
JAVASCRIPT GAME ENGINE FOR MOBILE USING HTML5

A Writing Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Nakul Vishwas Natu

December 2012

2

© 2012

Nakul Vishwas Natu

ALL RIGHTS RESERVED

3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

JAVASCRIPT GAME ENGINE FOR MOBILE USING HTML5

By

Nakul Vishwas Natu

APPROVED FOR THE DEPARTMENT OF

COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science Date

Dr. Soon Tee Teoh, Department of Computer Science Date

Mr. Anirudha Shinde, M.S. Software Engineering Date

4

ABSTRACT

JavaScript Game Engine for Mobile using HTML5

The goal of this project was to develop an HTML5-based mobile JavaScript game

engine. Developers can use this game engine to create platform independent mobile

games. It provides support for sprite animation, physics, event handling, orientation

handling, collision detection and entity management. HTML5 local storage was used

to achieve game persistence.

The games created using this game engine can be stored on the home screen of the

device as a data URL. When the user launches the data URL, the game opens up in a

browser and the entire process is similar to launching a native application. HTML5

has many restrictions on its usage of local storage and connecting it to the data URL

was a challenging aspect of this project.

In order to support our project, we created test games using this engine and also

provided an app store to distribute games that were created using this engine.

5

ACKNOWLEDGEMENTS

I would like to express my immense gratitude to Dr. Chris Pollett. Without his help

this project would not have been realized. I would like to thank him for his continuous

support at every step and pushing me to my limits. I would also like to express my

appreciation for the help received from my committee members Dr. Teoh and Mr.

Shinde. I would like to thank them for spending time on reading my report and giving

excellent feedback on my project.

6

TABLE OF CONTENTS

1. Introduction……………………………………………………………………...…9

2. Background……….…………………………………………………………..…..11

2.1 Game Engine……………….…………………………………….…..……….11

2.2 Why JavaScript and HTML5?......………………………………….………...13

2.3 Data URI…………………………….……………………………………….16

2.4 Experiments..……………………………………………………………...….17

3. MobiGameJS…………………………………………….…………………….…19

3.1 Requirements and Design……..……………………………………………...19

3.2 Game Loop..……………..…………………………………………………...21

3.3 Entity……………………………………………………………………….....23

3.4 Collision Detection..……………………………………………………….....25

3.5 Animation……………………………………………………………..............27

3.6 Physics………………………………………………………………………..29

3.7 Event Handling And Audio …………...……………………………….…..…31

3.8 Data Persistence………………………………………………………………33

3.9 Delivery……………………………………………………………………....35

4. Testing…………….…………………………………………………..……….…37

4.1 Flower Picker………………………………………………………….……...37

4.2 Asteroid…………………………………………………………….….……...39

7

4.3 Spring Physics………………………………………………..………….…....41

4.4 Delivery………………………………………………………..……………...42

5. Conclusion………………………………………………………………………..44

6. References.……………………………………………………………………..…45

LIST OF FIGURES

Figure 1: Canvas, SVG Comparison based on number of objects..……………...……....14

Figure 2: Data URI Syntax……………………………………………………..………..16

Figure 3: Game of Pong………………………………………………………..………...17

Figure 4: Flower Picker – Crafty Game Engine Evaluation……………...……………...18

Figure 5: Class Diagram of MobiGameJS……………………...………………………..20

Figure 6: Adding TextEntityin the game..….……………….…...….…………………...23

Figure 7: ImageEntity Draw Method Algorithm…..………………………...…………..24

Figure 8: Adding SpriteEntityin the game………...…………………....………………..24

Figure 9: Rectangular collision detection……………………………………………..…25

Figure 10: Collision Detection Algorithm……………………………………………….26

Figure 11: Sprite Sheet Example of walking man………………………….…………....27

Figure 12: Calculating Correct Sprite offset..……………..…………….….…………....27

Figure 13: Sprite Animation Algorithm…………………...………….……..………...…28

Figure 14: Elastic Collision Formula…………………………….…………….………...29

Figure 15: Hooke’s Formula…………………………………………………………..…30

Figure 16: Connecting Event and Entity Algorithm…………………………………......31

Figure 17: Orientation Handling ………………………………………………………...32

8

Figure 18: Cubiq.org Add to Home Screen Bubble………………………..…………….36

Figure 19: Sprite Sheet Used for Flower Picker……….………………………………...37

Figure 20: Flower Picker end product……….…………………………………..............38

Figure 21: Asteroid in landscape……………...……….………………………………...39

Figure 22: Asteroid in portrait with local storage testing..……….……………………...40

Figure 23: Spring Physics Demonstration…………….....……….………..…………….41

Figure 24: Delivery of MobiGameJS……………………....…………..………..……….42

Figure 25: Delivery of games created using MobiGameJS..…………..………..……….43

LIST OF TABLES

Table 1: Comparison of different game engines………………………………………..12

9

1. Introduction

Smartphone usage is on rise. As of 2012, almost half of mobile users are

smartphone users [14]. Every day we see major technological enhancements in mobile

phones and tablets such as faster processors with more RAM and enhanced GPU

capabilities. If we do a comparison amongst Samsung’s flagship phones over the last

three years, we can see that processing power has almost doubled with each model

[4]. Today, we can effortlessly run graphic intensive applications on smartphones and

it has become a very large market for games.

Currently, the market offers a large variety of mobile devices with different

platforms such as iOS, Android, Blackberry, and the latest Windows 8 operating

system. The mobile device market has split platform usage statistics. Android has

around 51% of the market share, while iOS has 33% [7]. Mobile games constitute a

major share of the applications in these various operating systems. They are amongst

the most successful, and highest grossing apps in app stores today.

Each phone platform available in the market is based on a different technology.

Namely, iOS apps are written in Objective-C, Java drives Android application

development, and Windows Phone development is done in C#. In order to develop an

application which runs on all these platforms, one needs to learn and master all these

technologies. The investment in terms of learning, designing, development and testing

games on all of these platforms can be hard for smaller companies and start-ups. The

question is, can we use some other technology such as HTML5, which is also rapidly

growing?

In this project, this issue is specifically addressed. “MobiGameJS” is a game

engine designed to create portable games. This game engine supports data persistence,

sprite animation, physics, event handling, and collision detection. Applications can

also be deployed in a way that is very similar to running a native application. The

10

games created using MobiGameJS engine can be run on different mobile platforms

with a minimum of modifications.

A lot of developers today develop games using game engines, as it simplifies the

design process and reduces the time to design radically. There are numerous

frameworks present in different languages such as Box2D in C++, Unity3D in flash,

Crafty in JavaScript, etc., that are created to develop desktop or console based video

games. However, a game engine designed specifically to develop mobile games is of

great interest and also is an upcoming field in today's market. We experimented with

Crafty, a JavaScript game engine, in the process of designing MobiGameJS. We

created some games to better understand the working of the framework. These

experiments are discussed in the later part of the report along with my other findings.

In order to create MobiGameJS, we leveraged JavaScript and HTML5

functionalities. These include canvas for drawing and local storage for data

persistence. Our engine supports gravity, elastic collisions, and spring forces. We also

used data URI for scaling down the game and also to provide the user with a seamless

look and feel of a native application. Three test games were created with each testing

a specific set of functionalities provided by the engine. A small website acting as an

app store for the games was created using MobiGameJS.

This report is divided into five major sections. In the first section, we discuss game

engines, the importance of HTML5, JavaScript and previous experiments. In second

section, we look into the actual design of game engine MobiGameJS. We give a

detailed explanation of the different components of the engine and their workings. We

will also discuss the monetization aspect of this game engine. We then discuss the

different test games that we created by using the engine and their purpose. Finally, a

conclusion is given with a mention of the references.

11

2. Background

This section describes the idea behind this project and the functionality of different

parts of this project. The pros and cons of some specific technologies that were

selected for the implementation of this engine and some of the experiments carried

out in the beginning of this project are also discussed. We will also see how these

experiments helped us in the implementation and design of the game engine. The

game engine, HTML5 elements, JavaScript, and data URI are discussed in the later

sections of the report.

2.1 Game Engine

The core part of our project lies in the design of the game engine. According to

Chris Stead on IGN blogs, a game engine is defined as an “overall architecture to

develop and run a game – it gives developers tools to create the disparate elements of

a videogame and then pull them together to create a functioning whole. From the

renderer to the physics system, sound architecture, scripting, AI and networking,

game engines either natively power every aspect of a game, or they allow other

specialized middleware to slot into the game's framework. In any case, game engines

are the workhorses of modern videogame development.”[3]. But, from the perspective

of a game developer, a game engine is the code that will convert the static entities into

a dynamic, interactive game.

The different elements present in a game get updated very frequently. A lot of

work is required in order to display them, update and draw these game elements on

the screen to the user in real time. A game also contains animations, physics, event

handling, etc. Therefore it is appropriate to incorporate all those features into a single

piece of code. That code will act as a building block for any game. It will also help the

developers reuse the code and reduce their development time.

12

As discussed in the previous section, the main crux of game engine is the code, as

it handles the update of objects and then draws them. Two important parameters are

the screen’s refresh rate and the frame rate. The frame rate is measured in frames per

second. It calculates and dictates how many times a particular frame is drawn on the

screen. An element's requirement on the screen needs to be checked before it is drawn

on the screen. Each game element's position needs to be updated as well its collision

course with another element. Next, the decision of when we need to draw those

elements on the screen is processed. This mechanism is called, Game Loop and it

forms the heart of our framework. A lot of features in a game change without any user

interaction. This feature change is similar to quickly drawn frames of paper

animation. The display of the game on the screen might not display correctly if we

wait for the user events to happen. Therefore, the game loop architecture is used in the

game engine instead of the event driven architecture.

Feature Box 2D Unity 3D Crafty

Sprite Animation No Yes Yes

Collision Detection Yes Yes Yes

Media Management No Yes Yes

Data Persistence No Yes Yes

Mobile Event Handling No Yes No

Physics Yes No No

2D/3D 2D 3D 2D

Networking No Yes No

Appstore/Delivery No No No

Table 1: Comparison of different game engines

The table above gives a comparison of the different game engines that we have

considered. As can be seen, there is no single game engine available that supports all

the functionalities listed. This comparison has been used to decide the requirements of

our game engine and is described in detail in the following section.

13

2.2 Why JavaScript and HTML5?

 The main goal of this project was to make it portable on different mobile platforms

such as iOS and Android. Both these platforms use different technologies such as

Objective C and Java; we needed to create a common platform for both the platforms

so that the developers using MobiGameJS would not be required to learn two

different technologies. The obvious choice was to use web based technologies since

both the platforms support different browsers and have them mainly synched with

their desktop counterparts.

 We also had an option to use technologies such as Flash or Adobe AIR

technologies, but they are not as universal as HTML5. Also, HTML5 was chosen for

experimentation because of its progress visualization and performance. JavaScript

became the first choice of language to write the game engine when the decision of

using HTML5 was made. It is a powerful language and it also supports object-

oriented principles such as classes, inheritance and polymorphism. Apart from those

features, it is also used by majority of developers, so the learning curve would be

really small.

 The major reason for choosing HTML5 was its graphic capabilities. HTML5 has

shown progress in this field with SVG and Canvas. The method chosen for displaying

the different entities in games was also an important consideration. SVG stands for

“Scalable Vector Graphics.” It is an XML markup language for describing two-

dimensional vector graphics” [9]. Google maps use SVG. Canvas is “the <canvas>

element. It is an HTML element which can be used to draw graphics via scripting

(usually JavaScript). For example, it can be used to draw graphs, make photo

compositions, create animations, or even do real-time video processing”[1]. Both

SVG and Canvas have their own pros and cons. A plethora of information is available

on the Internet about both methods. After scraping through various tests available in

14

the Internet community, the canvas method was determined to be better at drawing

multiple entities in real time than SVG.

Figure 1: Canvas, SVG Comparison based on number of objects [2]

One of the important factors that influenced this decision was cross browser

support, since it was one of the major goals of this project. Canvas proved more

robust in this sense. SVG demonstrated to still be in the development phase for

Webkit and Gecko browsers. SVG has its own benefits and it is more appropriate for

drawing in larger areas. Canvas has different methods for drawing text, images that

proved to be very useful. This will be discussed in the design of MobiGameJS.

 HTML5 and JavaScript's data persistence abilities also factored into the decision,

since any game would require data storage facility. Game players would want to store

their scores, view statistics, and compare both with others. The Local Storage API of

HTML5 is designed for such purposes, as well as its session storage advancements. It

15

is also robust, easy to use, and just requires key value pairs to store data. However, it

also has its own limitations and they will be discussed in the experiments section.

16

2.3 Data URI

Data URI is an important factor in this MobiGameJS project. It unites the most

important features in this project: saving the game on the device and displaying like a

native application.

Data URL is the URL that includes small data items and it behaves in such a way

that the data is included externally. Some applications also need to embed media types

into URL [13].

Figure 2: Data URI Syntax [10]

Data URIs have also been used in test games to store the images and they make

the code self-sustainable and compact without any external server links. Data URI

consumes little bandwidth and inline data frees up a download connection for other

content. But, the data URI needs to be altered every single time there is a change in

the data. In the case of this project, this is not a major concern because we needed to

create images or data URI of the game only once. It takes the same amount of time to

load a game saved as data URI as a game saved to a device as a native app. Some

difficulties, which were caused by data URIs, will be addressed later in this report.

17

2.4 Experiments

 In order to test the functionality of every aspect of this project, various

experiments focused on data URI and local Storage using different browsers.

Additional tests analyzed how the game engine works and how it could be designed.

Some test games were created using JavaScript game engine called Crafty. An ancient

game of Pong was also designed to experiment with game loop. The following are

the findings of the experiments conducted:

1. During these experiments, it was found that game loop is an important and integral

part of the game engine. The performance of the game engine depends on this

small piece of code. If the game loop is running on very low fps, the game will

also run very slowly and the animations will not be smooth. On the other hand if

fps is very high then the game will run smoothly but the user interaction will not

be possible to handle. We needed to synch the game loop with respect to the

refresh rate of the browser.

Figure 3: Game of Pong

2. The process of writing the game required an in depth analysis of which features

need to be given the most importance and then how that needs to be developed. To

18

achieve this, we created some small games using the Crafty game engine, which is

created in JavaScript.

3. Data URI is an excellent technology, but various browsers have different

constraints on using local storage within data URI. There are many size

constraints, which can lead to performance issues. Using local storage within data

URI can also throw a security exception.

Figure 4:Flower Picker - Crafty game engine evaluation

3. JavaScript Bookmarklets were also used as a means of giving games that were

created using MobiGameJS a native look. Yet, even though bookmarklets were

powerful they had size constraints and their behavior was different on different

browsers. Also, their support on mobile browsers was limited.

4. The results of the experiments determined the choice to support Safari on iOS and

Firefox on Android. The scope was limited to 2D animations. The requirements

and designing of MobiGameJS will be discussed in the following sections of this

report

19

3. MobiGameJS

So far this report has provided an explanation of the idea behind this project, its

importance along with the different technologies chosen to implement the idea. The

end product of this project is called the Mobile Game JavaScript Engine. In this

section, description of the software engineering created while developing the

MobiGameJS is provided. Also, this section gives a description of all the tasks

performed. It spans from the gathering of requirements to the testing/experiments

conducted.

3.1 Requirements and Design

As mentioned in the previous sections, the game engine is a large framework. The

initial thought of designing MobiGameJS consisted of creating a set of necessary

requirements that were necessary to create a minimal game. A game required a

mechanism of adding, updating, and drawing entities. It also became necessary to

provide those entities with some kind of physics, as well as animation. It was also

necessary to have some kind of functionality in order to detect a collision between

two entities. Event handling was also required for user interaction. Finally, data

persistence and audio were also necessary considerations. We created a list of

following requirements for MobiGameJS:

1. GameLoop to run the games

2. A mechanism to add elements or entities into the game

3. Sprite functionality with animation support

4. Game Persistence

5. Event Handling specifically for touch events

6. Physics

7. Some kind of minimal Collision Detection

20

8. Audio

9. Native app look using data URI

After the requirements were gathered, the design of the game engine was started.

The requirements were converted into classes using object-oriented design. In

MobiGameJS, there are thirteen classes with hierarchical inheritance. All the classes

can be seen in the figure below.

Figure 5: Class diagram of MobiGameJS

The Game Loop will be described in detail in section 3.2. Entity and the inheriting

classes are described in 3.3, and section 3.4 provides the detailed working of the

Collision Detector class. The Animation and SpriteSheet classes are explained in

21

section 3.5. The process of how MobiGameJS has incorporated physics through

Physics and Spring Physics classes is described in 3.6. Event handling and audio are

described in 3.7. The data persistence section will explain the Data Storage class.

3.2 Game Loop

As mentioned in the previous sections of this report, Game Loop is the heart of

any game. The performance of the game, drawing, updating and user involvement

depend on the game loop. As a result of this, the design of the game loop has a lot of

importance in any game.

The game loop was designed using the window.setInterval function of DOM

during the earlier stages of the project in Pong game experiments. It was used to call a

specified function repeatedly after a certain time interval. In this project, the

GameLoop() was called every 10 milliseconds. The position of the call was updated

and the pedal was moved appropriately in the game loop function. The updating and

the drawing were carried out at the same time. That method proved to have a serious

flaw. The draw operation for every 10 milliseconds is equal to 100 frames per second

and normally a refresh rate is around 60fps. That implied the burning of a number of

CPU cycles, which resulted in a slow movement of the game at the same time.

In order to overcome this flaw, two particular functions, “window.webkitRequest

AnimationFrame” or its counterpart “window.mozRequest AnimationFrame,” were

used since they were available for both the Mozilla as well as the Webkit browsers

[5]. Both the browsers called us when it was required to update or draw frame. That

removed the problem of taking care of syncing. At this point, they are not completely

in synch with the screen refresh rate, but still prove to be smoother than setInterval. In

order to give fallback we provided the setInterval method, which would be used when

a browser was not supporting those two methods.

22

The Game Loop class contained: the canvas, the entity list, the collision detector

instance, methods for starting and stopping game loop, as well as methods for adding

and removing entities. It also constituted the update and draw methods.

In the construction of the Game Loop class, the canvas was initialized to provide

the width and height. Any new entities could be added to the game by using the

addEntity method and could be removed using the removeEntity method. The game

loop was initialized to run method in the start method. Therefore for each frame

refresh, the run method was called and the stop methods remove the run method from

frame refresh.

Run method is the game loop of MobiGameJS. It handles the drawing and

handling of different entities. In order to appropriately synchronize the refreshing, a

delay was added to updating and drawing. The update and draw methods were called

after every 20 skips. In the update method, every entity in the list is updated

accordingly and a check for the collision was performed. In the GameLoop’s draw

method, each added entities’ draw method was called. A random generator was also

added based on the lower and higher values. To programmatically change the

orientation, a flipOrientationmethod was added - which in turn called every entity’s

flipOrientation method.

23

3.3 Entity

Every single element, image, and control is treated as a separate Entity in

MobiGameJS. Every entity updates and draws itself. ImageEntity and TextEntity

inherit the Entity class. SpriteEntity inherits the ImageEntity. Every entity has its own

position on the canvas with x and y coordinates. It position also contains a pointer to

physics and also a name for the entity. Each entity also maintains a pointer callback to

call, every time the Game Loop calls an entity to update. When a call for flip

orientation occurs, the x, y coordinates are exchanged and the physic pointer is asked

to perform that task.

As the name suggests, TextEntity is used to display text on canvas. One can set

text and get text using the getter and setter methods. The draw method for set text sets

the font and color for the specific requirements and then uses the fillText method of

canvas to draw the text on screen. A developer can create a text entity in the following

ways:

Figure 6: Adding TextEntity to the game

The ImageEntity class inherits all the functions of the entity class. It adds height,

width and angle variables, which will be used while drawing images on the screen. It

also overrides the Draw method. The angle is set in degrees, which is firstly converted

into radians before drawing an image. That angle was needed in order to rotate our

image. The same image could be reused to do some animations. The coordinate

system was then set to the x and y co-ordinates of the entity and then the drawImage

method of canvas was used.

24

Figure 7: ImageEntity Draw Method Algorithm

SpriteEntity is used specifically for displaying the sprite entities. It contains the

object for the Animation class and the current frame to display. The overloaded

method of drawImage is used where the width, height and scaling are specified. The

sprite entity is created. Next, it is followed by the animation and the animation is then

added to that entity. It is then added for collision detection and finally to the game.

Figure 8: Adding SpriteEntity in the game

25

3.4 Collision Detection

 Collision Detection was one of the important pieces of MobiGameJS code. There

were lot of entities present in the game and they were frequently updating, changing

their position. They also collided with each other sometimes due to there own

properties and some due to the user’s interaction. We need to detect this collision, as

well as act accordingly.

 Circular, rectangular, and polygon collision detections provided ways to predict a

possible collision. In circular collision detection, we calculated the distance between

the centers of two entities and checked to see if they are that close to each other. In

MobiGameJS collision detection was performed by using rectangular detection. It’s

very simple to implement and very fast for detecting simple collisions.

Figure 9: Rectangular Collision Detection

26

We just needed to check the rectangular edges with each other to see if they are

colliding with each other. In MobiGameJS, there is a CollisionDetector class. We can

registered which entities we want to check for the collisions. We also had a

detectCollision method, which first checked to see if the entities were registered for

detection. After that, we checked for the collision itself.

Figure 10: Collision Detection Algorithm

27

3.5 Animation

One of the main features MobiGameJS implements is sprite animation. Sprite

Animation is a widely used animation technique. It consists of a sprite sheet and

animation using that. Sprite sheet is a type of an image, which consists of different

images. They can form a complete set of actions. We can show a walking man as a

sprite sheet example. It contains four different types of stages of walking man. The

animation is achieved by displaying successive images after some time intervals.

Figure 11: Sprite Sheet Example of walking man

In MobiGameJS each sprite entity is associated with sprite animation while

animation is formed by a sprite sheet. In the SpriteSheet class we took the width,

height of sprite, as well as the sprites with their names and starting coordinates. The

method we used to return the sprites frame is called getOffset. It basically checked the

entire length of sheet and if the name matches the argument of the function, it returns

the x, y coordinates and the height and width.

Figure 12: Calculating correct sprite offset

28

The animation class had different sprites to animate and the duration of each

animation as input. The Animation class has a method called animate. It basically

checks on how much time is passed in current animation. If it is more than the

specified time, we moved to the next sprite in the animation.

Figure 13: Sprite Animation Algorithm

29

3.6 Physics

Every game has the entities relating to real word objects. The developer has to

think about how these objects will work in the real world and how he can give those

characteristics to the game objects. Objects have properties such as mass,

acceleration. There are different forces acting upon them, likely gravity. Also, when a

collision happens we need to see how it is handled, because there are many different

forces associated with the collision.

MobiGameJS supports physics through Physics and SpringPhysics classes. In

MobiGameJS we have provided support for gravity in each axis of the device.

Basically, one can specify an axis where the object is generated and the object will

fall on the opposite axis. There is a method called CalNextPoint, which provides the

next point of that motion. We calculated that point using the distance between the

current point and the final destination, as well as by taking into consideration the

acceleration of the object.

As we saw there are different types of collisions, such as elastic and inelastic

collisions. MobiGameJS uses elastic collisions. The Rudy Rucker’s book suggests

that we should abide by the laws of momentum, conservation and energy. The

equation taken from the book is as follows:

newVa = [(1-massratio)*Va+ 2*massratio*Vb] / (1+massratio)

newVb = [2*Va+ (massratio-1)*Vb] / (1+massratio)

wheremassratio = mass2/mass1 Va and Vb = velocity before collision

Figure 14: Elastic Collision Formula [15]

30

MobiGameJS also supports spring forces. Once can add spring physics to any

entity and it will act as it is connected to a spring. We used Hooke’s Law to achieve

this. Basically Hooke’s Law states that the “the extension of a spring is in direct

proportion with the load applied to it.”. The equation for Hooke’s law is as follows:

Figure 15: Hooke’s Formula [8]

SpringPhysics overrides the CalNextPoint method of the physics class. It

calculates the current location of the object based on the Hooke’s Law. Until we are

touching the object, we can pool that object. When we release the object it will act

like a spring and it will converge based on the damping we have provided while

applyingSpringPhysics.

31

3.7 Event Handling and Audio

Games are all about user interactions! Players should be able to interact with your

games as they want and we needed to handle them properly at the correct time.

JavaScript and document object models currently provide lot of support to the mobile

device platforms iOS and Android. We were able to listen to the events using

window.addEventListener. MobiGameJS has the ability to listen to the different

events and developers can bind to those events. They can specify callback methods to

call when a specific event happens. MobiGameJS also provides developers an ease of

connecting entities with events. They don’t have to check to see if the event that is

happening is associated with their entity or not. The game engine itself using the

current location of the entities does it.

Figure 16: Connecting event and entity Algorithm

The above algorithm first gets the correct position of the touch, then it checks if

any entity that is bonded with touch event is near to the touch generated. If it is, then

MobiGameJS will call the corresponding callback.

32

MobiGameJS also helps developers to detect orientation changes. Different

browsers handle orientation change events differently. While Safari or webkit based

browsers support the window.orientation object of DOM., Firefox on Android still

does not respond to those events. It uses a more modern api

window.DeviceOrientationEvent. But this api generates events for slight

modifications in an angle of device. We don’t want that, we just want to know the

portrait and landscape modes. An alternate method is to check for window resize

event, as in portrait mode height is greater than width and vice versa in landscape

Figure 17: Orientation Handling

Audio:

HTML5 has a very simple to use audio element where you can specify which file

you want to play. There are different functions such as play, pause,and stop for this

element. MobiGameJS takes the responsibility of creating and adding this element to

the document model.

33

3.8 Data Persistence

Scoring is the integral part of gaming and the players always want to track their

previous scores. They want to keep tabs on a high score or how they perform.

Developers would also love to save the state of the game, if the game has mechanism

for exiting in between. If there are different levels in the game data storage performs

an important role in game play. There are currently multiple options available to

achieve this using SQLDB, IndexDB, Local Storage or local file system.

MobiGameJS currently provides data storage facilities by using the local storage

api of HTML5 [11]. Browsers manage local storage and they store data with respect

to the domains of the URL. It has very simple apis for getting and putting the data

“getItem and putItem” into local storage. We can also check to see if the key is

present in local storage by using “key in localStorage”. It’s very straightforward to

code and very lightweight to use; and that’s why we used it in MobiGameJS.

MobiGameJS has the class called DataStorage, which takes name and type as the

input for its initialization. We wanted to add type for adding different types of storage

later on. Name is given to every database and it is checked if it’s already present in

the local storage. It just acts like the connection URL that we use for connecting to

various databases. It also has methods, such as putData and getData for inserting and

getting data.

Though local storage is very easy to use, it has its own complications with data

URI as we saw in the earlier experiments. On Android, we could use data URI and

local storage without much complication. But on any webkit based browsers we

would get the security exceptions and they would not allow us to use this or any other

data storage apis. We could only access data of our own domain. The data uri has its

domain set to null and therefore we could not use it to access local storage. After

much pounding on this we found about “Same origin policy” of these storage apis and

34

security restrictions on it. There are a lot of discussions about how to bypass this

policy and access cross-domain data. We tried different methods and finally we were

able to do it using window.postMessage method.

Window.postMessage [6] is basically used for sending messages to other windows

as name suggests. It requires a target domain to which we want to send the message.

In MobiGameJS we used an html page “lsapi.html” which just contained methods for

storing data. We give it as source to hidden iFrame in the game. By using the data

storage class we could send the messages to this iFrame and use its domain to store

the data. In lsapi its listening to the event “message” by using “window.

addEventListener(‘message’,call,false)”. The problem using this method is that

iFrame loads asynchronously while the game is loading itself. Therefore, we did not

know when the local storage or iFrame would be available to us. To resolve this issue

data storage waited for the signal from iFrame to start the conversation like a

handshake protocol. This method was used only in the case of iOS, because on

Android we can access local storage directly on Firefox. The Window.navigator

object provide us all the details about platform we are currently in.

35

3.9 Delivery

As we saw in the abstract as well as introduction and other parts of the report,

MobiGameJS is not just about creating games. It is also about how you deliver them

to the users. The user should feel the game created using MobiGameJS is just like a

native application created for that specific platform. One should be able to start it

from the home screen. iOS and Android have some specific useful functionalities for

our purpose.

First of all - we created a website, or one could say an appstore where users can

download games and developers can download the game engine and upload their

created games. The games will be in the form of data URIs, so that they can be self-

sustainable. There is a functionality in both these platforms in order to pin the website

to the home screen. We use that to give the user a feeling that he is downloading a

game and created shortcut, or even say it just installed an application to the user’s

device. The user can then just click the shortcut and game will open in the designated

browser. The website has the functionality to play a demo in the appstore.

On iOS it’s pretty simple to add the game to the home screen, while on Android it

little bit difficult. To normalize the process we thought of showing the message to the

user. There are lot of different methods that we could have done using popups or

showing notifications. While searching for the answer, we came across a web page

cubiq.org [12]. Here they have created a small bubble to display a message to show

the user how to add the web app to the home screen. We used that widget to display

the message on bottom of the screen to download the game.

36

Figure 18: Cubiq.org Add to Home Screen bubble

Even if the game playing is for fun, mobile gaming is itself a big industry and lot

of people hope to make money from it. Monetizing the games created using

MobiGameJS is a big process and and it is out of the scope of this project. However,

there are some ideas to achieve this. We will see them in the Delivery section.

37

4. Testing

Testing is an integral part of any software development process and there are not

any exceptions in its importance in the game development process. There are a lot of

functionalities that are provided by the MobiGameJS game engine and some

substantial test cases needed to be created in order to test them. The best approach to

test the MobiGameJS game engine is to create new games using the engine.

Therefore, three different games were built to test different functionalities. A detailed

explanation of the testing and results can be seen in the following sections.

4.1 Flower Picker

Flower picker was the same game, which was mentioned in the background

section of this report. This game was previously built using the Crafty game engine

and was a desktop-based browser game using keyboard controls. The same game was

replicated using MobiGameJS. The different functionalities tested in this game were

Sprite Animation, Data Storage, Audio, Entity classes and Event Handling.

Game Play: There is a man walking in the garden with walls of trees andgrass in

the background. The man cannot climb or cut the trees and needs to walk around

them. He needs to pick as many flowers as he can till the timer running in the

background stops. When he picks up a flower, the flower will disappear from garden

and picking sound is played. After the elapsed time if the score is greater than the

high score it will be stored in local storage.

Figure 19: Sprite Sheet Used for Flower Picker

38

The sprite sheet used was the same as that of the earlier experiment. It contained

the sprite for a walking man, flowers, grass and bushes. An arrow image is provided

to give the user control over the man. There were text entities for the latest score and

high score.

Figure 20: Flower Picker End Product

39

4.2 Asteroid

Asteroid is one of the earliest games known. It involves shooting down asteroids

and alien ship using the fighting plane. This game was created to test the performance

of the game loop. The physics functionality, collision detection, orientation events,

and image entity class were also tested.

Game Play: The game has a fighting plane, which can be rotated 360 degrees.

Asteroids will be flowing around from all the four directions. There are two direction

buttons and clicking them would rotate the flight and also fire the bullets. There are

also the three text entities for the current score, high score and the health of plane. The

asteroid disappears and the score is incremented when the bullet hits the asteroid,.

There is a small animation of explosions and the condition of the plane deteriorates

when the asteroid hits the plane. The game finishes and the high score is updated

when the state of plane becomes zero.

Figure 21: Asteroid in Landscape

40

The asteroid games contain a lot of moving entities such as: different asteroids,

background images, arrows, fighting plane, and bullets. In order to update and draw

these entities at the same time, a robust game loop is required. MobiGameJS did not

display issues when the asteroids are increased up to 100. When the count was

increased to 1000, it slightly slowed down the game engine. Hence, it can be

concluded that the performance of the game loop of MobiGameJS performs as

expected. This game also shows that the collision detection works fairly well as there

are many collisions happening at the same time. The bullets collide with the asteroids;

asteroids collide with each other and also asteroids collide with the plane. It handles

them well in spite of the elastic collisions happening with the asteroids. A gravity

element can also be seen, while colliding and moving in the opposite directions. The

proper handling of orientation can be seen in the figure below.

Figure 22: Asteroid in portrait with local storage testing

41

4.3 Spring Physics

The final game created acts as a demonstration of what can be achieved in terms

of physics using MobiGameJS. The spring physics class created was also tested.

Game Play: The balls with different masses are attached to a bar using spring

ropes can be seen in the figure below. We can touch the balls to pull them. Mass of

the ball will decide the amount of force that is required to pull the balls. After the

release of the balls, they would reciprocate until the force applied on them is nullified.

Figure 23: Spring Physics Demonstration

42

4.4 Delivery

 The delivery of the game is an important feature of the MobiGameJS game engine.

The game had to be delivered so that the user could gain the feeling of playing a

native game. An html website was designed in order to deliver the games created

using MobiGameJS. It is a website that is designed for mobile devices using template

http://mobifreaks.com/. The first page of the website is the index page where the

MobiGameJS game engine can be downloaded. It also provides information about the

game engine and its usage. Using the menu, one can navigate to the other pages of the

website.

Figure 24: Delivery of MobiGameJS

 A contact page is also provided where the developers can contact us about the

game engine. The most interesting page on the website is the Games page and this

http://mobifreaks.com/

43

page contains the information about the game that the developers created. It works as

an app store where the users can download, buy games and upload their games. It

contains a small description about the game, a snapshot, the demo link and an option

for buying. When the user navigates to this page, a bubble is displayed to the user

stating the directions to download the game. The user can then navigate to the game

and add it to home screen. A shortcut will then be created at the home screen and user

can launch the game whenever he wants to.

Figure 25: Delivery of games created using MobiGameJS

 Every device has an id irrespective of whether it is iOS or Android, which can be

extracted. If the ID is not available, it can be created programmatically. When a user

launches a game, a list of devices for which a game is downloaded can be maintained

and kept track of. If the device is used to download the game, the game can be started,

or else a shutdown signal can be sent to stop the game loop. This can be achieved

using the same iFrame technique that is used for data persistence.

44

5. Conclusion

Mobile gaming is on the rise. Although a lot of mobile users are not hard-core

gamers, a significant lot of them try the games on smartphones in their leisure time.

Therefore, a lot of developers are looking for an opportunity to get into this market of

mobiles. There are some roadblocks in order to start this development, which include

the platform to choose, the different types of hardware, and most importantly, the

learning curve. The idea of this project was to specifically address these issues.

A game engine called MobiGameJS has been created with the help of web

development technologies such as HTML5, Canvas, local storage and hardware

related JavaScript events and APIs. As shown in the test games, MobiGameJS is

simpler to use. It also implements a lot of the requirements necessary for a game

engine such as: sprite animation, physics, event handling, media, collision detection

etc. The games developed in MobiGameJS can be deployed on any platform using the

data URI.

This project is a good start towards the portability of mobile games and in turn the

mobile applications. Future improvements to the system could include improvements

in the user’s experience of installing and launching games, more robust data

persistence technique. Appropriate monetization processes can also be deployed, so

that the developers can sell their work comfortably.

45

6. References

[1] Benjamin Smedberg, Nickolay. (Nov 1, 2012) Canvas- Mozilla Developer

Network. Retrieved from https://developer.mozilla.org/en-

US/docs/HTML/Canvas

[2] Boris Smus. (Jan 19, 2009). PERFORMANCE OF CANVAS VERSUS SVG.

Retrieved from http://smus.com/canvas-vs-svg-performance/

[3] Chris Stead (July 15, 2009). The 10 Best Game Engines of This Generation.

Retrieved from http://www.ign.com/articles/2009/07/15/the-10-best-game-

engines-of-this-generation

[4] David Rahimi (Aug 9, 2012). Samsung Galaxy S1 Vs. S2 Vs. S3, How The

Galaxy S Has Evolved Over Time. Retrieved from

http://www.phonebuff.com/2012/08/samsung-galaxy-s1-vs-s2-vs-s3-galaxy-

evolved-time/

[5] Eric Shepherd, Jared Wein. (Oct 14, 2012). Animation Frames - Mozilla

Developer Network. Retrived from https://developer.mozilla.org/en-

US/docs/DOM/window.requestAnimationFrame

[6] Eric Shepherd, Joel Overton. (Sept 7, 2012). Post Message - Mozilla Developer

Network. Retrieved from https://developer.mozilla.org/en-

US/docs/DOM/window.postMessage

[7] Frederic Lardinois (Sept 4, 2012). Apple’s Share Of U.S. Smartphone Market

Now Over 33%, RIM Drops To Under 10%. Retrieved from

http://techcrunch.com/2012/09/04/comscore-apples-share-of-u-s-smartphone-

market-now-over-33-rim-drops-to-under-10/

[8] Hooke’s Law. (2012). Retrieved from http://en.wikipedia.org/wiki/Hooke's_law

[9] Jeff Schiller, Nickolay. (Oct 14 , 2012) SVG-Mozilla Developer Network.

Retrieved from https://developer.mozilla.org/en-US/docs/SVG

[10] L. Masinter (1998). The "data" URL scheme. Retrieved from

http://www.ietf.org/rfc/rfc2397.txt

https://developer.mozilla.org/en-US/docs/DOM/window.requestAnimationFrame
https://developer.mozilla.org/en-US/docs/DOM/window.requestAnimationFrame

46

[11] Mark Pilgrim. (2012). THE PAST, PRESENT & FUTURE OF LOCAL

STORAGE FOR WEB APPLICATIONS. Retrieved from

http://diveintohtml5.info/storage.html

[12] Matteo Spinelli. (Oct 10, 2011). Add to Home Screen. Retrieved from

http://cubiq.org/add-to-home-screen

[13] Nakul Natu. (2011). JavaScript Game Engine for Mobile using HTML5.

Retrieved from

http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Fall11/nakul/CS297R

eport.pdf

[14] Nielsen (March 29, 2012). Smartphones Account for Half of all Mobile Phones,

Dominate New Phone Purchases in the US. Retrieved from

http://blog.nielsen.com/nielsenwire/online_mobile/smartphones-account-for-

half-of-all-mobile-phones-dominate-new-phone-purchases-in-the-us/

[15] Rudy Rucker. (2002) Software Engineering and Computer Games. Addison-

Wesley

http://cubiq.org/add-to-home-screen

