
Full-Text Indexing for Heritrix

A Writing Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the

Requirements for the

Degree Master of Computer Science

By

Darshan Karia

Spring 2012

© 2012

Darshan Karia

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Writing Project Committee Approves the Writing Project Titled

Full-Text Indexing for Heritrix

By

Darshan Karia

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__ ___________

Dr. Chris Pollett, Department of Computer Science Date

__ ___________

Dr. Mark Stamp, Department of Computer Science Date

__ ___________

Dr. Jeff Smith, Department of Computer Science Date

ACKNOWLEDGEMENTS

I want to thank Dr. Chris Pollett for his guidance and encouragement throughout my

project. I would like to thank my committee members Dr. Mark Stamp and Dr. Jeff Smith

for their valuable inputs on my project in terms of suggestion to improve my projects. I

want to thank my friends here and family members back in my home country for

providing me mental support to finish the project.

Page | 5

Abstract

It is useful to create personalized web crawls, and search through them later on to see the

archived content and compare it with current content to see the difference and evolution

of that portion of web. It is also useful for searching through the portion of web you are

interested in an offline mode without need of going online.

To accomplish that, in this project I focus towards indexing of the archive (ARC) files

generated by an open source web-crawler named Heritrix. I developed a Java module to

perform indexing on these archive files. I used large set of archive files crawled by

Heritrix and tested indexing performance of the module. I also benchmarked performance

for my indexer and compare these results with various other indexers.

The index alone is not of much use until we can use it to search through archives and get

search results. To accomplish that, I developed a JSP module using an interface for

reading archive files to provide search results. As a whole, when combined with Heritrix,

this project can be used to perform personalized crawls, store archive of the crawl, index

the archives, and search through those archives.

Page | 6

Table of Contents

Abstract ... 5

Table of Contents .. 6

List of Tables .. 7

List of Figures ... 8

1. Introduction ... 9

2. Heritrix .. 10

3. Design and Implementation .. 12

3.1 The Indexing Module ..12

3.1.1 Iterating through Archive files ...15

3.1.2 Parsing HTML Documents ..16

3.1.3 Stemmer ...17

3.1.4 Hashing ..18

3.1.5 Word Dictionary ..19

3.1.6 Inverted Index ..19

3.1.7 BM25F Score ...21

3.1.8 Index Folder Structure ...24

3.2 The Searching Module ..25

3.2.1 The Query Module ...26

3.2.2 The Load Cache Module ..29

3.2.3 The Settings Module ..31

4. Testing and Results ... 35

4.1 Results for Indexing Test ... 35

Page | 7

4.2 Results for Searching Test ... 36

Speed Test ..37

5. Technical Difficulties & Limitation .. 40

5.1 GZIPInputStream bug ...40

6. Conclusion .. 41

8. References ... 43

List of Tables

Table 1: HTMLHandler Methods ... 17

Table 2: Document Dictionary Structure ... 19

Table 3: Posting List Structure ... 20

Table 4: Explanation for terms in BM25F Weight function ... 22

Table 5: Explanation of terms in BM25F idf function ... 23

Table 6: Explanation of terms in BM25F Rank function ... 23

Table 7: Settings of MySearcher ... 32

Table 8: Speed Test Results .. 37

Page | 8

List of Figures

Figure 1: Activity Diagram for Indexing .. 13

Figure 2: Class Diagram for Indexing .. 14

Figure 3: Workflow for Indexing .. 15

Figure 4: HTMLHandler Methods .. 17

Figure 5: Directory Structure for organizing Indexing Jobs ... 24

Figure 6: User Case Diagram for Searching ... 25

Figure 7: The Query Module Internals ... 27

Figure 8: Search Results ... 29

Figure 9: Load Cache Module Working Diagram .. 31

Figure 10: Settings Module ... 32

Figure 11: Settings Module Working Diagram (Save file) ... 34

Figure 12: Search Results Test ... 37

Figure 13: Graph for Time Taken for Query .. 38

Figure 14: Graph of No. of Results for Different Queries .. 39

file:///C:/Users/Darshan/Documents/CS298%20Report%20v3.docx%23_Toc324537642
file:///C:/Users/Darshan/Documents/CS298%20Report%20v3.docx%23_Toc324537646
file:///C:/Users/Darshan/Documents/CS298%20Report%20v3.docx%23_Toc324537648
file:///C:/Users/Darshan/Documents/CS298%20Report%20v3.docx%23_Toc324537650

Page | 9

1. Introduction

The Internet Archive [1] project is an open source project intended to store archive crawls

of the web. It uses the Heritrix web-crawler [2] to crawl the web and stores web-pages

downloaded in archive files. It also tracks the dates when these archives were retrieved

from the web and uses that to provide date wise lookup on domains through the

“Wayback Machine” [3]. Their mission is to preserve a historical archive of World Wide

Web.

This project creates inverted index for archive crawls and facilitates user to search

through these archive crawls. It is based on a similar concept established by Wayback

Machine, but instead of the domain-based search provided by Wayback Machine, this

project provides keywords-based search to a user. A user can perform personalized web

crawls limited to domains of interest using Heritrix and store them in compressed archive

format. Now a user can use the Indexing Module of this project to index the crawled

documents. During indexing, this project calculates a BM25F [4] score for all query

words to get more relevant results for user queries while searching. Once indexing is

performed and the index is ready, a user can set the Searching Module to point to the

newly developed index along with original archive files and search through the crawled

documents and to obtain the desired information.

Page | 10

2. Heritrix

In this section, we briefly introduce Heritrix and provide information about where it can

be obtained from and how to perform a basic crawl.

Heritrix is an open-source web crawler project used by Internet Archive. It is designed to

respect robots.txt exclusion directives and META robots tags. That means, it will not

crawl web sites that exclude it using these directives. Heritrix uses an adaptive crawl

method to avoid too much traffic on web servers it is crawling.

We now turn to describing how to download and do a basic crawl with Heritrix. Heritrix

project is hosted on a sourceforge web-site. It can be downloaded as a binary from the

following url:

http://sourceforge.net/projects/archive-crawler/files/

To run Heritrix from the binaries, go to the heritrix-1.14.4/bin directory and type the

following command to launch web-interface for heritrix: heritrix --

admin=LOGIN:PASSWORD. Here, LOGIN is “admin” and PASSWORD is “letmein”.

If we are running Heritrix from Eclipse as a Java project, we need to set up three

parameters in the run configuration before running it. We set the main class of the project

to “org.archive.crawler.Heritrix”. We set the program arguments to provide username and

password “-a admin:letmein”. We set the VM Arguments “-Dheritrix.development -

Xmx512M”.

Page | 11

After finishing the configurations mentioned above we can launch the Heritrix web based

UI. To do this, launch any Web Browser and go to the http://127.0.0.1:8080/ web address

to access web based user interface for Heritrix [5].

Before we start crawling the web after our first run on Heritrix, we need to configure a

few default settings in the crawl profile. We need to provide values for http-headers like

“user-agent” by replacing “PROJECT_URL_HERE” with valid project url and replace

“from” with valid e-mail address of the person using the crawler. Also, we need to add

new user-agent to “user-agents” under the “robots-honoring-policy” section of the

profile. Finally, we need to provide seed sites for the crawl under section “Seeds”.

Page | 12

3. Design and Implementation

We are now ready to describe how we designed each component for Heritrix and what

was involved in implementing it. To begin Heritrix generates archive files. We will pass

these to our Indexing module to generate an inverted index. This inverted index will later

be used by our Searching module to search through the archives. Let’s briefly look at the

roles of the Indexing Module and The Searching module:

1) The Indexing Module

It needs to iterate through archive files and construct an inverted index for html

files inside the archive. It also needs to calculate BM25F scores for relevance of

search results based on query terms.

2) The Searching Module

It provides a Front-end user interface for users to easily search through the index

created in first indexing part and get desired results.

Both of above mentioned parts of project are explained in detail in following sections:

3.1 The Indexing Module

The steps to index include but are not limited to iterating through archive files, parsing of

html documents, stemming the words, hashing words and docs to create word_id and

doc_id, creating a word dictionary, creating a document dictionary, creating the inverted

index, and pre-calculating parts of the BM25F score for each word in the word

Page | 13

dictionary. Figure 1 shows the activity diagram for Indexing while Figure 3 shows the

same workflow in terms of Java classes and shows the execution flow. Figure 2

represents a class diagram of the Indexing Module. All sub-modules of the indexing

module are explained individually through Section 3.1.1 - 3.1.7.

Figure 1: Activity Diagram for Indexing

Page | 14

Figure 2: Class Diagram for Indexing

Page | 15

3.1.1 Iterating through Archive files

The Archive files created by Heritrix are in a GZip compressed format called ARC [6].

We need to read through GZip files to obtain serialized records from the archive file.

Heritrix 1.14.4 has an implementation of org.archive.io.arc.ARCReader class providing

us with methods to access records stored in Archive files in random fashion [7]. In order

to describe how we iterate through ARC files, it is necessary to describe API of Heritrix

[8] a little.

In Heritrix, ARCReaderFactory gives an instance of an ARCReader referring to the

provided archive file. One can use its iterator() method to iterate through all records in

ReadArc

Processor

Parser

BM25F

ARCReader
1

2

3

4

Start

 End

5
6

Figure 3: Workflow for Indexing

Page | 16

the file. Each record is of type org.archive.io.ArchiveRecord. An ArchiveRecord contains

header information like the offset of that record in the archive file, and the file type. If the

file type is HTML, this module dumps the file into a ByteOutputStream and parses the

current record using the parser; otherwise it moves to find next record. It does this for all

files within the designated arc directory.

3.1.2 Parsing HTML Documents

HTML documents can be parsed in two ways, using DOM Parser or SAX Parser. SAX

refers to “Simple API for XML” [9]. In SAX, XML documents are parsed in sequential

way and it uses event-based model for parsing. The SAX parser processes XML

documents state-dependently. A DOM parser needs to build tree structure in memory

based on whole document. A SAX parser is generally more memory efficient compared

to DOM parser. A SAX parser, being event-based, only needs to store data related to

current event and unclosed tags for reference of close tags. For this project, I have used

the SAX Parser implemented in Java [10].

A SAX Parser needs a handler to be defined indicating what to do on certain events like

the start of document, the start of element, the end of element, etc. Java has a

DefaultHandler class containing all these mentioned methods. I have extended the

handler and created my own HTMLHandler class and overridden the methods which I

required in order to store the terms in the documents and information about them. The

class skeleton looks like the following:

Page | 17

Figure 4: HTMLHandler Methods

In the preceding figure, the methods are functioning as the names suggest. The

explanation of each method is given in Table 1.

Table 1: HTMLHandler Methods

Method Use

startDocument Called initially when document parsing is started

startElement Called each time a start tag is found in document

characters Called whenever Character Data is encountered in the document

endElement Called each time an end tag is found in document

endDocument Called at the end when parser has finished scanning through
document

3.1.3 Stemmer

Stemming is a process of reducing the derived words to their root forms [11]. E.g.

‘stemmer’, ‘stemmed’, ‘stemming’, ‘stem’, all refers to same root ‘stem’. This helps in

consideration of words with same root in search result.

Page | 18

In this project, while parsing html web-pages, stemming is performed on the words

before they are passed to a hashing module and stored into the index. For stemming, the

open-source Porter Stemmer developed in a language named Snowball was used.

Along with stemming, stop-word removal is also performed before I store the words in

the word dictionary. Stop-words are the words which have little or no lexical meaning

and are used for grammar. A Posting list is a mapping from a word to all the documents

in which it appears. For more information on these concepts refer to Section 3.1.6.2. A

Posting list for stop-words can grow very large based on how common it is in the

documents. Very large posting lists can slow down index performance and removing

them does not affect search results too much. A stop-word remover will remove all such

words to improve indexing performance.

3.1.4 Hashing

MD5 hashing is performed on words and document urls to obtain strings of the same

length for word_id and doc_id. A class was developed which would perform MD5

hashing based on whether a flag is set or not. If the flag is set, it will perform the hashing

of the given string and generate an MD5 hash of that to be used as Id. The first 8

characters from the generated MD5 hash served as an id for the given word or document

for its identification. After getting the hashed value of the given string, they are stored

them in an object of Message class. One object of Message class is used for each

document and a list of message objects to process them together after all the HTML

documents from current archive file have been parsed.

Page | 19

3.1.5 Word Dictionary

A Word Dictionary uses the word and the first 8 characters of MD5 hashing of the word

as described in Section 3.1.4. It consists of a mapping from the word_id to the string

word. The word dictionary and inverted index, both are stored using an on-disk Binary

Tree data structure implemented in JDBM Project [12]. A Word Dictionary looks like

following:

word_id -> Word

3.1.6 Inverted Index

An index refers to a mapping of the document to a set of words appearing in the

document. In contrast to that, an inverted index refers to a mapping of the word to set of

documents where the word appears. The Inverted Index [13] consists of two basic

components, Document Dictionary and Posting List. They are explained in following

sections:

3.1.6.1 Document Dictionary

The Document Dictionary contains details for each document in the collection and has a

mapping from doc_id to the details of the document. Table 2 below gives the summary of

the fields, gives brief information about each of them, and significance of them in this

project:

Table 2: Document Dictionary Structure

Field Info Used for

Page | 20

url Actual Link to the document Providing live link in search
result

file Archive file where it is stored Locating archive file in order to
load cached result from archive
file

offset Offset at which it is stored in archive
file

Locating record referring to the
document within archive file

length Length of the record in archive file Determining length of the
document

title Title of the Document if present Title of the search result

desc Description found in meta tag of the
page to generate snippet of the result

Snippet of the search result

3.1.6.2 Posting List

A Posting List contains information about occurrence of words within collection of

documents. It has a mapping from the word to the collection of documents where it

appears. This is an important index structure referred to while processing a search query.

In addition to a posting list, detailed information about each document appearing in result

is retrieved from the Document Dictionary discussed in Section 3.1.6.1. Then for each

document corresponding to search term, details are retrieved from Document Dictionary.

Details regarding Posting List are explained in Table 3 below:

Table 3: Posting List Structure

Field Info

word_id MD5 hashed word to uniquely identify
word

Page | 21

doc_id MD5 hashed document link to uniquely
identify document

element Html element where the word occurred in
document

count Frequency of the word in the given
document

length Length of the html element where the word
appeared in the document

3.1.7 BM25F Score

BM25F [14] is an extension to original Okapi BM25 [4] ranking function. Okapi BM25

is used to rank plain text documents, while BM25F is used to rank more structured

documents like an XML or an HTML file. The BM25F scoring function gives a

relevance score for a document for the query terms based on the importance of the

element in which the terms appear.

In order to reduce the amount of calculations required to be done in the Searching

Module, the Relevance Scores for the collection of documents based on word-dictionary

is pre-calculated in Indexing Module itself. So, the Searching Module just needs to add

the scores of the document for all query terms and get total BM25F score.

The following sub-sections provide the steps for calculating BM25F scores for a

document based on given query terms:

Page | 22

3.1.7.1 Weight

The weight of the term ‘t’ in the document ‘d’ can be calculated as shown in the

following equation:

 () ∑

(()

)

The terms appearing in above equation are explained in Table 4,

Table 4: Explanation for terms in BM25F Weight function

Term Explanation

 Term frequency of term ‘t’ in document ‘d’

in field ‘c’

 Boost factor applied to field ‘c’

 Constant related to the field length

 Field length

 Average length for the field ‘c’

3.1.7.2 Inverse Document Frequency

Inverse Document Frequency weight of term ‘t’ can be derived using following function:

 ()
 ()

 ()

The terms appearing in above equation are explained in Table 5,

Page | 23

Table 5: Explanation of terms in BM25F idf function

Term Explanation

N Number of documents in the collection

df(t) Number of documents where term ‘t’
appears (Document Frequency)

3.1.7.3 Final Scoring

Finally, we use the Weight and Inverse Document Frequency calculated for each query

term from Section 3.1.7.1 and Section Error! Reference source not found. respectively

and use those values in the equation given below to calculate final BM25F score of the

document for given query:

 () ∑
 ()

 ()
 ()

The terms appearing in above equation are explained in Table 6,

Table 6: Explanation of terms in BM25F Rank function

Term Explanation

weight(t,d) Weight of term ‘t’ over all fields for
document ‘d’

 Free parameter

idf(t) Inverse Document Frequency term ‘t’ over
collection of documents

Page | 24

3.1.8 Index Folder Structure

The default directory structure used by the indexing module to organize indexing jobs

containing archive files and index files is shown in Figure 5.

Figure 5: Directory Structure for organizing Indexing Jobs

In Figure 5, the “01”, “02”, “03”, “04”, and “05” directories under “jobs” directory refer

to job numbers. The “arcs” directory under each job directory contains the archive files

for the particular indexing job. The“index” directory under job directory contains the

generated index files for corresponding archive files for the job.

Page | 25

3.2 The Searching Module

An index alone is not useful unless there is a way to use this index for searching through

archives for documents. To achieve that, the Searching Module was developed. It is a

Java-based Web-application. Along with different modules of Searching Module, it uses

some support classes from the indexing module to read index format and archive files. In

the Searching Module, there is one search page in which you can enter your query and

retrieve results for the same from your archive collection using its index.

The different Use case scenarios for the Searching Module are as shown in Figure 6.

Figure 6: User Case Diagram for Searching

Page | 26

The Searching Module is divided in mainly three JSP modules:

1. The Query Module

This module is used for entering search query and displaying results based on

that.

2. The LoadCache Module

This module is used for loading cached version of the document from archive file.

3. The Settings Module

This module provides various settings related to searching.

All three modules are explained in detail below in Sections 3.2.1 - 3.2.3:

3.2.1 The Query Module

This is the main searching module. It consists of index.jsp, IndexReader class, Record

class and index itself. Main function of this module is to provide results based on user

entered search query.

Page | 27

The workflow of the Query Module is shown in the Figure 7. In the figure, numbers from

1 to 6 represent steps of workflow and they are briefly explained below:

1) The user inputs the query in search box of index.jsp and submits the request.

2) The index.jsp divides the query into list of terms and submits it to IndexReader

class.

3) The IndexReader class goes to the currently pointed index and requests for list of

documents matching the terms in the query from Posting List. It also retrieves

detail for all such document from Document Dictionary.

4) Index provides the requested results back to IndexReader.

User

Index

index.jsp IndexReader
1

2

3

4

5

6

Figure 7: The Query Module Internals

Page | 28

5) The IndexReader class builds the list of Record objects by using the details

obtained from index and combining BM25F scores for each document where

search query term appears. At the end, it sorts the List of Record objects in

descending order of BM25F score. This List of Record objects is sent to index.jsp

file for user to see.

Here, every Record object contains important information for search result like

Title, the link to the original document, the information needed to load cached

version of document and snippet of the document content when available.

6) The index.jsp file displays the formatted result for the user query on the page.

Sample of search results for query “google” showing records can be seen in

Figure 8.

Page | 29

Figure 8: Search Results

3.2.2 The Load Cache Module

This module takes request from the Query Module to retrieve the archived version of

document based on file name of the archive file containing the document and offset for

that result within that archive file. It shows the html document on screen to user. It might

lack certain pictures or formatting of the document if the original pictures and cascaded

styles sheets linked to the document are no longer available.

Workflow of the Load Cache Module is shown in Figure 9 and it is explained below

according to the numbers given in the figure.

Page | 30

1) User selects the document to load from archive by using “load from cache” link

for corresponding document.

2) The required details to locate and load the selected document from the archive file

are passed as parameters to loadCache.jsp. These details include name of the

archive file where it is stored and offset to the record containing document.

3) loadCache.jsp locates the archive file based on the information provided and

location of all archive files related to the index provided by config.properties file.

Using ARCReader class, loadCache.jsp requests index for the document at in

provided archive file, at given offset.

4) Archive file returns the record containing the requested document to

loadCache.jsp

5) loadCache.jsp reads that record and returns it to the user.

Page | 31

3.2.3 The Settings Module

This module allows the user to change various parameters related to the index and

archive files. The Query Module and the Load Cache Module refers to the settings saved

through this module. This module consists of the settings.jsp and the config.properties

file.

In the settings.jsp, the user is provided an option to retrieve or change settings related to

indexing and archive files.

User

Archive
File

index.jsp loadCache
.jsp

1

2

3

4

5

Figure 9: Load Cache Module Working Diagram

Page | 32

Figure 10: Settings Module

Figure 10 shows how the settings on web-page look like. Those settings are explained in

Table 7 with their default value. These settings will determine behavior of entire web-

application.

Table 7: Settings of MySearcher

Setting Option Default Value

jobs_path Path to jobs folder where
archive jobs are stored

Jobs/

job_id The job id in the jobs_path
to refer

01/

Page | 33

arcs_dir Path to directory containing
archive files relative to
jobs_path.

Arcs/

index_dir Path to directory containing
the index file relative to
jobs_path

Index/

index_name Name of the index file MyIndex

debug_flag Prints debugging
information on console

false

Figure 11 shows the workflow of how Settings Module saves configuration file. The

steps from the figure are explained below based on the numbers assigned:

1) User opens the settings.jsp file. The settings.jsp file retrieves the key-value pairs

from configuration file as label-input pairs on generated html page.

2) The settings.jsp updates the values in the configuration file upon user request by

clicking the save button.

3) Updated values are reloaded on the settings.jsp page.

4) A JavaScript function redirects user to index.jsp in 3 seconds after update is

performed. This time period gives user chance to see the changes.

5) index.jsp is displayed to the user for him to start searching based on the newly

updated configuration.

Page | 34

User

config
.properties

settings.jsp index.jsp

1 2

3

4
5

Figure 11: Settings Module Working Diagram (Save file)

Page | 35

4. Testing and Results

4.1 Results for Indexing Test

I tested my Indexing performance by indexing 38 archive files of size 3.49GB. These

archive files were retrieved from a Heritrix crawl ran on April 11, 2011 on sjsu.edu

domain. Below is part of the result also demonstrating profiling of the indexer:

Path: jobs/03/arcs/

Following files are found:

*IAH-20110411213501-00000-130.65.104.126-8080.arc.gz

Phase - I of iterating arc files and parsing html docs started... 0 Seconds

Phase - I of iterating arc files and parsing html docs finished... 15 Seconds and 15

Seconds from start to end

Phase - II of processing messages and creating index started...15 Seconds so far

Phase - II of processing messages and creating index finished...7 Seconds and 22

Seconds from start to end

*IAH-20110411213510-00001-130.65.104.126-8080.arc.gz

Phase - I of iterating arc files and parsing html docs started... 24 Seconds

Phase - I of iterating arc files and parsing html docs finished... 19 Seconds and 44

Seconds from start to end

Phase - II of processing messages and creating index started...44 Seconds so far

Phase - II of processing messages and creating index finished...31 Seconds and 75

Seconds from start to end

.

.

.

*IAH-20110411221922-00037-130.65.104.126-8080.arc.gz

Phase - I of iterating arc files and parsing html docs started... 12912 Seconds

Phase - I of iterating arc files and parsing html docs finished... 0 Seconds and

12912 Seconds from start to end

Page | 36

Phase - II of processing messages and creating index started...12912 Seconds so far

Phase - II of processing messages and creating index finished...533 Seconds and

13446 Seconds from start to end

Phase - III of pre-calculating BM25F score started...13446 Seconds so far...

Current Working Directory: C:\Users\Darshan\workspace\MyIndexer

invertedIndexTree exists and has 56900 members

docDictionaryTree already exists and has 22479 members

miscTree already exists and has 5 members

Phase - III of pre-calculating BM25F score finished...243 Seconds for this phase

and 13887 Seconds from start to end

24109 html files processed...

As you can see above, it took around 13887 seconds to create index for 38 archive files of

total size 3.49GB. It retrieved 24109 html documents out of those archive files and

created index based on them. Size of created index is roughly ~700MB.

4.2 Results for Searching Test

To test the performance of the Searching Module, I used the index created for the test

performed in Section 4.1. It has approximately 25,000 documents indexed on sjsu.edu

domain from April 11, 2011. The original archive size is approximately 3.50GB. I used

The Settings Module of The Searching Module to use this desired index and set of

archives for The Query Module.

Page | 37

Figure 12: Search Results Test

Speed Test

Now, as shown in Figure 12 performing search for “computer Science” query in the

Query Module, it retrieves 1626 results for the query “computer science” in 0.312

seconds.

Table 8 represents more search results benchmarking obtained using the same

methodology explained above. This test helps to get an idea of average performance of

Searching Module for various queries.

Table 8: Speed Test Results

Query No. of Results Time Taken

Page | 38

google 114 0.232

mechanical and aerospace engineering 667 0.32

department of computer science 2782 0.7

clark hall 238 0.424

Search 760 0.236

san jose state university 7561 1.135

Figure 13: Graph for Time Taken for Query

Figure 13 represents the Query vs. Time Taken graph. Figure 14 represents the Query vs.

No. of Results graph. Both of these graphs use data from Table 8.

As we can see in Figure 13, the time taken to retrieve the result generally increases as we

introduce more terms in the search query. If we combine this finding with results shown

0

0.2

0.4

0.6

0.8

1

1.2

google mechanical
and

aerospace
engineering

department
of computer

science

clark hall search san jose
state

university

Time Taken

Time Taken

Page | 39

in Figure 14, we can derive that Time taken to retrieve result increases as we introduce

more terms in search query or if there are more results to process and sort.

Figure 14: Graph of No. of Results for Different Queries

0

1000

2000

3000

4000

5000

6000

7000

8000

google mechanical
and

aerospace
engineering

department
of

computer
science

clark hall search san jose
state

university

No. of Results

No. of Results

Page | 40

5. Technical Difficulties & Limitation

“In a day when you don't come across any problems — you can be sure that you are

traveling in the wrong path.” – Swami Vivekananda [15]

As the quote suggests, one cannot finish a task without facing any challenges or

difficulties. This project was no exception. Some of them are predicted during research

work, while others are only to be seen during implementation.

This section contains one such Technical Difficulty and its workaround:

5.1 GZIPInputStream bug

This project processes GZIP files for processing of Archive Records. GZIP file format

[16] specifies that single GZIP file can accommodate multiple members provided each

members have their own headers specified.

Java’s implementation of GZIPOutputStream allows producing such files, while

GZIPInputStream fails to read more than one members from the GZIP file. There is a

known bug for this reported to developers of JDK [17]. They tried to fix this in JDK

1.6.0_23 (update 23), but that still has bug in its implementation and old work around by

Heritrix Developers to original bug no longer works due to the code change within the

method for reading stream through GZIP file.

In order to use ARCReader class provided by Heritrix 1.14.4 for archive reading, the

version of Java Runtime Environment has to be 1.6.0_22 or below.

Page | 41

6. Conclusion

Full-text indexing for Heritrix, in combination with Heritrix, provides everything one

may need to create searchable archives. To make the archives generated by Heritrix

searchable, this project adds the Indexing Module to generate inverted index for the

archive files and the Searching Module to provide a web-based search interface

facilitating users to perform search through these archives.

 Heritrix crawls the web and stores documents in archive file. Our Indexing Module of

this project uses these archive files to create Inverted Index for them. The Searching

Module provides the web interface for users to search through the archived documents

using the inverted index along with archive files. The returned results have links to view

archived versions of documents as well as current versions of the documents if they are

currently available on web.

This project serves three purposes:

1) It provides keyword based searching compared to Internet Archive project, which

provides only domain based searching.

2) It can be used for archiving different versions of the web referring to different

times and see the evolution of the web by pointing the search engine to different

indexes and comparing the cached documents.

Page | 42

3) It can be used for archiving of important documents in case either they are no

longer available online due to certain reason or you do not have internet

connection and want to search through those documents.

Page | 43

8. References

[1] "Internet Archive," [Online]. Available: http://archive.org/.

[2] P. Jack, "Heritrix Web Crawler," Internet Archive, 2012. [Online]. Available:
http://crawler.archive.org/.

[3] "Internet Archive: Wayback Machine," [Online]. Available:
http://archive.org/web/web.php.

[4] "Okapi BM25," [Online]. Available: http://en.wikipedia.org/wiki/Okapi_BM25.

[5] K. Sigurđsson, M. Stack and I. Ranitovic, "Heritrix User Manual," [Online].
Available: http://crawler.archive.org/articles/user_manual/index.html.

[6] M. Burner and B. Kahle, "ARC File Format," 15 September 1996. [Online].
Available: http://archive.org/web/researcher/ArcFileFormat.php.

[7] J. E. Halse, G. Mohr, K. Sigurđsson, M. Stack and P. Jack, "Heritrix Developer
Documentation," [Online]. Available:
http://crawler.archive.org/articles/developer_manual/index.html.

[8] "Heritrix 1.14.4 - Java Docs," [Online]. Available:
http://builds.archive.org:8080/javadoc/heritrix-1.14.4/.

[9] "Simple API for XML - Wikipedia, the free encyclopedia," [Online]. Available:
http://en.wikipedia.org/wiki/Simple_API_for_XML.

[10] "SAXParser (Java 2 Platform SE 5.0)," [Online]. Available:
http://docs.oracle.com/javase/1.5.0/docs/api/javax/xml/parsers/SAXParser.html.

[11] P. Martin, R. Boulton and M. Andrew, "Snowball Stemmer," [Online]. Available:
http://snowball.tartarus.org.

[12] "JDBM Project," [Online]. Available: http://jdbm.sourceforge.net/.

[13] S. Büttcher, C. L. A. Clarke and G. V. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines, MIT Press, 2010.

Page | 44

[14] J. P. Iglesias, "Integrating the Probabilistic Model BM25/BM25F into Lucene,"
[Online]. Available: http://nlp.uned.es/~jperezi/Lucene-BM25/.

[15] "Swami Vivekananda," [Online]. Available:
http://en.wikiquote.org/wiki/Swami_Vivekananda.

[16] "GZIP file format specification version 4.3," [Online]. Available:
http://www.gzip.org/zlib/rfc-gzip.html#file-format.

[17] "Bug ID: 4691425," 24 May 2002. [Online]. Available:
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4691425.

[18] J. He, H. Yan and T. Suel, "Compact full-text indexing of versioned document
collections," Proceedings of the 18th ACM conference on Information and

knowledge management, pp. 415--424, 2009.

