CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Smart Search: A Firefox Add-On to Compute a Web Traffic Ranking

A Writing Project Report
Presented to
The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Vijaya Pamidi

May 2011

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

© 2011
Vijaya Pamidi

ALL RIGHTS RESERVED

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Smart Search: A Firefox Add-On to Compute a Web Traffic Ranking

by
Vijaya Pamidi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science

Dr. Tsau Young Lin, Department of Computer Science

Dr. Robert Chun, Department of Computer Science

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

ABSTRACT

Smart Search: A Firefox Add-On to Compute a Web Traffic Ranking
by Vijaya Pamidi

Search engines results are typically ordered according to some notion of importance of a
web page as well as relevance of the content of a web page to a query. Web page importance is
usually calculated based on some graph theoretic properties of the web. Another common
technique to measure page importance is to make use of the traffic that goes to a particular web
page as measured by a browser toolbar.Currently, there are some traffic ranking tools available
like www.alexa.com, www.ranking.com, www.compete.com that give such analytic as to the
number of users who visit a web site. Alexa provides the traffic rank for a website based on two
factors: The number of users that view a website and the number of pages viewed. The Alexa

toolbar is not open-source.

The main goal of our project was to create a Smart Search Firefox add-on for the Yioop
search engine, an open source search engine developed by my project advisor, Dr. Chris Pollett.
This add-on would provide similar analytic data to the Yioop search engine, but in a transparent
and open-source way. With the results received from the Smart Search toolbar extension, the
Yioop search engine refines the search results as well as provides user centric-search results.
Eventually, users would benefit from these better search results.

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

ACKNOWLEDGEMENTS

I would like to thank Dr. Chris Pollett for being my advisor, guiding and an excellent support
throughout the project. 1 would like to thank my committee members Dr. Robert Chun and Dr.
Tsau Young Lin for accepting to be the committee and the effort and time. Very special thanks

for my husband and daughter for their great moral support. | would like to thank Shalini Kodali

(SJSU Alumni) for peer reviewing the project report.

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Table of Contents
I a1 & o To (Ui £ o] o OO TSROSO PRSPPI 8
2. TEChNOIOGIES USEA.......cooiiiiiiieececee ettt nenas 10
1200 O | PSSO 10
2.2 JAVASCIIPL ..ottt ettt b e bt b e et e aeenbe e beetesaaenrean 10
2.3 PHP ettt raeenreenaaeeaes 10
3. DEeSIGN CRAIIEBNGES ..o bbb es 11
4. Study and Model Page-Rank Algorithm ... 11
4.1Page RaNK iN DIIET......ccoiiiice e 12
4.2 AlGOrTtRM OULINE......cooiiii e 12
5. Building a FIrefoX EXTENSION.........ccovciiiiiiiiccces et 13
5.1 Simple FIrefoX EXTENSION. ... s 13
6. Building a Firefox Toolbar EXtENSION...........ccccciiiiiiiicieec e 15
6.1 Adding functionality to the toolDar ..., 17
6.2 Adding styles to the tooIDar ... 18
6.3 YIOOP! COUL STUAY.....cueiiiiiiieiiiiee ettt 19
6.4 Making Toolbar Extension Communicate With Yioop..........cccocevvveiieveicsicecenn, 21
7. Capture and Store User Search HiStory..........ccooiiiniiiiiniccecse s 24
T.LSQLITE IN BIIET ... 24
T2 STONAGE AP ... bbbt bbb rs 24
8. Send user search CaPLUre 10 YI00P.....cooereerieirieieeie ettt 26
8.1 Component that communicates with Yioop periodically...........c.cccooveviiriivnennnn, 26
8.2 Yi00p’s TOOIbar CONLIOMIEN ..o e 28
9. Yioop Component Ranking and RefiniNg.........c.ccocoeviiiiiiiieicescccecesesee e 29
9.1 User gets refined results for their search qUeries............ccocooveiieneinecnercee 34
10. TeSting the TOOIDAN ..o 34
I I O 0 Tod 111 [o OSSR 41

References

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

List of Figures

Figure 1: Inputs given for our Page-Rank algorithm..............ccoouiiiiiiiiiiiineeee s 12
Figure 2: AlGOrithm CONVEIGENCE.c..ciiieiieiieieieieet ettt sttt sae b sae s 13
Figure 3: Page-Rank OULPUL..........coiuiiiiie it 13
1o O T S 1y Y | N | USRS 14
FIQUIE 5. ChromME.MANIfESE.......eueeuieieeiieiiecs ettt sbesresnenneas 14
Figure 6: sample. XUL the XUL OVETTAYcveiveerieieeieiieseesieeeesiesseeseeseessesssessaesseesesnsessnens 15
Figure 7: XUL €ode fOr @ t00I0@I.cveieiiiiiesieeie e siesie e sie et sre e sneenne e 16
Figure 8: calling Click With 1080..........cveierieiieiiieie s sse e e 16
Figure 9: linkclick and getword fUNCHONS.coveririiiiriesie et 17
Figure 10: Toolbar button With Yi00D 1CON......eiveitieieiesieeiesiee et sie e sreesseeneas 18
Figure 11: Yioop before Code Change.........cucieiieiieeiieieseesieseeste st sreere e ae s e esaeesae e 19
Figure 12: Yioop after COUE ChANGE......eivurierieiiesieeiesiesieeiesiee e see st sre e e e sreeseensesseesseesanas 19
Figure 13: CommuUNICate With YI0O0Peeuervirierierieniesiesiesie st sie e siesie e eeseeseesseeneensesessessessessens 22
Figure 14: Write and AJaX CallS.........ccueieiuerieiiesiesiesieseesiesee e ssee e ssesseseesseesseensesssessnessnenses 23
Figure 15: Write at Yioop With POST ... ivuiitiieciee i cee s seseeee e saesnesnnenens 24
Figure 16: Code for Opening an API CONNECHION.eiviireerieeriesieeiesiesieeeesseeseesseessesssesseessesseesees 24
Figure 17: create and inSErt in StOrage SPL.........ccocuiiuiuiirieeeiecieeieieisssesse ettt 24
Figure 18: Component to read data from table and send t0 Yio0p........cccvreeriereenesieenieseeniesieenienns 26
Figure 19: UploadASYNC fFUNCHION.cverieiieieeeesiesieeie e et sie et steeseesaeesaeeaeessesseesreeneesneenee e 27
Figure 20: Code block for deleteROWS fUNCHION.ccuviiiiiiiiiiieriesieeiee et 28
Figure 21: toolbar_CONtroller. PP,cueieiieieiierieeeeste et seesteesteeaessaesreesteesbeessesneenseenee e 29
Figure 22: processToolbardata FUNCLION.erveeeeiereereeriereee ettt 30
Figure 23: processDataFile fUNCHON.ccvertieueererieseeseesieete s sre e e et eseesse e e sreenees 31
FIQUIe 24: reading the file........c.eiiiiiieeeieeete sttt ettt 32
Figure 25: adding t0 SUMMAIYccueiierueerereenieesieesteesieseessesseessesseeseessesseesseaseessesseessessesssessens 32
Figure 26: adding dOCUMENT WOTGS.ccueiverterieriesiesiesiesiestesteseesee e seesee e sesseeneeeessesaessessessesnens 33
Figure 27: adding t0 SUMMArY OFfSELS........ueiueiierieiieiesiesiesieeee e esee e e essessaesseesseesseeseesseenee e 33
FiQure 28: TestL retUrming rESUILS. veieriereesiesieseesieee ettt ste st sne b e e see e e 35
FIQUIE 29: TESES QL YI00P. 1+ veveerieitiariesieaieesiesseestesseestesseaseesseeseesseeseesseessesnsesssesseessesssesssensesssens 36
Figure 30: Test at 10CAIN0SE YI0O0P. .. .cvevereeeieieiesieseereaseesessesses st ssestestesresbesbesseseesseseeneeseenes 37
FIgUre 31: Test3 at 10CAINOST.vv et e ees e et et et et e et e e e e et e e eseeeas 37
FIQUIE 32: TESE3 @ YH00Pt e ettt et ettt oo ettt e ettt e e ettt e e e e e et e a e eee e 38
Figure 33: Test4 testing the relevance 0f reSUILS..............uutiiriiiii e, 39
Figure 34: Test4 testing the relevance 0f reSUIS...............uiiiiiiiiiii e e e 40

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

1. Introduction

Search engines use web page ranks to determine the order of search results that should be
presented. The ranking of a web site is determined by a search engine based on the ranking
algorithm followed by that particular engine. Currently there are some tools available like
www.alexa.com, www.ranking.com, www.compete.com and these tools provide analytic data for
ranking the web sites based on web traffic and the number of users who visit a web site. Alexa
provides the traffic rank for a website based on two factors: The number of users that view a
website and the number of pages viewed. Usually the factors that affect ranking of a web site are
number of users that visit a web site and the incoming, outgoing link probability. Apart from
these two factors we would like to add how user preferred search results affect the web traffic
ranking. For this project we created a Firefox add-on to compute a Web Traffic Rank and the

personal user search.

Our extension can be installed by a user of Firefox. The Smart Search toolbar captures
the link that user clicks. Apart from this link it also captures other user driven actions such as the
target link, word that user clicked, timestamp of action performed and language preference. The
captured data is sent to Yioop periodically. After receiving the data from toolbar, Yioop writes
the data to text files under schedules folder. When Yioop performs a web crawl along the Index
data, Schedule data, Robot data folders the Toolbar data folder will also be crawled by the Yioop
crawler. All the crawled web pages will be indexed and ranked by Yioop. When a user enters a
search query Yioop gives the results. The search results given to the user are based on both the
open web crawl and the toolbar data. In this way the user eventually could experience a better

search results that are very user specific.

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

One of the main toolbars that exist so far for traffic ranking a web site that is based on the
user interest is Alexa. Alexa toolbar works in such a way that it gives ranking of web site from
one to infinity, this means that a website with ranking one is more popular than any other web
site and the one with ranking two is next and so on. Once a web site that wants to get an Alexa
traffic ranking is crawled by Alexa crawler then it starts giving that web site a traffic rank from
one to infinity. As Alexa starts getting user data from those users who have installed or using the
Alexa toolbar it takes the analytics coming from those users and starts re ranking the current web
site. The analytic data is sent to Alexa from the toolbar on a three month periodic basis. User
who would like to know the Alexa traffics ranking for their web site should allow three months
of time period to get accurate ranking. One thing to observe here is Alexa ranking for a particular
web site is based on the traffic gathered from those users who has Alexa toolbar. There are many
other toolbars available which does the similar job. Alexa ranking got more popular because of
its early availability and the factors considered for traffic ranking and the Google analytics also
does a similar traffic ranking.

The Smart search toolbar also works in a similar way but is particularly developed to give
user centric search results for users who search queries through Yioop search engine. Smart
search toolbar captures user clicked links and some other information about those links. This
data will be sent to Yioop server periodically not on the time basis but on the amount of the data
captured. When Yioop server receives the data then Yioop performs a crawl the data from
toolbar will also be crawled along with the open web crawl and the web sites that are crawled by
Yioop will be given a page rank. Web sites will be ranked based on the continuous synchronized
process mentioned earlier .This helps the users to get user centric search results.

The initial part of the project report explains how a Firefox toolbar extension was built,
modifications and enhancements done to the toolbar to capture user clicks, and the storage
mechanism of the user clicks at the user end. The toolbar was also modified to communicate

with Yioop and transfer toolbar data in periodic regular intervals.

In the later part of the report the server side process will be explained. The details of how
Yioop receives the toolbar data and processes the data to index and rank the web pages will also

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

be provided. Yioop gives refined search results to user when user enters a search query. The test
results are experimented on the toolbar data with Yioop. The last part gives a conclusion to the

research project report.

2. Technologies Used

This section explains the technologies needed for developing the requirements of the
project. The main user interface language needed to build any Firefox extension is XUL. One of
the main requirements for the project is building a Firefox toolbar extension. In order to make
the toolbar functional the JavaScript functions need to be added either to the toolbar or to the
toolbar components like menu items. The other major component of this project is Yioop. The

components of Yioop server need to be developed in PHP.

2.1 XUL

XUL pronounced as “zool” is an xml user interface language. XUL is used to develop
Firefox extensions. XUL runner builds provide the possibility to develop applications on top of
Mozilla applications. XUL documents are included in contents, skin, and locale folders. The
main XUL overlay component chrome.manifest is placed under contents folder. In skin folder

the css styles are included. [1]

The elements that can be added as extension or XUL elements include window, dialogue,
page, wizard etc. Elements like button, list box, text box, radio buttons, check boxes, toolbar, and

menu can also be added. [1]

Events and scripts include command, script, key etc. Apart from these there are many
other elements, and events that can be included with XUL. In this project XUL is used to build

the Smartsearch toolbar extension and also to add the JavaScript functionality to the toolbar.

2.2 JavaScript

10

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

JavaScript is an object oriented web language that is mainly used to build web application
functionalities. In this project most of the functionalities were developed in JavaScript. As the
Smartsearch toolbar resides at user end or client side we can say that client side functionalities
were developed using JavaScript. The details of how the JavaScript code and integration of the

various functionalities work will be explained in the later sections.

2.3 PHP

PHP is a scripting language generally used for “server side web development”. PHP runs
generally on web server. In the current project the server is Yioop! Search engine. Most of the
development for Yioop was done with PHP scripting. The application components that need to
be developed to communicate with Yioop server should be coded in PHP. So the server side

components development for the current project was done in PHP. [2]

The main goal of the project involves working and understanding knowledge of Yioop
search engine. One of the main components for any search engine is its ranking strategy and the
algorithm to rank the web pages. In order to gain knowledge of the algorithms we have to know
various existing ranking algorithms. For this project we have studied Google’s Page-Rank
algorithm and modeled the Page-Rank algorithm for a 10X10 matrix where the matrix represents
web pages with incoming and outgoing links. The details of the Page-Rank algorithm and

implementation are discussed in the next section.

3. Design Challenges

The main components that needed to be developed to achieve the goals of our project
were user end toolbar, storing captured data, server side data handling and ranking the crawled
toolbar data along with the web crawl. The main challenge involved in the design phase was to
handle the data from many downloaded instances of our Smart search toolbar, as they all send
data to Yioop server simultaneously. So making the Yioop server scalable to handle these results
is challenging. When the data from the toolbar is sent to Yioop and a crawl is performed then
indexing these results is another design challenge involved.

11

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

4. Study and Model Page-Rank Algorithm

To understand how the Page-Rank algorithm works, we implemented Google’s Page-
rank algorithm for a 10X10 matrix. The algorithm needs to be developed in JavaScript. This
10X10 matrix is linked in a way to model a group of web pages connected with outgoing and
incoming links. The program is checked in such a way that Google matrix should converge on a
given matrix. Also the program outputs the Page-rank values for the 10 web pages given. The
10X10 matrix that would model a web with outgoing links represented as 1 is shown in Figure 1

and this matrix is the input matrix for the Page-Rank algorithm modeled.

Matrix showing the links between pages
POOO10O0O11111
P11010101010
P20001000010
P30000100001
P40111000001
P50010010011
Psl1010011001
P70001001011
PEOOOO110110
Pa0111011110

Figure 1: Inputs given for our Page-Rank algorithm

4.1 Page-Rank in brief

Internet is a source of billions of web pages which are accessible to the user. Search
engine needs to find a way to give the most relevant web pages to the user by comparing the
relevance and importance of all these web pages. A challenging task is to rank these web pages
with an algorithm that can incorporate common usage patterns i.e. “a user who visits a web page

A is more likely to click the link to page B than the link to page C.” [3]

4.2 Algorithm Outline

The Page-Rank algorithm gives the page rank for the 10X10 matrix web pages by applying the
power method on the given input matrix. The Google matrix with the properties “Stochastic,
Irreducible, and Aperiodic” converges on the given input matrix. Converge is a factor of having
a very small deviation in the product of the Google matrix and the input matrix value. In the

12

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Figure 2 how the values of convergence keeps reducing and then finally can observe a small
change in the values and then it is said the Google Matrix is converged on the input matrix and
the output of the algorithm is the Page-Rank values for the web pages represented in the model

matrix. [3]

The algorithm convergence information looks like in Figure2:

CoVRG@:1.0745918259183678
CaVRG@Z:0.08846305370307411
CaVRG@:0.01588145424478182
CnVRG@:0.0034950271003942757

Figure 2: Algorithm convergence.

Next we show the page rank for all the web pages from PO to P9 in Figure 2

Page Rank Sorted:
|0.4692T5]458840261
|0_46899909?941 1388
|U_46T99T8916551898
|0.466?344180658395
|0.4659?501?562?95
|0.465351 1612793653
|O.4648?26?3305?1336
|0.46405241?T1945693
|O.46] 1560986667226
|0_454423?26133?586

Figure 3: Page-Rank output

5. Building a Firefox Extension

The first step to build or work with any extension is to learn the basic steps involved in
building an extension. In order to execute this step we built a simple Firefox extension. With this
we get to know the directory structure and how the extension should be added to the profiles as
extensions. Along with file structure, we also need to understand the way chrome.manifest and

install.rdf involve in the extension development.

13

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

5.1 Simple Firefox Extension

To build a fully functional Firefox toolbar extension and to understand intricacies
involved in the building process we started by building a simple Firefox extension with a Status
bar displaying "Hello, World". Initially to learn more about Firefox extension features like
"Hello-World™ menu pop up with menu items labeled were added initially. An alert message will
be displayed for each menu item based on the appropriate click by the user. A “New-Tool” was
added to the tool menu pop up to learn about the” insert after” feature. To program any Firefox
extension one should have the knowledge of XUL and the XUL documents needed to build

extension. [7]

The XUL documents that are essential for the programmers to define an XUL user interface are

Content: “The XUL document and the JavaScript files exist in this folder. The elements of these
components define the layout of the user interface for an extension”.

Skin: the CSS and image files are placed under this skin folder. This is responsible for the
appearance of the extension.

Locale: The files to make the extension localization available. The language “user-visible
strings” are responsible for making software localization easy. [7]

The code block used to build a Firefox extension is given in Figure 4

1.Install.rdf

<?xml version="1.0"7>

<RDF xmlns="http://www.w3.0rg/1999/02/22-rdf-syntax-ns{"
xmlns:en="http://www.mozilla.org/2004,/en—rdf$">

<Description about="urn:mozilla:install-manifest">
<em:idrsampletest@exanple.com</em: id>
<em:version>l.0</em:version>
<em:typer2</em:type>

<1-- Target Application this extension can install into,
with minimum and maximum supported versions. —--»
<em:targetApplication>
<Description>
<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9=97384}</em:id>
<em:minVersion>l.5</em:minVersion>
<em:imaxVersion>3.6.*</em:maxVersion>
</Description>
</em:targethpplication>

<!-- Front End MetaData -->

<em:name>Hello</em: name>

<em:creatorr>Tester</emicreator>

<em:description>hello world extension.</em:description>
<em:homepageURL>http://www.mozilla.org/</em:homepageURL>

</Descriptioni
</RDF>

14

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Figure 4: install.rdf

2.Chrome manifest

content sample chrome/content/
sverlay chrome://browser/content/browser.xul chrome://sample/content/sample.xul

Figure 5: chrome.manifest

3.XUL Code Block

<?xml verzion="1.0"?>

<overlay id="sample”
xmlns="http://www.mozilla.org/kevmaster/gatekeeper/there.is.only.xul">

<gcript type="application/x-javascript"
src="chrome://sample/content/sample.js" />

<statusbar id="status-bar">
<statusbarpanel id="my-panel" label="Hello, World" />
</statusbar>

<menubar id="main-menubar">
<menu id="hello-menu” label="Hello-World!"™ insertafter="helpMe=nu">
<menupopup>
<menuitem label="Hello!" oncommand="window.alert('Hello Keerthi');" />
«menuitem label="World!" oncommand="window.alert('Its Keerthis World');" />
<menuitem label="Day!" tooltiptext="" oncommand="window.alert |'Have A Wonderful Day in This World'):" />
<menuseparator/>
<menuitem label="ToDay!" tooltiptext="" oncommand="window.alert('Today Is ‘+displayDav()}:" />
<menuitem label="Time!™ tooltiptext="" oncommand="window.alert('Time Now '+displayTime(}):" />
</menupopup>
</menu>
</menubary>
<menupopup id="goPopup">
<menuitem label = "World History" oncommand="window.alert ('http://www.worldhistory.com/'}:"/>
</menupopup>
<menupopup id="menu_ToolsPopup">
<menu id="tools-menu" label="New Tool"
insertafter="javascriptConsole,devloolsSeparator™>
<menupopup>
<menuitem label = "World Tool"™ oncommand="window.alert('A Tool? To Fix This World!')};"/>
</menupopup>
</menu>
</menupopup>
</overlay>

Figure 6: sample. XUL the XUL overlay

6. Building a Firefox Toolbar Extension

After getting familiar with building a Firefox extension next step would be to build a
Toolbar extension with id “Smart Search”. The function of a toolbar button will be to capture
the user clicked link and target link. Along with these two features the timestamp when user
clicked on the link and language of the web page would be also captured. XUL code block is

shown in Figure 7.

15

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

<?xml version="1.0"2>
<overlay id="sample"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.iz.only.xul">

<script type="application/x-javascript"”
src="chrome://sanple/content/sample.js"™ />
<window id="main-window">
<toolbox id="navigator-toolbox">
<toolbar id="tool-toolbar" toolbarname="Smartsearch Toolbar™ accesskey="TI"
class="chromeclass-toolbar™ context="toolbar-context-menu"
hidden="false"™ persist="hidden">
<toolbarbutton id="toolbar-button" »
<menulist
<menupopup>
<menuitem id="t3" accesskey="W" label="SmartSearch” wvalue="1" oncommand="linkclick(} ;">
<menuitem id="t4" accesskey="H" label="sendCaptureTest" value="2" oncommand="sendCaptureTest()," >
<menupopup>
<menulist>
<toolbar>
<toolbox>

<window>

<gverlay>

Figure 7: XUL code for a toolbar

In the XUL code shown in the Figure 7 we can observe that the JavaScript functions are
called on the oncommand event. When we click on the menu item Smart search then the function
lickclick () is called. At this point the functions are added to the event oncommand to test the
working of functionalities. After the toolbar completes the development and completes testing
then user the functionality of the toolbar should be automatically loaded when user opens Fire
fox browser. With load event the first JavaScript function linkclick is called which in turn gives
the flow for the rest of sequence of functions. This is achieved by the document.addEventListner
and call the function linkclick () with the event load. The line of code is shown in the Figure 8

<script>

document addEventListener("load". functioni) { linkclick{): }. true=):
{sscriptr

Figure 8: calling click with load

16

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

6.1 Adding Functionality to the Toolbar

The JavaScript function linkclick () is called when user clicks on a link on a web page.
This in turn calls the getword () function which captures the user clicked link and target link at

initial stage of the project.

In function linkclick () for loop is used to traverse through each link and calls
addEventListner function which has three parameters (“event”, function, true) that could be
passed. In the present case the three parameters are (“click”, getword, true). The “getword” is
another function where the user clicks an URL or a link and target links are captured. The
command window.content.location.href was used to capture user clicked link or URL and
event.target.href is used to capture target links. The results would be stored in an array for future
use. The JavaScript showing the linkclick and getword function is at initial stage. The JavaScript

functions code for linkclick and get word is shown in Figure 9.

function getword{event){

var content=new Arrayi):
content[0]= window content. location href:
content[1]=event . target . hretl .

alert("lick clicked"+ content[0]):
slert("target link"+ content[1]):

s% war content=window.content.location. href:
alert{content);

war contentl= event . target href:
alert{contentl) ®/

var intervallD = window.setInterval(linkclick, 1000%:

Write{"http: ~~localhost viocopsajaz.php". "file=ajaz-post-tezt tztécontent=" + content):

function linkclick()
s alert("In function2"):

var len = content.docunent.getElementsByTagHane("a"):
ssalert{"a elensntsz in thiz "+len. length);

for (var i=0; i<len.length;i++)

len[i]. addEventlistener("click", getword, true] /- invoke function

Figure 9: linkclick and getword functions

17

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

6.2 Adding Styles to the toolbar

Making the toolbar button or an extension look good is one of the tasks of building a
viable toolbar extension. For this we added the Yioop search engine icon to the Smart search
toolbar button. In order to add the icon to the toolbar button we should include the skin folder
under our extension folder. The skin folder should be placed at the same hierarchy as content sub
folder under the chrome folder. The skin folder should hold the Yioop search engine icon which
in this case is named as favicon.jpg and this is downloaded from the Yioop. The skin folder
should also contain the css file that is required to add the styles for icon. For this toolbar the css
file is named as test.css. The XUL file should contain the path for the test.css file. After adding

the Yioop icon the toolbar button looks like in the Figure 10 shown below.

') Google - Mozilla Firefox
File Edit View History Bookmarks Tools Help

E" C A "' https/fwww.google.com/

W SmartSearch

Figure 10: Toolbar button with Yioop icon

6.3 Yioop! Code study

The goal of the project is to provide user specific search results with the Firefox toolbar
extension. In order to do that we need to merge the user captured toolbar data with the Yioop
index archive. To understand the work flow of Yioop search engine it is mandatory to study the
Yioop code. The goal of code study is to understand the flow of functional events taking place in
Yioop. This starts at the point where user enters search query in the Yioop search bar and ends at
the point where Yioop returns the results back to the user. To understand the working of Yioop
code in a better way, a small task like changing the color of a part of the search results was done.

18

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

The matching word in the results for the search query was changed to color green. For example if
user entered the word “sjsu” in search text field, each *“sjsu” word in the results was changed to

color green. These changes are shown in Figure 11 and Figure 12.

The Yioop results before change.

Query Results: (Calculated in 0.13307 secands. Showing results 0-2of 2)

hitp:/www.sjsu.edu/
sJsu
w hitp fSwwer sjsu edullexSISU elhillp.wweros sjsuedulzouly/pollell Rank: 8 12 Rel. 3.71 Scoie 11,8275

Chris Pollett's Homepage

Chris Mollett Homepage contains informarion = I'm
adminstraive duiics, as well as links (o piciures, G
Research Teaching Adminizlral ve Pzst Al 2ssul, 274 MacQuannie Hzll Depl of
Computer Science, 8J8U, Cne Washington 5g. San Jose CA 95 82.0243 Fhon

hitp/fhwew cs sisuedufacultv/poliett! Ranke 8 4C Rel 0.04 Score 8.5 Cached. Similar infinks.

[

= firlds of rasearth, his current and past tearhing and
1 5 nd past places he's boen. Chris Pollet

Figure 11: Yioop before code change

The Yioop results after the color change.

Query Results: (Calculated in 0.565024 seconds. Showing results 0-2 of 2)

http:/iw g‘m du/
G150

urTttp:www.sisu edultextSJSUrefIhttp-www_cs sjsu edufacultyipoliett Rank: 8.12 Rel: 3.71 Score 11.8375

Chris Pollett's Homepage

Chris Pollet Homepage contains information about his fields of research, his current and past teaching and
administrative duties, as well as links to pictures, complexity sites and past places he's been. Chris Polieft
Research Teaching Administrative Past Affiliations Links Associate Professor, 214 MacQuarrie Hall,Dept. of
Computer Science.@()ne Washington Sq., San Jose, CA 95192-0249. Phon
http:/iwwnw_cs.sjsu.edutaculty/pollett! Rank: 8.46 Rel: 0.04 Score 8.5 Cached. Similar. Inlinks.

[0

Figure 12: Yioop after code change

Yioop is an open source search engine and it was developed in PHP. The main goal and
advantage of Yioop is that user can have control over the crawls done with Yioop if Yioop is
already installed locally on user’s system. This helps users to get results from a known set of data
rather from a massive crawl data by the popular search engines. Even from the Yioops website
user can select the crawls from which he/she would like to get results from and can also select a

mix of crawls as well. To get the advantages of Yioop search engine and the search results from

19

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Yioop one should have knowledge or should learn about the crawling and index mechanisms

done by search engines. [4]

The main entry point for Yioop is index.php which is the search engine main web page.
This takes the query from user which is entered in the search query text box. The main folder
that contains programs for the crawl is bin folder. This contains fetcher.php and
queue_server.php. These two are needed to run the crawl after the initial installation and also do
other crawls in future. Creation of WORK_DIRECTORY can be done when user signs-in as
admin with the given user name and pass word. The user interface provides the availability to
configure a work directory, manage crawls, manage roles, mix crawls, manage locales, manage
users and manage accounts. The WORK_DIRECTORY set by user contains all the folders and
the crawl sites and information in these folders. The Yioop configs folder contains all the
necessary programs to carry out these tasks. Once the configuration is set and when user
executes a crawl the controllers that are needed to perform the crawl and other activities exist in
controllers folder in Yioop. Most of the requests made to Yioop comes to the entry point
index.php and the query string after the “?” in the url informs the controller that is responsible
for the specific request. The query request made contains a variable c= which tell Yioop which
controller should be used to process the request. The arg= variable in the query request string tell
which data should be retrieved to get the appropriate results and the models needed for the data

and finally the views with which the results should be given back to users.[4]

The other folders like css, data, lib, locale, models, tests and views the basic styles used
for Yioop, WORK_DIRECTORY information, scripts contain JavaScript files used by Yioop
etc.

Schedules folder under work directory contains the folders with the time stamp in the
folder name. The three main sub folders that schedule folder contain are index data folder, robot
data folder and schedule data folder. All these folders contain the crawl data gained by the
fetcher when it runs a crawl. This data will be processes by queue_server at later point during
crawl. The information that comes from robot.txt files is stored in robot data folder. The

schedules data folder contains the sites that are found during the web crawl and theses sites will

20

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

be later crawled by the crawler. As the sites are crawled these are added to the mini inverted

index first and then later to the global index. The indexes are stored in Index data folder. [4]

Once the crawl is completed with the folders in the schedule folder the cache folder
contains the entire cache of the web pages that were crawled. The cache folder contains
Quebundle folder, Archive folder and Index data folder. The index data folder contains
summaries and dictionaries folder inside. To serve search results Yioop relies on all of these
folders. The queue_server.php is responsible for the Quebundle and Index data folders.
Quebundleis responsible for the priority information for the queue to be processed during crawls.

The cache of web pages crawled by the crawler are stored in Archivebundle folder. [4]

6.4 Making a Toolbar Extension Communicate with Yioop

After capturing the user clicked links the next step would be to send the captured data to
Yioop server. This brings the need for communicating with Yioop into picture. At this point, data

is sent to Yioop instantly whenever user data is captured without storing it at user end.

As part of making communication with Yioop, a POST request is made to Yioop from
toolbar button. All the links sent to Yioop are saved in a text file and a link is added to access
this text file. To achieve this JavaScript was used at user end and PHP was used for POST at the
server end which in this case was Yioop. As this was the development phase of the project, the
Yioop code was located at the root folder at local host and the server side programming was
done in the local host for deployment. The JavaScript function “Write” was coded to achieve this
task. The function has got two arguments passed to it. One is URL and the other is content. This

function was invoked at the end of getword function.

The function “Write” has “createXHR” function called in it. The “createXHR” was to
establish an http request, if the “readyState ==4" is yes then a connection will be opened to the
given URL and makes a POST request. Then it will POST the content to the URL, which
incase here it is http://localhost/yioop/ajax.php.

At server side the ajax.php is responsible for the POST request and to capture the

content sent from the toolbar button. Once the content is received, the PHP program creates a

21

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

text file with the given name in the program and writes the content into the file. Once writing is
done it closes the text file. Writing to the text was done in a+ mode. It is an append mode used
for both writing and reading the content to the file. The a+ mode was used keeping the future

project development in view.

Accessing this file is done from Yioop index page instead of accessing it with typing
the location of the file in the browser. A link is created with name “Activity” in the index page of

the Yioop code. When clicked on the link it navigates to the page where links were saved.

The code snippet is shown in Figure 13:
JavaScript code where “Write” function is invoked in “getword” function

function getword(svent)q

var content=new Array();

content[0]= window.content . location. href;
content [1]=event target href;

alert{"lick clicked"+ content[0]);
zlert({"target link"+ content[1] }:

/% yar content=vindow content . location href;
alert{content);
var contentl= event . target href:
alert{contentl) =

var intervalll = window.setInterval(linkclick, 1000);

Write{"http://localhost/yioop/ajax.php'. "file=ajax-post-text . tatécontent=" + content)

Figure 13: Communicate with Yioop

JavaScript code that shows how the “createXHR ()" and “Write ()” functions were implemented

is given in the code shown in Figure 14.

22

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

function createXHR()

var request = false;
try o
request = nev ActiveXObject{ 'Hs=zml2 EMLHTTE'):

catch (err2) {
try f
request = new ActiveXObject('Hicrosoft EMLHTTP'):

catch (err3) {
try 4
request = new XHLHttpRequest():

catch (errl)

request = fal=es;
H
1
return reguest;
function Writefurl. content) s url i= the script and data i= a string of paraneters

war ®hr = createXHR():

xhr onreadystatechange=function()

if (xhr readyState == 4)
{
nothing for now
alert("sent " + url + " " + content):;
+
sﬁr.upen("POST”, url, trues)
LT . =etRequestHeader | "Content—-Type" . "application/z—www—form—urlencoded") :

zhr =zend(content):
ERi=sd after =end content" + content):

Figure 14: Write and Ajax calls

Ajax.php code that shows how the POST was handled and how the content was written into the

text file is shown in Figure 15.

< ?php
S$posted = &5 POST -

LS s

S$fname=5posted["file"];

if {(strcmp(Sfnane, "ajax-post—text tzt") I= 0}
die{"¥ou are not authorized to change thi=z file. "):

fwalue = Sposted['content"]:

tnfile = fopeni$fnams. "a+"):
if{snfile |= fal=e)

i
furite{snfile, fvalus)
fDIDSEESnfilE);

H

T

Figure 15: Write at Yioop with POST

7. Capture and Store User Search History

23

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

User data that is captured by toolbar needs to be stored at user end. After storing a certain
amount of data based in the conditional check the data will be sent to Yioop. We have chosen

SQL.ite database to store the user end captured data.

7.1 SQlite in brief

SQLite is a light weight database and stores the data in the Firefox profiles folder. As the
extension that is being built is a Firefox extension using SQL.ite database the storage of the user

captured data in a SQL.ite database table would be appropriate.

Most of the commands that work for SQL work in SQL.ite as well. The knowledge of
how to access the SQL.ite database from command line is required. To access SQL.ite from
command line we should go the default directory in the profiles folder. Profiles folder exists in
Mozilla, Firefox. After going to the defaults directory we give the command > sqglite3
example_databse.sqlite, here example_database is the name given to the database we want to
store the data tables. In this database we can create, insert and retrieve tables. The database that

we use to store the user end data is user_searchcapture.sqlite and the table is user_capture.

7.2 Storage API

To be able to work with SQL.ite database through the toolbar we need an API. Storage is
an API for SQL.ite database. This can be used with only trusted components like Firefox

extensions and components. [5]

7.2.1 Steps in Storage API:

Opening a connection with user_seaarchcapture.sqlite is shown in Figure 16

wvar file = Components.classes["@mozilla.org-filesdirectory _service;1"]
.getService(Comnponent=s. interfaces nsIFroperties)
cget{"ProfD". Components.interfaces n=IFile):
file. append("us=er searchcapture.=glite"):

var storageService = Components. classes["@mozilla. orgrsstoragesservice;l"]
.getServicelConponents . interfaces . nozIStorageService)
war mDBConn = storagseService. openDatabass(file): ~ Will also create the file if it does not exist

Figure 16: Code for Opening an API connection

24

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

The code snippet above creates user_searchcapture.sqlite database in profile directory.

Creating Statements and Binding Parameters

After database is created the need arises for the creation of the table to store the data. The
sequence of statements for creation and insertion of data into the table are done with CREATE;

INSERT commands. The commands are shown in Figure 17

nDBConn . executeSinpleSOL("CREATE TAELE IF NOT EXISTS search capture (word TEET. searchurl TEXT. searchurll TEXT.
timestamp TEXT. language TEXT)"):

var =tmt = mDBConn. createStatement("INSERT INTO search_capture (word.sesarchurl.searchurll. timestanp. language)
VALUES{ ‘wordl. rurll. jurl2, :timel. :langl)"):

war params = stmt. newBindingParansirray():

=tnt paramns. wordl = event.target. innerHTHL:

=tnt . paramnsz.urll window.content . location href:
=tnt . paramns. url? event . target href

stmt . paramns. timel new Date():

stmt . params. langl "en-US";

stnt executedsync():

woid commitTransaction():

Figure 17: create and insert in Storage SPI

In the above code block above search_capture table is created with create statement.
Insert statement inserts the values into the table. In storage API the values to be stored in the
table need to bind with parameters. stmt.BibindingParamsArray(); is used to bind the parameters
with the values. This is to increase the efficiency of the working of statements such as create and

insert.

At this point we included all the data values that we would like to capture when user
clicks on a link. We captured the word that user clicked on with “event.target.innerHTML” , the
link that user clicked and the target links are captured with window.content.loacation.href” and
“event.target.href” respectively. Apart from these we are capturing the time stamp that user
clicked on the link with “newDate()” function and the language of the web page that user clicked
on is captured with content.document.getElementsByTagName("html™)[0].getAttribute("lang™).
All this data is captured at this point with a view point of Yioop search engine’s indexing and
ranking strategies. After this “stmt.executeAync();” executes all the statements and this results

in creating table, inserting values into table.

25

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

8. Send User Search Capture To Yioop!

After capturing the required data with user click, next step is to send the data stored in
SQL.ite database table to Yioop periodically. Initially at the development stage the data amount
we would like to set the condition and send to Yioop is 10 rows in the search_capture table. This
means Once 10 rows are inserted into the table the data will be sent to Yioop. Once the
development is completed this will be set to 50 rows. The component that sends the data from

toolbar to Yioop is sendCapture function.

The code block is shown in Figure 18

var file = Components.classes["@mozilla. orgsfilesdirectory_service;l"]
.getService{Component=s. interfaces nslProperties)
.get{"ProfD", Components. interfaces. nsIFile);

file.append("user searchcapture.=sgqlite"):

var storageService = Components.classes["@mozilla. orgs/storagesservice:;l"]
.getService{Conponents . interface=s . mozIStorageService)
var mDBConn = storageService.openDatabase{file); ~~ Will also create the file if it does not exist

var colnew = new Array():
var statement = mDBConn. createStatement("SELECT #* FROM search capture"):

statenent executedsynci{
handleResult: function{aResultSet) {
var i = 0;
let row = aResultSet . getHextRow():
for (var row = aResultSet getHextRow(). row: row = aResultSet. getHextRow()){
colnew[1i] = row.getResultByName('word") + "|:|" +row.getResultByName('"searchurl") + x
row. getResul tByHame("searchurll" i+ "|:|" + row.getResultByHame('timestamp") + "|:|" +
row.getResultByHamne(" language") + "“n":
++1;
+
if{colnew. length »= 10}
{

uploadidsyo(vioopurl, colnew):

}

héndleEerr: function{aError) {
alert{"Error: " + aError. message):
i

handleCompletion: function{aReason) {
if (aReason != Components.interfaces mozlStorageStatementCallback FEASON _FINISHED)
alert{"Query canceled or aborted!"}:

Tk

void commitTransactiond):

Figure 18: Component to read data from table and send to Yioop.

8.1 Component that communicates to Yioop! Periodically

To retrieve the rows from table the initial steps of opening the connection with SQL.ite
database has to be done. Then the statement (“SELECT * FROM search_capture”) would be

executed. As this statement needs to be executed asynchronous and should return the result set,

26

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

we need to loop through the rows and store the rows in an array. The colnew array stores the
rows retrieved from table while looping through the result set. After retrieving the rows from
table the condition clonew.length is checked, if the condition returns true check the function
“uploadAsync();” is called. This function is responsible to send the user capture data to Yioop.
Data is sent to Yioop with a POST request. When sending data to Yioop we have to make a

controller that receives the data send by toolbar. This controller is toolbar_controller.php.

The flow of functional events at Yioop starts with idex.php and this calls the responsible
controllers base on the request made. So this point should be taken into consideration while

sending data to Yioop.

The code block for uploadAsync() is shown in Figure 19

function uploadisyci{url, record){ »~ url is the =cript and data i= a string of parameters
param= = "c=toolbar&a=toolbarTrafficéb=" + record;

var xhr = createXHE():
xhr onreadvstatechange=functioni){
if (xhr readvState == 4)

alert{=zhr respon=eText);
deleteRows()

b

xhr open{"POST", url, true);
zhr . setRequestHeader("Content-Type". "application z-wwy—form-urlencoded”)
zhr =end(paramns) ;

Figure 19: UploadAsync function

The POST request made by the uploadAsync() is an Ajax call. The line of code — params
= "c=toolbar&a=toolbarTraffic&b="+ record; makes a request POST to Yioop’s index.php
which recognizes “c=toolbar” as a legitimate user request as toolbar is added in the available

controllers.

This takes the flow of function to toolbar_controller.php which again checks for
“a=toolbarTraffic” to process the request received. Then the data value at “b=" + record” will be
written into a text file by toolbar_controller. Once the file is closed after writing record, a
response text is sent back to the uploadAsync function. After the response text is received the

deleteRows() function will be called which is responsible to delete all the rows from table

27

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

search_capture. And again the process of capturing data, storing in the database, retrieving from
table, checking the periodic condition, upload to Yioop and deleting rows from table are all done

sequentially after a successful upload.

The code block for deleteRows() is shown in Figure 20

function deleteRows()

var file = Components.clazses["®nozilla. org-sfilesdirectory service:l"]
.getService(Components . interfaces nslProperties)
.get{"ProfD", Components.interfaces.nslFile);
file. append("user_searchcapture.=qlite");

var storageService = Comnponents.classes["@mozilla. orgsstoragesservice;l”]
.getService(Conponents. interfaces nozlStorageService) ;
var nDBConn = storageService.openDatabase(file); /7 Will also create the file if it does not exist

var statement = mDEConn. createStatement("DELETE FROM search_capture");
ztatement executedsync()

Figure 20: Code block for deleteRows function

8.2 Yioop’s Toolbar controller

The component at Yioop end that is responsible for receiving the POST request made by
toolbar Firefox extension is toolbar_controller.php. The main functionality of this component is
to process the POST request and writes the data into text files with the given directory structure

and the filename.

The directory that we would like to place the toolbar data is
CRAWL_DIR."/schedules/"."ToolbarData"

The ip address of the computer from which toolbar data is noted with
$_SERVER['REMOTE_ADDRY].

Under Toolbardata folder a day folder with the day it received the data as name of the folder is
created. This is done as $day = floor($time/86400). Once this is done under the day folder a text

file with the name

$data_hash = crawlHash($data_string);

28

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

$fname= $dir."/At".$time."From".$address."WithHash$data_hash.txt";

After this step we open the file in a+ mode, write the toolbar data in file and close. Once we
close the file a response text “OK TEST” will be sent back to toolbar extension.

Writing the flies with filename in this specific format is to make the synchronization with the
other folders under schedules folder. The folders that exist under schedules folder will be

crawled by the Yioop crawl when we run a crawl from Yioop.

The code block for toolbarTraffic function in toolbar_controller.php is shown in Figure 21

function toolbarTrafficiéSdata_string)

1
Stoolbar data = $_POST["B"]:;
Stime = time():

Sdir = CRAWL DIE."r=s=chedule=s-"."ToolbarData":

Saddre==s
Saddre==s

=tr_replace(" . ", "-", & _SERVER['REHMOTE ADDR']);
=tr replace(":", "_", Saddre=s):

Sday = floor(Stin=e-86400);

if{lfile exist=s(%dir)) {
mkdir{sdir);
chmnod{sdixr, 0777):

fdir .= "sodav”:
if{lfile_exi=st=s(%dir)) {
mkdir{sdir);
chmnod{sdir, 0777):
fdata_hash = crawlHashi(S$data_string):
Sfhname= sdir. " At" Stime "From" . Saddres=s. "WithHash$data_hash. tzt":
$fth = fopen(Sfnam=. "a+"):
fwrite($fh, Stoolbar_data):

focloze(sfh)
echo "OK TEST":

Figure 21: toolbar_controller.php

9. Yioop Component Ranking and Refining

Once data is in the text files with the required name format in the schedules directory and
under Toolbar data folder this means that toolbar data is ready to be crawled by the fetcher.php
and processed by queue_server.php. When a crawl is performed the data exists in the schedules
directory and its subfolders including the toolbar data folder get crawled. This is achieved by

29

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

adding the necessary functions to the queue_server.php. These functions are to do the crawl of
the data exists in the schedule folder under WORK_DIRECTORY and in scheduled folder find
the “Toolbardata “ folder and the text file exist in the toolbar data folder. The function that is

responsible for doing this task in the queue_server.php is shown in the Figure 22

SR
* Set=z up the directory to look for a file of unprocessed
* index archive data from toolbar then calls the function
* processDataFile to process the oldest file found
*.
function processToolbarDataf)
echo " In the function processToolbarData":
crawllog("Checking for toolbar data files to process. .. "):

$index dir = CRAWL DIR. "~schedules~".
"ToolbarData"”;
$this—>processDataFile($index_dir, "processToolbarDatalnvertedInde=x"});
crawllog("done."):
echo " End of the function processToolbarData":

e =3
* Builds the MinilnvertedIndex for the files recived from
* gxtension toolbar then adds it to the INVERTED IHDEX.
*.

Figure 22: processToolbardata function

In the function processToolbarData() the $index_dir tells the queue server too look for
the assigned path and this path is given as an argument to the function
processDataFile($index_dir, “processToolbardatalnvertedindex™). The function processDataFile
is a generic function to find the sub folders under schedules directory and call the appropriate
call back method. This function returns the $file which to the processToolbardatalnvertedindex
function which process the data in the file and builds a Toolbarinvertedindex. The code for

function processDataFile is shown in Figure 23

30

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

*

Generic function used to process Data, Index, and Robot info schedules
Find= the first file in the the direcotry of schedules of the giwven
typ=, and calls the appropriate callback method for that type.

@param =tring $base dir directoryv for of =chedules
param =tring Scallbacl method what method should be called to handle
a =chedule

ERE B B 3 3 3 1

*

*x7
function processDataFile($basze dir, Scallback_method)

¢dirs = globisbasze dir. '~-%', GLOB CHLYDIE):

forsach($dirs as Sdir)
$files = glob(%dir. '~ #* t=t'):;
if{izset({fold dir)) {
crawllog{"Deleting %old_dir~n"):
Sthi=—>db—»unlinkRecursive{Sold _dir);
<% The idea iz that onlvy go through outer loop more than once
if sarlier data directorvy emnpty.
Hote: older directories should only have data dirs or
deleting like this might cau=se problens!
* .

foreach({%$files a= $file) {
fpath part=s = pathinfol$file);
tbase name = $path parts['basenams'];
Slen_name = =trleni=elf: data_base namns):
5file root_name = substr{sbasze name. 0. S$len nams);

if{strcnp($file root_name, self::dats_base name) == 0) {
Sthi=—r%callback_method($file):
return:

H

t
$o0ld dir = $sdir:

Figure 23: processDataFile function

Once the file to be crawled is returned from the processDataFile function to the
processToolbardatalnvertedindex() function first reading the data from the file which contains
the user captured data from the toolbar exists. While reading the file with file_get contents, the
first step is to read the file by the row delimiter which is a “,” in this case, with the explode
function. This returns the lines of the file into the $row variable which we take it as rows for
better reading purpose. The next step s to read these rows data with the other delimiter and in this
case "[:|" with the explode function again. This gives the entire user captured data into array
which in this case is $tok. The values from the $tok array are assigned to the
$site[self::LINKS][$tok[2]]= $tok[0] which assigns the target link captured by user clicks, then
$site[self:: TIMESTAMP]= $tok[3] is assigned which is the timestamp of the user click the last
value the language is assigned to the $site[self::ENCODING]= $tok[4] variable. The functional

code to achieve this task if the function is shown in the Figure 24

31

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

frowdelimiter =
fdelimiter = "|:|";
ffi1lecontent = file get_content=(sfile);
Srowvs = exEplodelfrowdeliniter, $filecontent):
foreach (Srows as Snewrow) {
Stok = explode(fdeliniter. Snevrow):
Szite[=elf: LINES][$tak[2]]= $tak[0]:

S=zite[=elf: TIMESTAMP]= $tok[3]:
Szite[=self: EHCODIHG]= Stal[4]:

Figure 24: reading the file

Once the reading process from the file is done and the values captured are assigned to the
$site variable set the next step is to build a toolbar_shard from these values. This process is to
read the information about the urls in the self::LINKS. After reading the information the values
are added to $seen_sites array as summaries. Reading the values of $sites and adding it to the

$summaries then storing it in the $seen_sites array is shown in the Figure 25

Stoolbar_shard = new IndexShard("toolbar shard"):;
Sseen_sites = array{):
foreach ($site[self: :LINKS] as $url => $link text) f{
if({acrlen(Surl) > 0) {
Ssummary = arrayl():

Shad_links = truae;

Slink_text
$link id =
"arl|".$url.”|text|$link text|ref|".§site[self::URL]:

strip tags($link text):

£link keys = crawlHash ($url, true)
craleash(Slink_id, true)

crawlHash ("info:".%url, "trus"):;

Ssaﬂmary[self::ﬂASH_URL] = Qlink_keys;
fsummary[self::URL] = #£link id:
Ssummary[self: :TITLE] = %Surl;

ff stripping html to be on the safe =side
Ssummary[self: :DESCRIPTION] = £link text;
Zsummary[self: :TIMESTAMP] = Ssite[self::TIMESTAMP]:
Ssummary [self: :ENCODING] = S=zite[self::ENCODING]:
fsummary[self::HASH] = $link id:
Ssummary[self: :TYPE] = "link";
Ssaﬂmary[self::ﬂTTP_CODE] = Prink®;
Zgeen sites[] = Ssummary;

32

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

Figure 25: adding to summary

After the summary is in the seen_sites array then the document words are extracted from
the links and are added to the function addDocumentWords(). This step is shown with the code in

the Figure 26

$link_ word_counts =
FhraszePar=er: extractPhraszesAndCount{$link_text.
MiAX PHRASE TEHN, Slang);

Stoolbar_ shard-raddDocumnentWords($link_ kevs,

==lf: :NEEDS_OFFSET_FLAG,
$link_word count=, arrav()):

Figure 26: adding documentwords

With this the data from the Toolbardata files are added to the summaries folder in the
Index data folder in the cache folder of the work directory. The next is to create generations
where the words from the links are added to the dictionaries folder in Index data folder under
cache folder under work directory. To achieve this step the function initGenerationToAdd is
called and the toolbar_shard is given an argument to this function. Once adding the words to
generation then the function changeDocumentOffsets is called and summary_offsets is given as
an argument to this function and the result is stored in toolbar_shard. To achieve this process the

how the functions are called and how summary_offsets are read is shown in Figure 27

S$vizited urls count = 0
fgeneration =
$this-rindex archive-rinitGenerationToidd($toolbar shard);

S$sumnary_offsets = array();
if (iz=et({$=zeen =sites)) {
$thiz—rindex archive-raddPages{
$generation, =elf::SUMHARY COFFSET, $=een_sites,
$visited_urls count);
foreachi$seen_sites as $=ite) {
$hash = S$site[self::HASH TURL];
$sumnary_of fsets[$hash] =
$site[self: SUMHARY OFFSET];
b

$toolbar shard-rchangeDocument(f fzets($sumnary_offsets)

Figure 27: adding to summary offsets

33

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

After the reading step and adding to the toolbar shard next step is to add the
toolbar_shard to the index_archive and then add the current shard dictionary once save and add
is done then the merge All tires tales place which add the words to the merges to the dictionary.

For achieving these steps a set of functions need to be called this set is

$toolbar_shard->changeDocumentOffsets($summary_offsets);
$this->index_archive->addIndexData($toolbar_shard);
$this->index_dirty = true;

unlink ($file);

9.1 User gets refined results for their search queries

When a crawl is done with all the steps given in the previous section the toolbar data is
ready for the user to return the results. The results are retrieved from the Index data folder under
the cache folder which located in the work directory set by the user. With the functions added to
the queue_server.php data will be stored in the summaries and dictionaries folders in the Index
data folder in the cache. After finishing the crawl and when that particular crawl is set as the
index then results generated for the user search queries are returned from that particular Index
data folder. Thus user can perform various crawls and can get the results from that particular

crawl.

10. Testing the Toolbar

The basic testing necessary to test the main functionality of our project is to check if the
Yioop is returning the results based on the toolbar data. Return of results based on the toolbar
data is dependent on synchronization of many factors such as data capture by tool bar, data
transfer from tool bar to Yioop, data crawl by Yioop crawler, and data indexing.Process starts
when the Smart search toolbar captures the data properly. Then the data should be received by
the Yioop and Yioop crawler should be able to crawl the toolbar data and index the data to return
the results. To make the testing process more effective we included only one url was included in
the seed sites list to be crawled at the manage crawl user interface at Yioop server and that site is
www.ucanbuyart.com this url should be returned only for the search query “art” and the rest of

34

http://www.ucanbuyart.com/�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

the results should be from the toolbar data from Smart search toolbar. All the tests are run at
local host during the development stage which is http://localhost/yioop/.

Test 1

This test is conducted to check the basic functionality of the project requirement which is
to verify that toolbar data captured based on user clicks will be returned in the results. Results
can be returned only after the Yioop crawl of the toolbar data and indexing of the pages. In order
to do the test execution, the data when user browsed the ajpm-gold web site was captured. The
result was tested for the test query “Silver bullion”. The test results show that the requirements

were met. In the Figure 28 we can observe the results returned by the localhost Yioop.

:) PHP Search Engine - Yioop! - Mozilla Firefox
File Edit View History Bookmarks Tools Help

- {2y | W http//localhost/yioop/?YIOOP_TOKEN=GByz2620685[1305061391 &its=13049061528:q = Silver+ bullion

W SamartSearch ‘SmartSearch -

% PHP Search Engine - Yioop! ek

Query Results: (Calculated in 0.215849 seconds. Showing results 0 -1 of 1)

http://www.ajpm.com/silver-bullion.html
SILVER BULLION
urljhttp/iwww ajpm.com/silver-bullion htmiftext|SILVER BULLIOM|reff Rank: 8.40 Rel: 0.00 Score 4 69

[o]

Figure 28: Testl returning results

Test 2

Now we can test one more step further and see how the toolbar data helps to get better

results. For this test the scenario we choose to test if the crawl performed with toolbar data can

35

http://localhost/yioop/�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

return the results for those search queries where we are not yielding any search results at
www.yioop.com. For this first we entered the search query “Padmini Paladugu” at

www.yioop.com and it returned O results then we entered the same search query “Padmini

Paladugu” at http://localhost/yioop/ in this case we know the user clicked on the link at

http://www.cs.sjsu.edu/faculty/pollett/masters/ and the link exists in the toolbar data. We can see

the difference in the results in the given Figure 29 and Figure 30 below.

When the search query “Padmini Paladugu” entered at www.yioop.com.

) PHP Search Engine - Yioop! - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ 2% C ﬁ W httpfwww.yioop.com/TYIOOP_TOKEN=6XKNqKJoBfw|1304883093 &its=08q=Padmini+Paladugu
% SamartSearch

W PHP Search Engine - Yioop! ¥ | % PHP Search Engine - Yioop! ®

Query Results: (Calculated in 0.005293 seconds. Showing results 0 -0 of 0)

Figure 29: Tests at Yioop

When the search query “Padmini Paladugu” entered at http://localhost/yioop/

36

http://www.yioop.com/�
http://www.yioop.com/�
http://localhost/yioop/�
http://www.cs.sjsu.edu/faculty/pollett/masters/�
http://www.yioop.com/�
http://localhost/yioop/�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

&) PHP Search Engine - Yioop! - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ > C 2t | W hitp://localhost/yioop/TYIOOP_TOKEM=n07qBh_cFxY[1304883394 &its=130436498381q=Padmini+ Paladugu iRl -'l
% SamartSearch
% PHP Search Engine - Yicop! X | W% PHP Search Engine - Yioop! X -_ =
P e e e e e e e e e |
' Padmini Paladugu :

Query Results: (Calculated in 0.018876 seconds. Showing results 0 -1 of 1)

hitp://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring03/Padmini/index.shiml?Bio.shiml#top
Padmini Paladugu-

urlhttp-/iwww cs sjsu eduffaculty/pollett/masters/Semesters/Spring03/Padmini

findex.shtml?Bio.shimitopltext|Padmini Paladugu:jrefl Rank: 9.40 Rel: 0.00 Score 4.69

[o]

Figure 30: Test at localhost Yioop

In this test also we can observe that the result is given the Rank 9.40.

Test 3

This test is to compare the search results given for the same search query at

www.vioop.com and the tool bar installed http://localhost/yioop/. The tool bar data contains the user

captured data from the url http://www.cs.sjsu.edu/faculty/pollett/masters/.

When the search query “Vijaya Pamidi” query is given at http://localhost/yioop/

37

http://www.yioop.com/�
http://localhost/yioop/�
http://www.cs.sjsu.edu/faculty/pollett/masters/�
http://localhost/yioop/�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

¥%) PHP Search Engine - Yioop! - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ =N Ay W httpy/localhostyioop/VIOOP_TOKEN=-2vRNYMyCw{l 304887764 &its=13038573508q= Vijaya+ Pamidi e
W SamartSearch|

| % PHP Search Engine - Yioop!

Query Results: (Calculated in 0.017338 seconds. Showing results 0 -1 of 1)

hitp://www.cs. sjsu.edu/faculty/pollett/masters/Semesters/Fall10/vijaya/index.shtml|?Bio.shtml#top
Vijaya Pamidi:

url|http:iiwww cs sjsu edu/faculty/pollettymasters/iSemesters/Fall10/vijaya/index shimi?Bio shtmHtopltext|Vijaya

Pamidi:ref] Rank: 9.40 Rel: 0.00 Score 4.69

[0]

Figure 31: Test at localhost

When the same query is given at www.yioop.com

%) PHP Search Engine - Yioop! - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ e c Q W http:/fwww.yioop.com/TYIOOP_TOKEN=zI0Mte41 D2E|1304883086 &its=08tq=Vijaya+Pamidi
W SamartSearch

W PHP Search Engine - Yioop! * | % PHP Search Engine - Yioop! X ok

Query Results: (Calculated in 0.012968 seconds. Showing results 0 -1 of 1)

http://www.cs.sijsu.edu/faculty/pollett/masters/Semesters/Fall10/vijaya/index.shtml
Vijaya Pamidi:

url|http-/iwww cs sjsu eduffaculty/pallettimasters/Semesters/Fall10fvijayafindex shimlitext| Vijaya

Pamidi:|refihttp:/fwww cs.sjsueduffaculty/pollettimasters/ Rank: 0.14 Rel: -0.00 Score 0.06

[o]

Figure 32: Test at Yioop

38

http://www.yioop.com/�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

From these two tests the returned results url is same but we can observe the difference in

the Rank is 0.14 for the www.yioop.com and the Rank is 9.40 for the http://localhost/yioop/. This

variation in the ranks exists as the Yioop results are ranked by the links of the web pages that are
crawled with open web and whereas the rank for the results from localhost Yioop is based on the

particular data that gives the page a high rank.

Test 4

In test4 we would like to test the relevance of the results returned for the same search
query. For this we selected the search query “Silver”. We gave the same query in the Yioop and
the local host. In this case as the user was asked to browse the ajpm-gold web site the more
relevant result would be the link pointing to that web site. When the test was conducted the

results given in both the cases is shown in Figure 33 and Figure 34 respectively.

“) PHP Search Engine - Yioop! - Mozilla Firefax

File Edit View History Bookmarks Tools Help
@ ¥ c 2% | W hitp:/fwwwyioop.com/7YIOOP_TOKEN=hppd_-miTbA|1305062597 &its=08q=Silver

W SamartSearch % | SmartSearch v|

% PHP Search Engine - Yioop!

Query Results: (Calculated in 1.036002 seconds. Showing results 0 - 10 of 124)

Det 045 Online: General Information
AFROTC Detachment 045 Warriors Silver Wings SEARCH LINKS CASA

http:/iwww_sjsu.edu/depts/AFROTC/sw.html Rank: 4 39 Rel: 9.20 Score 69.3 Cached. Similar. Inlinks.
IP-130653 101

Sponsors

Our Sponsors Home | About | News | Calendar | Photo Albums | Links | Executive Board | Minutes | Sponsors |
Contact | Downloads Home About BASE/NSBE News Calendar Photo Albums Links Executive Board M
http://www_engr sjisu.edu/base/sponsors/sponsors. php Rank: 4. 50 Rel: 8.95 Score 66.9 Cached. Similar. Inlinks.
IP:130.65.150.51.

b |

Figure 33: Test4 testing the relevance of results

39

http://www.yioop.com/�
http://localhost/yioop/�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

&) PHP Search Engine - Yicop! - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ hd c #2y | W http://localhost/yioop/YIOOP_TOKEN= uzl hDwQelrM|1305061402 &its=1304906152 8= Silver

% PHF Search Engine - Yioop!

Query Results: (Calculated in 0.014323 seconds. Showing results 0 -1 of 1)

http://www.ajpm.com/silver-bullion.html
SILVER BULLION
urllnttp:fiwww_ajpm.comisilver-bullion htmijtext|SILVER BULLION|ref] Rank: 9.40 Rel: 0.00 Score 4 69

0

Figure 34: Test4 testing the relevance of results
Observations

The first observation from test 1 is that the toolbar data is getting crawled by the Yioop
server and returning the results. From test 2 the second observation is toolbar data is obviously
helping to return the results which Yioop is giving 0 results for a search query. With test 3 we
can observe that the ranking given by the Yioop with toolbar data is high. The Yioop search
engine’s ranking is based on the link of the web pages that Yioop crawled with the open web.
The toolbar data sent to Yioop contains the user clicked links, the url user clicked, target url,
timestamp and language. These details should help a particular url get a high rank compared to
the rank the same url was getting with present Yioop search. This can be observed from test 3 as
the result returned for the search query given has the rank 0.14 and for the same search query
with the toolbar data test returned the same url in the search result but got a high rank of 9.40.
The score of the Yioop is 0.06 for the url returned and where as the score for the same results
with toolbar data is 4.96.

40

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

These tests conducted show that user having the Smart search toolbar Firefox extension
provide a vast improvement to search for getting user centric search results and it is an added

advantage for the Yioop users.

11. Conclusion

The main goal of the Smart search Firefox add on is to return the user centric search
results from which user gets better search results compared to the current once from the

www.yioop.com. The user end functionalities of the toolbar extension, capture of the user clicks

and the other related information when user clicks on a particular link on a web page are all
achieved using the Smart search add on. Synchronization of data transfer from toolbar to Yioop
to the target folder and the toolbar data crawl by Yioop is done efficiently. After the crawl by the
queue server is completed then the results are returned for a particular search query entered by
the user. From the tests performed it was shown that having the Smart search toolbar extension
improvised the search experience for the users of Yioop search engine by getting better and more

user centric search results.

When the user is installing the Smart search engine one should be aware of the
advantages of this smart search toolbar for Yioop search engine and how this is advantageous to
the user. More over the user should also be made aware that the most of the web browsing and

links clicked by the user would be captured by the toolbar.

References

[1] http://en.wikipedia.org/wiki/XUL
[2] http://en.wikipedia.org/wiki/PHP
[3] http://en.wikiversity.org/wiki/Google Matrix

[4] http://www.seekquarry.com/

[5] https://developer.mozilla.org/en/Storage

[6] https://developer.mozilla.org/en/Building_an_Extension
[7] Google's Page Rank and Beyond: The Science of Search Engine Rankings by Amy N.
Langville and Carl D. Meyer- 2006.

41

http://www.yioop.com/�
http://en.wikipedia.org/wiki/XUL�
http://en.wikiversity.org/wiki/Google_Matrix�
http://www.seekquarry.com/�
https://developer.mozilla.org/en/Storage�

CS298 Report A Firefox Add-On to Compute a Web Traffic Ranking

[8] Building Social Web Applications: by Gavin Bell. O'Reilly Media. 2009.

[9] Programming Firefox: Building Rich Internet Applications with XUL: by Kenneth C. Feldt.
O'Reilly. 2007.

[10] Building JavaScript- Complete: by Steven Holzner. 1998

[11] http://developer.mozilla.org/en/docs/Building_an_Extension™:Official page of Mozilla.

Article References:

[1] Konstantin Avrachenkov and Nelly Litvak. The effect of new links on Google Page Rank.
Technical report, INRAIA,

July 2004

[2] Matthew Richardson and Pedro Domingos. The Intelligent Surfer: Probabilistic Combination
of Link and Content

Information in Page Rank. Advances in Neural Information Processing Systems, 14:1441-8,
2002,

[3] Taher H. Haveliwala (1999). Efficient computation of Page Rank. Technical report, Stanford
University, Stanford,CA.

42

	Smart Search: A Firefox Add-On to Compute a Web Traffic Ranking
	4.2 Algorithm Outline

