each iteration 
monopolizing the score. 

 
In Figure 2, the dangling node 3 is a rank sink. 
 

Cycles 
 

In figure 3, nodes 1 and 2 form an infinite loop or cycle.  
 
The iteration process with these nodes will not converge 
irrespective of how long the process is run. 

 
Early adjustments were made to the model to solve these 
problems. 



Notation for the Page Rank Problem 

H Very sparse, raw sub stochastic hyperlink matrix 

S Sparse, stochastic, most likely reducible matrix 

G Completely dense, stochastic, primitive matrix called the Google 
matrix 

E Completely dense, rank-one teleportation matrix 

n Number of pages in the engine’s index= order of H, S, G, E 

α Scaling parameter between 0 and 1 

пT Stationary row vector of G called the Page Rank vector 

aT Binary dangling node vector 



Adjustments to the Basic Model 

Random Surfer Model 
 

A random surfer is one who bounces along randomly 
following the hyperlink structure of the Web. 

 
The random surfer chooses one of the several outlinks 
present in a page. 

 
The importance of the page is determined by the proportion 
of time spent by the surfer on that page. 

 
Brin and Page used this notion of random surfer to describe 
the adjustments made to their basic model. 
 
 



There are two problems with the random surfer model: 
 
A random surfer is caught when he encounters a dangling node such 
as an image, pdf, data tables etc. 

 
A random surfer completely abandons the hyperlink method and 
moves to a new browser and enter the URL in the URL line of the 
browser (teleportation). 

 
Two adjustments were made to the basic page rank model to solve 
these problems.  
  
Stochasticity adjustment : Solves the dangling links problem 

 
Primitivity adjustment : Solves the teleportation problem 

 
 



Stochasticity Adjustment 
 

In this adjustment, the 0T rows of matrix H are replaced with 1/n eT  
making H stochastic. 

 
This adjustment now allows the random surfer to hyperlink to any page at 
random after entering a dangling node. 

 
For the previous example of a web consisting of six nodes the stochastic 
matrix S is given by, 
 
 

P1 P2 P3 P4 P5 P6 

P1 0 1/2 1/2 0 0 0 

P2 1/6 1/6 1/6 1/6 1/6 1/6 

P3 1/3 1/3 0 0 1/3 0 

P4 0 0 0 0 1/2 1/2 

P5 0 0 0 1/2 0 1/2 

P6 0 0 0 1 0 0 

S = 



Mathematically, the stochastic matrix S is created from a rank one update 
to H. S is given as, 

S= H + a(1/neT ) 
 

where ai =1, if page i is a dangling node and, 
             ai =0, otherwise 
 
S is a combination of  the original hyperlink matrix H and a rank-one 
matrix 1/neT 

 
S matrix alone cannot guarantee the convergence results.  

 
 For this reason, another adjustment called primitivity adjustment has 
been done to the page rank model. 
 
 



Primitivity Adjustment 
 
In this adjustment, Brin and Page introduced a new matrix G, 
called the Google matrix.  

 

G=αS+(1-α)1/neeT  

 

where α is a scalar between 0 and 1. 
 

 
 
 

α=0.6 ⇒ random surfer follows the hyperlink structure of the Web 60% 
 of the time and teleports to a random new page 40% of the 
 time. 

 
The teleportation is random and the teleportation matrix E= 1/neeT  

 

The Google matrix G is stochastic, irreducible, aperiodic, primitive, 
completely dense and artificial. 



Therefore, Google’s adjusted Page Rank method is, 
 

п(k+1)T = п(k)TG (power method applied to G) 
 
Applying this method to the example in the previous slides with α=0.9, 
primitive matrix G is calculated as, 
 
 
 
 
 

1/60 7/15 7/15 1/60 1/60 1/60 

1/6 1/6 1/6 1/6 1/6 1/6 

19/60 19/60 1/60 1/60 19/60 1/60 

1/60 1/60 1/60 1/60 7/15 7/15 

1/60 1/60 1/60 7/15 1/60 7/15 

1/60 1/60 1/60 11/12 1/60 
 

1/60 

G = 



The Page Rank vector is given by, 
 

пT = (0.3721   0.5396   0.04151   0.3751   0.206   0.2862) 
 
Therefore, the pages in the example can be ranked as, 

 
(4   6   5   2   3   1) 

 
The computation of page rank involves repeatedly applying Google's 
normalized variant of the web adjacency matrix to an initial guess of 
the page ranks. 

 
This summarizes Google’s Page Rank method. 
 
 
 



Computation of the Page Rank vector 

Finally, the Page Rank problem can be stated in two ways, 
 
1. Solve the following eigenvector problem for пT. 

 
пT = пT G, 

пTe =1 
 

2. Solve the following the linear homogenous system for 
пT. 
 

пT (1-G) = 0T , 
пTe =1 

 



In the first system, 
 

•Goal: Find the normalized dominant left-hand eigenvector of   G 
corresponding to the dominant eigenvalue λ1 =1. 

 
In the second system, 
 

•Goal: Find the normalized left-hand null vector I-G. 

 
Both the systems are subject to the normalization equation пTe =1 

 
The power method which is one of the oldest and simplest 
iterative methods for finding the dominant eigenvalue and 
eigenvector of a matrix is used for the computation of the Page Rank 
Vector. 
 



Internal Linking 

 A website has a maximum amount of Page Rank that is 
distributed between its pages by internal links. 

 
The maximum amount of Page Rank in a site increases as the 
number of pages in the site increases. 

 
By linking poorly, it is possible to fail to reach the site's 
maximum Page Rank, but it is not possible to exceed it. 

 
Few examples can illustrate the Page Rank concept and also 
the importance of internal linking of pages. 
 



Example 1 
 
If each of them have a rank of 1 then the 
site’s total rank is 3. 

 
But if d=0.85 we see that each of them get a 
rank of just 0.15 . 

 
This is because of the absence of internal 
linking between pages in the site 

So the total PR for the site will be 0.45 instead of 3, which 
represents wastage of  potential Page Rank. 



Example 2 
 
If each of them have a rank of 1 then the 
site’s total rank is 3. 

 
If d=0.85 we get the following PRs in the 
first iteration: 

 
•PR(A)=0.15 
•PR(B)=1 
•PR(C)=0.15  

After 100 iterations the PR(A) and PR(C) would be the same but 
PR(B) would be 0.2775  
 
So the total PR for the site will be 0.5775 which is better than the 
previous one but still very less when compared to 3. 



Example 3 
 
If each of them have a rank of 1 then the 
site’s total rank is 3. 

 
If d=0.85 we get the following PRs in the 
first iteration: 

 
•PR(A)=1 
•PR(B)=1 
•PR(C)=1 

After any number of iterations the PRs of all the pages would 
remain same and also achieved the maximum a page can have. 
 
It shows that good internal linking in a site would improve the 
page rank. 



Yioop’s Ranking method, my work and suggestion 
 
 
Yioop creates a word index and document ranking as it crawls and 
does not consider ranking as a separate step.  

 
Yioop groups all the links and documents associated with a URL into 
one group. 

 
 The score computed is the sum of all the scores of individual 
documents.  

 
Previously, when a short link is encountered by Yioop, its URL was 
crawled and a raw URL was displayed in the search results as 
explained in deliverable 1.  

 
This assigned the rank to the short link instead of the original link.  



After creating a patch for Yioop, the original link associated with the 
short link is assigned to the URL to be crawled. 

 
This helps it assign the rank to the original link.  

 
This works in the case of bit.ly links and few other short links but 
encounters problems with few websites when the original link always 
redirects to another link.  

 
This problem in Yioop needs to be handled and the original link 
should be retrieved. 

 
After retrieving the original link, a higher weight can be assigned to 
the original link than the other links (shortened links, redirected links, 
etc) . 



Additional Factors 

Some of the additional factors which can influence Page 
Rank are: 
 
 Visibility of a link 

 

 Position of a link within a document 
 

 Importance of a linking page 
 

 Up-to-dateness of a linking page 
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