
Extending Yioop abilities to search
the Invisible Web

Advisor/Committee Members
Dr. Chris Pollett
Dr. Sami Khuri
Prof. Frank Butt

By:
Tanmayee Potluri

Agenda

Motivation

Project Goal

Background

Yioop!

Invisible Web Resources

Modifications to Yioop!

Tests and Results

Conclusion

References

A plethora of information is hidden in the Web.

Not crawled and indexed by traditional search engines.

The information hidden can be of great use and
importance to the user.

User might want to index different formats of data.

It is useful to be able to crawl and index such data.

Motivation

Project Goal

 Yioop! is an open source search engine written in PHP.

 The goal is to extend Yioop! to index few resources of the
Invisible Web.

 To make Yioop! crawl and index log files.

 To make Yioop! crawl and index database records based on
the query entered by user.

 Design user interface for customized crawling and indexing
of log files and databases.

 To add code to make Yioop! deal short links appropriately.

 Invisible Web : part of the web that is not indexed and is not
a part of the surface web.

 It is a lot larger in magnitude than the surface web.

 The invisible web may constitute many resources:

• Database content

• Content in specific file formats like log files

• JavaScript links

• Password protected sites

• Short links

• It is an added feature to have search engines index a part of
the Invisible Web.

Background

 There are few existing tools in the field of log files and
databases.

 AWStats, Webalizer and Analog are the log file analyzers
available that provide statistical information about log files.

 The data is provided in the form of graphical web pages.

 Sphinx is an open source search engine developed solely for
indexing database content.

Existing tools

Yioop!

Yioop! is an open source search engine written in PHP by
Dr.Chris Pollett [1].

Yioop! can be used both as a traditional search engine or it
can be used for personal crawling.

It can be modified to act as a search engine, only for a
predefined set of domains or URLs [1].

Yioop is licensed under GPLv3 and SeekQuarry is the parent
site for Yioop [17].

Yioop has been designed in order to:
• ease the usage of personal crawls
• make it easier to crawl archives
• perform archive crawls.

 Yioop Requirements

•A web server (e.g. Apache)
• PHP 5.3 or higher
• PHP multi-curl library (for download of web pages)

 Xampp software has all the three necessary requirements
of Yioop available in it.

Yioop! (Cont…)

Archive Crawling in Yioop!

Archive crawling is an existing feature in Yioop.

It is used to perform crawling of the previous crawls
performed in Yioop or crawl one of the web archive file
formats.

These formats include like Arc, MediaWiki XML, ODP RDF.

In order to crawl each of these file formats, separate archive
bundle iterators have been written in Yioop.

In order to perform an archive crawl in Yioop, one has to
create a folder "archives" in the cache folder of the
WORK_DIRECTORY of Yioop.

 In the archives folder, another folder should be created to
store all the files of a particular format that are to be crawled.

As an example, we will see how to create a folder to crawl
log files that is implemented in this project.

In order to perform a crawl on the log files, one needs to
create a folder like my_log_files in the
WORK_DIRECTORY/cache/archives folder.

 Each of those folders in archives folder should contain a file
named arc_description.ini.

Archive Crawling in Yioop! (Cont…)

The arc_description.ini file is a text file containing text like,

arc_type = 'LogArchiveBundle';
description = 'Log Files';

The arc_type should be the “filetypeArchiveBundle”.

The “filetype” changes for each of the file types.

The description field can be anything the user wishes to see
in the user interface.

Once this folder is created ARCFILE::Log Files is seen as one
of the options to recrawl.

Archive Crawling in Yioop! (Cont…)

Archive Crawling in Yioop! (Cont…)

Figure: Folder to store log files to be crawled

Archive Crawling in Yioop! (Cont…)

Figure: Recrawl Options Interface for Archive Crawling

Yioop! Architecture

Yioop is designed using the web-based Model-View
Controller framework [1].

The two main programs of Yioop are in the bin folder,
namely, the fetcher and the queue_server.

 The queue_server program maintains a queue of URLs that
are going to be scheduled.

The fetcher program downloads batches of URLs provided
by the queue_server.

Yioop! Architecture (Cont…)

The lib folder has the archive_bundle_iterators folder which
contains all the archive bundle iterators needed to crawl and
index different file formats in Yioop.

An archive bundle iterator iterates over a particular format of
files.

The controllers folder contains all the controllers used by the
Yioop search engine.

The elements folder in Yioop contains the elements
responsible for providing a view of the user interface.

The files in these folders have been modified in this project.

Invisible Web Resources

The invisible web may constitute many resources like:
•Shortened Links
•Database content
•Any content in specific file formats
•JavaScript links
•Password protected sites

Three of these resources have been dealt in this project,
namely,

•Log files
•Databases
•Shortened links

Log files

Log files are one of those file formats that are not crawled
and indexed by traditional search engines.

Log files are the files to which a computer system writes a
record of its activities [9].

Log files are generally automatically created and
maintained by a server containing the information of the
activity performed by it [9].

An example of a log file is an Apache access log file which
maintains a history of page requests.

Log files (Cont…)
A common log file format is defined by W3C which is used by
most of the servers to generate log files.

 The general predefined fields that are present in a log file are:

• IP Address
• Timestamp
• Request
• Status Code
• Size in Bytes
• Referrer
• User Agent
• - : Information not returned by the server

There can be few other formats for log files too.

127.0.0.1 - - [25/Aug/2012:12:06:39 -0700] "GET /phpmyadmin/print.css HTTP/1.1"
304 2765
"http://localhost/phpmyadmin/db_structure.php?token=34f8c50b4f27b626d76b93fb
79da6918&db=database1" "Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.83 Safari/537.1"

IP
Address

Timestamp Request Status
Code

Size in
Bytes

User Agent Referrer

Common Log file format

Databases
Database files are a collection of similar kind of records[12].

A database can contain any number of tables and tables can
contain any number of records.

The database content is one kinds of deep web content that is
not crawled by traditional search engines.

URL Shortening Services

 URL shortening is a technique on the Web in which a URL is made
short in length and still redirected to the required page.

 The rank or weight that should be given to the original URL is
given to the short link which makes them a source of dark content on
the Web.

For example, the URL http://www.yahoo.com is shortened to
bitly.com/4bYAV2.

There are many URL shortening services of which bit.ly and tinyurl
are few of them.

The underlying address can be disguised using URL shortening
services [14].

http://bitly.com/4bYAV2

Modifications to Yioop!

Yioop! has been modified to add:

• A Log archive bundle iterator for crawling and indexing
log files.

• A Database archive bundle iterator for crawling and
indexing databases.

• User Interface for the users to input the necessary details
for crawling log files and databases.

• Code to improve the search results for short links.

Modifications to Yioop!(Cont…)

In order to add indexing of log files and databases in Yioop,
two tasks needed to be performed:

• Build a user interface for the users to input details for
crawling
• Create an archive bundle iterator for each of the features.

In order to implement this user interface, the following files in
Yioop had to be modified.

 admin_controller.php

• The code to store the details of the log records entered by the
user in the web interface of Yioop is written here.

Modifications to Yioop!(Cont…)

 crawloptions_element.php

• The UI that needs to be displayed when log files is selected as
an option is created in this file.

• It retrieves the details of inputs given by the user from the
admin_controller.php program and displays the options.

• It also has the code to save the options entered by the user.

 search.css

• The code is added here to specify the styles for the log records
table shown in the web interface to the user.

Modifications to Yioop!(Cont…)

Figure : User Interface for Log Files Crawling

Copy

Paste

Modifications to Yioop!(Cont…)

Figure : Entering details into the interface

Modifications to Yioop!(Cont…)

Figure : User Interface after inputting the details

Modifications to Yioop!(Cont…)

Figure : User Interface for crawling databases

Modifications to Yioop!(Cont…)

 In order to crawl and index the log records and databases in
Yioop, two archive bundle iterator was added into the
yioop/lib/archive_bundle_iterators folder.

The files that are added into the folder are namely,

• Log_archive_bundle_iterator.php
• Database_archive_bundle_iterator.php

 Both the archive bundle iterators contain few major functions:

__construct

•This is the constructor responsible for creating an instance of
an archive iterator with timestamps and also for calling the
appropriate functions.

nextPages

•The nextPages function would call the nextPage function for
every record to be crawled and converts it into a web page.

nextPage

•The nextPage function is responsible for creating the HTML
pages of each log record.

• One can also add new text nodes to the web page in order to
mention anything interesting about the log record.

•This one becomes an important function in the archive bundle
iterators.

Modifications to Yioop!(Cont…)

parseLogRecord (Log files)

•This function is called for every log record and it parses the
record according to the regular expressions and returns the
results.

createRecords (Databases)

•This would create the database records after executing the
query specified by the user.

Apart from the functions explained here, there are many
other functions performing different functions.

Modifications to Yioop!(Cont…)

Modifications to Yioop!(Cont…)

Figure : Search results obtained after crawling log records

Modifications to Yioop!(Cont…)

Figure : An open log record

Figure : An open database record

Modifications to Yioop!(Cont…)

In order to make Yioop work correctly with the short links,
major part of the code was added in the following files of
Yioop.

fetch_url.php

• The extraction of the “Location” information from the short
URL is done in this file.

•This information was required to point the results to the
original URL and not the short URL.

fetcher.php

• This step changes the short URL to the original link using the
location information extracted from fetch_url.php.

Modifications to Yioop!(Cont…)

Figure : Results before and after the code was added

Tests and Results

Testing has been performed in order to test the following:

•Usability of the user interface developed in Yioop
•Efficiency of the archive bundle iterators
•Various Database queries
•Improvement in results after code is added for short
links.

The testing methods and results are described in the
following slides.

Usability testing

Usability testing is a technique used in the field of user
interface design or user centered design to evaluate a product by
testing it on users [5].

Usability testing is done to measure to what extent the user is
satisfied in the following four subject areas :

• Efficiency - The time taken or the number of steps taken for a user to
complete a particular task.
• Accuracy - The number of mistakes made by a user while performing a
particular task.
• Recall - This measure refers to the amount of work that a user could
recall after a period of time concerned with a particular task.
• Emotional Response - This refers to the amount of satisfaction and the
kind of emotion felt by a person while performing a particular task.

Usability testing (Cont…)

In order to perform testing, there were seven tasks that
the user was asked to perform.

• Task1 : Download and Install Yioop (Includes downloading
and installing Xampp)
• Task2 : Configure Yioop
• Task3 : Start a new crawl in Yioop
• Task4 : Set up log files folder in Yioop for archive crawling
• Task5 : Set up a folder for database in Yioop
• Task6 : Input details into log files interface, save them and
start a crawl with them
• Task7 : Input details into database interface, save them and
start a crawl with them

Efficiency
The time taken for each user to complete each task is
recorded.

Most users took the same amount of time to complete each
of the tasks.

0

2

4

6

8

10

12

14

16

18

20

22

24

User1 User2 User3 User4 User5

Time (Mins)

Users

Task1

Task2

Task3

Task4

Task5

Task6

Task7

Figure : Time taken for each user to complete a task

Efficiency (Cont…)

The average amount of time taken for each of the tasks by the
users is calculated.

It gives a good comparison between the amount of time taken
by normal Yioop processes and the new features implemented.

Figure : Average time taken by users for each of the tasks

0

2

4

6

8

10

12

14

16

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Average
Time

(minutes)

Tasks

Accuracy

The average number of mistakes made by the users for a
particular task are calculated.

A certain number of mistakes are assumed to take place for every
task.

Table : Assumed number of mistakes for each task

The average number of mistakes done are compared
over the assumed number of mistakes and the accuracy
percentage is calculated.

Accuracy (Cont…)

0

10

20

30

40

50

60

70

80

90

100

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Accuracy
Percentage

Tasks

Figure : Accuracy percentage of tasks performed by the user

Recall
It is calculated by comparing the amount of time taken by
the user to do the tasks for the first time and the second time.

A decrease in the amount of time shows improvement in the
tasks performed.

0

2

4

6

8

10

12

14

16

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Average Time
(minutes)

Tasks

First Time

Second Time

Figure : Time taken by users for the first time and second time

Emotional Response
Each user was asked to give a rating based on their
satisfaction levels.

The rating was on a scale of 1 to 10, where 1 is completely
dissatisfied and 10 is completely satisfied.

0

1

2

3

4

5

6

7

8

9

10

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Rating (1 to
10)

Tasks

Rating

Figure : Average rating of the satisfaction of user

Testing Efficiency

The log archive bundle iterator was tested by varying the number
of records ranging from 10000 record to 100,000 records.

These crawls were performed using a single machine with a single
server. The times taken for each of these crawls is recorded.

0

20

40

60

80

100

120

140

160

180

200

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Time
(Mins)

Number of Log records

Figure : Exponential growth in time with the increase in the number of log records

Testing Efficiency (Cont…)

The database archive iterator was tested by providing
different queries in the database interface.

 It was checked if the records are limited and extracted based
on the queries inputted.

The database table used for this purpose is populated with
20000 records.

The first query inputted was to query the entire table.

The second query inputted was to crawl only those records
in the table whose age field is 24.

Testing Efficiency (Cont…)

Figure : Crawl results for first query

Testing Efficiency (Cont…)

Figure : Crawl results for second query

URL Shortening Testing

In order to test if Yioop works correctly with short links, it
was tested to see if the results improved after the code is
embedded into Yioop.

Firstly, a crawl is performed on a bitly link. This crawl is
performed before adding the code and also after adding the
code.

The results were compared and it showed that Yioop
improved on the results displayed.

Also, the short links were avoided and redirected to the
original links and these links were crawled and indexed.

URL Shortening Testing (Cont…)

Figure : Results before addition of the code

URL Shortening Testing (Cont…)

Figure : Results after the addition of the code

URL Shortening Testing

As seen in the figures,

• Before the addition of code, Yioop displayed the Yahoo
URL as a plain text in the title of the page.

• After the addition of code, Yioop had redirected the bitly
link correctly and the Yahoo link is displayed as the title and
as the first result.

Conclusion

 Often, users might want to crawl and index different file
formats.

User Interface created for user to perform customized
crawling of log files and databases.

 Two archive bundle iterators written to crawl and index log
files and databases.

 URL shortened services made to work appropriately in
Yioop and found improved search results.

 Usability testing performed has shown user satisfaction.

(1) Pollett, C. (2012). Yioop! Documentation v 0.90. Retrieved from
http://www.seekquarry.com/?c=main&p=documentation

(2) Peng, Wei., Tao, L., & Ma, S. (2005). Mining logs files for data-driven system
management. ACMSIGKDD Explorations Newsletter - Natural language
processing and text mining, 7(1).

(3) He, B., Patel, M., Zhang, Z., & Chang, K.C. (2007). Accessing the Deep Web.
ACM, 50(5), 94-101.

(4) Deep Web. (2012, November 9). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Deep_Web

(5) Usability Testing. (2012, October 23). In Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/Deep_Web

References

http://www.seekquarry.com/?c=main&p=documentation
http://en.wikipedia.org/wiki/Deep_Web
http://en.wikipedia.org/wiki/Deep_Web

(6) Bailey, B. (2006, March). Getting the complete picture with Usability
Testing. Retrieved from
http://www.usability.gov/articles/newsletter/pubs/030106news.html

(7) Lewandowski, D., & Mayr, P. (2006). Exploring the academic invisible web.
Library Hi Tech, 24(4), 529-539.

(8) Sphinx Documentation. (n.d.). In Sphinx website. Retrieved from
http://sphinxsearch.com/docs/

(9) Server Log. (2012, July 18). In Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/Server_log

(10) Destailleur, L. (2008, December). AWStats. Retrieved from
http://awstats.sourceforge.net/

(11) Log Files. (2012). In Apache website. Retrieved from
http://httpd.apache.org/docs/1.3/logs.html

References (Cont…)

http://www.usability.gov/articles/newsletter/pubs/030106news.html
http://sphinxsearch.com/docs/
http://en.wikipedia.org/wiki/Server_log
http://awstats.sourceforge.net/
http://httpd.apache.org/docs/1.3/logs.html

(12) Databases. (2012, November 26). In Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/Database

(13) Zillman, P. M. (2012, November 1). Deep Web Research and Discovery
Resources 2012. Virtual Private Library.

(14) URL Shortening. (2012, November 23). In Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/URL_shortening

(15) Sebastian. (2008, October 20). Crawling Vs Indexing. Retrieved from
http://sebastians-pamphlets.com/crawling-vs-indexing/

(16) Web Search Engine. (2012, November 25). In Wikipedia. Retrieved
from http://en.wikipedia.org/wiki/Web_search_engine

(17) Open Source Search Engine Software. (2012). In SeekQuarry. Retrieved
from http://www.seekquarry.com

References (Cont…)

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/URL_shortening
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://sebastians-pamphlets.com/crawling-vs-indexing/
http://en.wikipedia.org/wiki/Web_search_engine
http://www.seekquarry.com/

Thank you

